
©Copyright	JASSS

Oliver	Mannion,	Roy	Lay-Yee,	Wendy	Wrapson,	Peter	Davis	and	Janet	Pearson	(2012)

JAMSIM:	a	Microsimulation	Modelling	Policy	Tool

Journal	of	Artificial	Societies	and	Social	Simulation 	15	(1)	8
<http://jasss.soc.surrey.ac.uk/15/1/8.html>

Received:	15-Mar-2011				Accepted:	13-Oct-2011				Published:	31-Jan-2012

Abstract

JAMSIM	(JAva	MicroSIMulation)	is	an	innovative	synthesis	of	open	source	packages	that	provides	an	environment	and	set	of	features	for	the	creation	of	dynamic
discrete-time	microsimulation	models	that	are	to	be	executed,	manipulated	and	interrogated	by	non-technical,	policy-oriented	users.	Combining	the	leading	open
source	statistical	package	R	and	one	of	the	foremost	agent-based	modelling	(ABM)	graphical	tools	Ascape,	JAMSIM	is	available	as	an	open	source	tool,	for	public
reuse	and	modification.	Here	we	describe	microsimulation,	our	functional	requirements,	a	review	of	tools	used	by	other	micro-simulators	and	an	evaluation	of
existing	software,	followed	by	the	architecture,	features	and	use	of	JAMSIM.

Keywords:
Microsimulation,	Software	Frameworks,	Policy	Tool,	Java,	R

	Introduction

1.1 Microsimulation	is	an	empirically	based	data	modelling	methodology	traditionally	used	in	the	areas	of	taxation,	pensions,	and	other	types	of	economic	activity,	but	is
increasingly	being	applied	to	the	social	sciences	(Brown	and	Harding	2002).	Microsimulation	can	be	distinguished	from	other	types	of	computer	modelling	in	that	it
simulates	the	state	and	behaviour	of	individual	units	such	as	people	or	households	and	relies	on	empirical	data	for	initial	conditions	and	rules	(Gilbert	and	Troitzsch
2005).	Investigation	of	point	estimates	and	distributions	of	outcomes	can	then	be	performed	for	a	range	of	heterogeneous	subgroups	of	interest.	In	empirical	terms,
each	unit	is	represented	by	a	data	record	containing	a	unique	identifier	and	a	set	of	associated	attributes,	such	as	age,	gender,	marital	status	and	education.	A	set	of
rules	(for	example	transition	probabilities)	intended	to	represent	individual	preferences	and	tendencies,	is	then	applied	to	each	unit,	leading	to	simulated	changes	in
state	and	behaviour.	The	end	result	is	an	individual	life	history	and	its	projection	into	a	future	time	period.

1.2 Microsimulation	can	be	a	useful	tool	for	policymakers	because	it	allows	an	evaluation	to	be	conducted	of	the	effects	of	proposed	government	policy	interventions
before	they	are	implemented	in	the	real	world.	We	have	undertaken	two	policy-oriented	microsimulation	projects	that	have	required	us	to	model	characteristics	of
certain	sub-populations	(children	in	one	and	elderly	people	in	another),	forecast	outcomes,	and	develop	and	run	scenarios	of	interest	to	policymakers.	The	ultimate
goal	of	our	research	is	to	assist	policymakers	to	provide	sound	advice	and	thus,	as	with	many	other	microsimulation	models,	these	models	are	designed	for	use	by
government	agencies.

1.3 Microsimulation	models	used	by	policymakers	ideally	need	to	be	encapsulated	in	self-contained	software	applications	that	can	be	run	on	a	desktop	computer	and
easily	operated	by	non-technical	users.	While	there	is	a	large	pool	of	software	toolkits	for	agent-based	modelling	(ABM),	there	is	a	dearth	of	tools	for	microsimulation.
We	firstly	describe	the	functional	requirements	of	policy-oriented	microsimulation	models.	We	then	evaluate	existing	software	tools	for	this	purpose,	before	describing
the	microsimulation	tool	JAMSIM	(JAva	MicroSIMulation)	that	we	have	developed.

Requirements

2.1 The	functional	requirements	of	the	microsimulation	toolkit	were	developed	from	the	nature	of	the	particular	modelling	problems	we	were	addressing.	The	first	was
modelling	primary	care	in	an	ageing	society	(PCASO)	(Davis	et	al.	2010;	Pearson	et	al.	2011)	and	was	originally	programmed	for	a	technical	audience	in	SAS.	We
wanted	to	convert	this	into	a	tool	usable	by	policymakers.	The	second	was	a	life	course	approach	modelling	health	outcomes	for	children	using	a	longitudinal	data	set.
The	requirements	we	developed	for	an	end-user	tool	implementing	these	models	are	listed	in	Table	1.

Table	1:	Functional	requirements	of	our	microsimulation	models

Base	file	input Create	individual	micro-level	population	units,	or	agents,	from	multiple	data	sets,	which	may	require	some	data	manipulation	and
merging.

Parameter	input Load	multiple	tables	of	parameters	from	CSV/Excel	files,	which	can	be	modified	in	the	user	interface	to	test	different	scenarios.
Scheduling	mechanism Simple	discrete-time.	State	changes	occur	at	every	time	period.
Simulation	techniques Stochastic	equations	involving	Monte	Carlo	draws	from	discretely	specified	probability	distributions.	Requires	random	number

generation.
Prediction	from	statistical	models.
Transition	matrices.
Multiple	runs	(with	same	parameters	but	different	random	seeds)	to	obtain	a	robust	mean	estimate	and	confidence	interval.
Reweighted	inputs	or	outputs	to	adjust	population	distributions.

Scenario	testing The	ability	to	directly	change	and/or	reweight	any	continuous	or	categorical	variable	used	in	the	model.	The	model	can	then	be
rerun	with	the	changed	variables	and	the	outputs	compared	with	a	baseline	run.

Output The	ability	to	export	simulated	results	for	analysis	in	external	software	as	well	as	GUI	features	for	the	display	of:
i)	Aggregates:	charts	and	tables	of	aggregate	information	per	year,	e.g.	frequency	distribution,	mean,	standard	deviation	and	other
descriptive	statistics;	a	facility	to	weight	and	reweight	the	sample	to	obtain	representativeness	and	for	scenario	testing.
ii)	Individuals:	the	complete	data	set	(i.e.	state	of	each	individual)	after	each	year;	ability	to	track	an	individual	history	(state

http://jasss.soc.surrey.ac.uk/15/1/8.html 1 12/10/2015

/admin/copyright.html
../../JASSS.html
http://jasss.soc.surrey.ac.uk/15/1/8/mannion.html

changes	over	time).
User	interface To	encourage	a	wide	user-base,	the	user	interface	should	be	intuitive.	It	should	be	"easy"	for	an	end-user	to	operate	functions

including	simulation	control,	scenario	testing,	and	output	display.
Performance External	end-users	should	be	able	to	perform	multiple	runs	of	a	multi-year	simulation	on	a	desktop	computer	in	a	reasonable

amount	of	time	(maximum	of	5	minutes).

Software	evaluation—Microsimulation	models

3.1 In	determining	an	appropriate	software	platform	for	implementing	our	models,	we	began	by	researching	software	implementation	details	and	application	features	of
existing	microsimulation	models.	In	addition	we	consulted	articles	providing	general	software	selection	and	development	advice	for	microsimulation	(Percival	2007;
Scott	2003).	We	also	communicated	with	existing	microsimulation	model	users	and	developers	on	the	SIMSOC	mailing	list,	and	our	own	contacts,	to	seek	their
feedback	and	advice.	A	summary	of	our	microsimulation	model	survey	is	shown	in	Table	2.	Rather	than	a	comprehensive	survey	of	all	available	microsimulation
models,	this	table	shows	models	that	were	either	well	known	and	widely	used,	similar	enough	in	domain	content	and/or	features	to	the	type	of	models	we	sought	to
build,	or	distinct	and	unique	in	implementation	and	approach	from	other	models	in	the	field.

Table	2:	Relevant	Microsimulation	Models	and	Software	Application	Details

Name	/	Yr Type,	Domain Language GUI	Features Availability

APPSIM
2005-

Dynamic	life-course C#	(Percival	2007) Simulation	control,	alignment,	scenario
testing,	sensitivity	analysis

Partner
organisations	only

CARESIM
1998-?

Dynamic,	distributional	effects
of	care	charging	regimes

SAS	(Wittenberg	et	al.	2007) No	GUI Unknown

EUROMOD
1996-

Static,	tax-benefit	system C++	(Immervoll	et	al.	1999;	Sutherland	2007;
Sutherland	et	al.	2008)

Simulation	control,	scenario	testing On	request	for
not-for-profit	use

LABORsim
2006-?

Labour	supply	modelling Java	and	JAS	(Leombruni	and	Richiardi
2006)

Simulation	control,	parameter	changes,
output	tables	and	graphs

JAS	framework
downloadable

LifePaths
1994-

Dynamic	life-course C++	and	Modgen	(Rowe	and	Gribble	2007) Simulation	control,	output	tables,
BioBrowser

Downloadable

MicMac
2005-2009

Dynamic	life-course Java,	R	and	JAMES	II	(Gampe	et	al.	2009;
Zinn	et	al.	2009)

Simulation	control,	(non-integrated	pre-
and	post-simulation	processing	in	R)

Downloadable

MIDAS Dynamic	life-course C++	and	LIAM Provides	GUI	but	features	unknown On	request

PENSIM
1997-

Pension	plans C++	with	custom	model	specification
language	(Holmer	et	al.	2011)

Simulation	control Downloadable

SAGE
1999-2005

Dynamic	life-course C++	with	custom	model	specification
language	(Evandrou	et	al.	2007;	Scott	2003)

Simulation	control Unavailable

SVERIGE-
3
?

Dynamic,	spatial	life-course C#	with	custom	model	and	equation
specification	(Holm	et	al.	2007)

Provides	GUI	but	features	unknown Unavailable	due	to
data	restrictions

3.2 Several	of	these	models	(LABORsim,	LifePaths,	MicMac,	MIDAS,	PENSIM,	SAGE,	SVERIGE-3)	were	built	within	a	generalised	framework	that	caters	to	more	than	a
single	specific	model.	However,	because	of	the	complexity	of	different	specialist	needs,	there	is	currently	no	single	predominant	or	generic	gold	standard
microsimulation	framework.	Using	a	generalised	framework	allows	the	model	developer	to	enjoy	the	benefits	of	modularisation	and	reuse.	This	includes	reducing	the
amount	of	code	and	documentation	that	needs	to	be	written	from	the	ground	up,	which	shortens	development	time	and	decreases	costs.	In	addition,	reusing	software
components	that	have	already	been	extensively	tested	reduces	error	potential.	Some	level	of	reuse,	if	possible,	is	therefore	desirable,	and	we	agree	with	Ropella	et
al.	(2002:	10)	that	in	only	very	rare	situations	would	it	be	advantageous	to	develop	a	system	without	utilising	any	existing	software	packages.

3.3 The	generalised	frameworks	used	by	the	above	models	are	of	two	types.	The	first	is	a	model	specification	framework	(MSF)	that	consists	of:	i)	a	bespoke	declarative
language	for	model	features	such	as	agents,	events/state	transitions,	parameters	and	output	tables,	and	ii)	an	application	environment	that	provides	an	event
queuing/simulation	scheduling	mechanism,	a	user	interface	and	input	and	output	formats.	Typically	these	frameworks	do	not	require	a	model	developer	to	be	a
computer	programmer	as	well,	but	they	do	require	learning	the	specifics	of	the	model	specification	language	and	operation	environment	provided.	Model	specification
frameworks	are	used	by	LifePaths,	PENSIM,	SAGE	and	SVERIGE-3.

3.4 Of	the	MSFs	employed	by	these	models	only	the	Modgen	framework	(Statistics	Canada	2011a)	used	by	LifePaths	is	readily	available	and	well	supported.	Modgen	is
a	dynamic	microsimulation-specific	toolkit,	as	opposed	to	an	ABM	one,	with	a	complete	set	of	features	including	base	file	loading	(from	a	custom	.DAT	file	format),
simulation,	aggregate	outputs	(in	tables)	and	individual	agent	life	history	output	(via	the	included	BioBrowser	tool).	Its	custom	model	specification	language	introduces
a	learning	curve	for	the	model	developer,	but	once	learnt	it	can	be	used	to	implement	a	wide	range	of	dynamic	models.	It	supports	both	discrete	and	continuous	time
event	frameworks	(for	details	on	the	distinction,	see	Scott	2003:4).	Although	time-based	processing	is	possible,	in	which	all	individuals	are	simulated	at	time	t	before
moving	to	time	t+1,	Modgen	primarily	uses	case-based	processing	of	individuals.	In	other	words,	each	case	is	simulated	from	the	beginning	to	the	end	before	the
simulation	of	the	next	case	begins	(Statistics	Canada	2011b).	This	limits	the	modelling	of	interactions	to	only	between	individuals	in	each	case	rather	than	the	whole
population.	The	advantage	of	case-based	processing	is	that	cases	can	be	simulated	in	parallel.	Modgen	also	allows	open	populations,	or	ones	in	which	new
individuals	can	be	generated	in	response	to	certain	events	such	as	partnership.	Overall,	Modgen	came	very	close	to	meeting	all	our	requirements.	However,	although
the	support	options	were	significant,	we	felt	uncomfortable	relying	on	the	continued	availability	of	that	support	within	a	closed	source	model.	The	closed	source	model
also	limited	the	ability	of	Modgen	to	be	extended	and	extra	functionality	added	if	and	when	we	required	it.

http://jasss.soc.surrey.ac.uk/15/1/8.html 2 12/10/2015

3.5 Two	other	specification-style	frameworks	deserve	mention.	While	SAS	is	a	general	purpose	data	analysis	tool	rather	than	a	model	specification	framework	per	se,	it	is
similar	in	that	it	provides	a	custom	language	and	application	environment.	In	part	because	of	prior	experience	with	the	SAS	language	in	other	domains,	SAS	has	been
adopted	by	some	microsimulation	developers.	CARESIM	is	an	example	of	a	SAS	microsimulation	model,	as	is	our	earlier	work	with	the	PCASO	model	(Pearson	et	al.
2011).	However,	because	of	SAS's	lack	of	a	user	friendly	GUI,	it	was	ruled	unsuitable	for	a	tool	that	was	aimed	at	policy	end-users.	Secondly,	UMDBS	(Sauerbier
2002)	is	a	dynamic	time-based	MSF	written	in	Smalltalk	that	often	receives	mention	in	software	reviews.	We	also	considered	it	for	our	modelling	purposes	but	decided
against	it	because	of	its	limited	user	interface,	its	closed	source	and	non-extensible	nature,	and	its	lack	of	support	and	recent	releases.

3.6 The	second	type	of	generalised	framework	is	a	set	of	libraries,	or	packages,	that	together	provide	functionality	to	implement	a	microsimulation	model.	In	comparison	to
an	MSF	like	Modgen	these	frameworks	are	typically	more	modular	and	extensible,	especially	so	if	they	are	open	source,	but	less	complete	in	functionality.	The
functionality	that	is	typically	provided	includes	a	simulation	event	queue,	a	user	interface	for	simulation	control,	and	varying	levels	of	output	functionality.	Implementing
a	specific	model	in	a	library	framework	requires	additional	programming	in	a	general	purpose	programming	language	like	C++	or	Java,	rather	than	a	model-specific
language.

3.7 Of	the	microsimulation	models	sampled	above,	LABORsim,	MicMac	and	MIDAS	use	a	library	framework.	MIDAS	uses	the	comprehensive	and	flexible	C++	Life-cycle
Income	Analysis	Model	(LIAM)	framework	(O'Donoghue	et	al.	2009).	LIAM	offers	single	and	multi-cohort	dynamic	life-course	microsimulation	with	a	graphical	user
interface	and	has	been	used	to	model	the	redistributive	impacts	of	tax-benefit	and	pension	systems.	LIAM	is	used	for	problems	that	have	closed	populations,	i.e.	in
which	no	new	individuals	are	generated,	and	which	use	discrete-time	state	changes.	It	supports	transition	matrices,	regression	and	arithmetic	transformations,	and
includes	a	marriage	market	module	and	functionality	to	handle	migration.	Behavioural	feedback	loops	can	be	incorporated	and	alignment	with	external	data	sources	is
possible.	However,	after	consideration,	the	availability	of	this	framework	on	a	request	only	basis	and	a	lack	of	documentation	and	structured	support	limited	its	appeal
to	us.

3.8 LABORsim	uses	the	open	source	Java	Agent-based	Simulation	(JAS)	library	(Sonnessa	2003).	It	is	primarily	an	ABM	framework	with	an	event	list	that	can	fire	events
at	specified	discrete	time	intervals.	It	has	not	been	explicitly	designed	with	microsimulation	in	mind,	although	microsimulation	can	be	accommodated	within	its
framework.	The	advantage	of	JAS	over	other	ABM	toolkits	is	that	it	provides	support	for	reading	from	CSV	and	Excel	files.	However	its	last	release	(v1.2.1)	was	in
2006	(Sonnessa	2011)	and	so	without	recent	activity	or	a	viable	support	base	it	was	ruled	out.

3.9 MicMac	is	a	Java	based	dynamic	microsimulation	model	that	uses	the	JAMES	II	(Himmelspach	and	Uhrmacher	2007)	library	framework,	which	had	a	v0.8.3	alpha
release	in	2009	(Uhrmacher	et	al.	2011)	and	has	planned	future	releases.	JAMES	II	is	readily	available,	open	source,	and	based	on	an	extensible	plug-in	framework
with	a	large	repository	of	existing	plug-ins.	Its	focus	is	on	biological	simulation	problems,	although	its	plug-in	design	means	it	need	not	be	restricted	to	any	one
particular	simulation	paradigm.	JAMES	II	supports	both	discrete	and	continuous	time	simulations	of	open	and	closed	populations.	There	has	been	recent	activity	on
the	JAMES	II	project,	a	range	of	publications	that	cite	the	Himmelspach	and	Uhrmacher	(2007)	conference	paper,	good	documentation,	and	several	projects	that
branch	off	JAMES	II.	However,	its	status	as	an	"alpha"	release	led	to	our	perception	that	it	had	not	yet	reached	the	maturity	of	other	offerings.

Software	evaluation—ABM	toolkits

4.1 Outside	of	microsimulation,	library	frameworks	have	been	very	popular,	and	they	are	well	developed	in	the	ABM	world.	The	main	difference	between	ABM	and
microsimulation	is	that	microsimulation	models	rely	on	empirical	micro	data	sets	where	agent-based	models	do	not.	ABM	toolkits	typically	lack	the	ability	to	easily	read
data	sets	of	multiple	variables	and	convert	them	into	agents	for	simulation.	Microsimulation	models	make	use	of	statistical	modelling	techniques,	and	probabilities
derived	from	empirical	data,	to	transform	inputs	into	outputs.	ABM	toolkits	do	not	generally	cater	for	these	sorts	of	transitions	but	instead	provide	rule-based
transformations	which	are	more	useful	for	the	theoretically-derived	models	of	the	ABM	world.	Although	ABM	and	microsimulation	differ	in	intent,	purpose	and
technique,	there	are	enough	similarities	in	software	functionality	that	we	decided	to	include	general	purpose	ABM	library	toolkits	in	our	selection	process.

4.2 In	August	2009	we	searched	relevant	computer	simulation	journals	and	conducted	internet	searches	to	determine	what	was	available.	In	particular	we	found	and
consulted	a	number	of	ABM	software	reviews	(Gilbert	and	Bankes	2002;	Lawson	2008;	Nikolai	and	Madey	2009;	Railsback	et	al.	2006;	Tobias	and	Hofmann	2004).	In
total	we	identified	30	potential	microsimulation/ABM	toolkits	or	environments,	of	which	most	were	discounted	because	their	focus	was	on	a	different	problem	domain,
or	they	lacked	functionality,	were	not	extensible,	or	were	outdated	and	no	longer	offered	support.

4.3 Of	those	we	considered	in	depth,	Anylogic	Professional	Edition	v6.5	(XJ	Technologies	2011)	came	closest	to	meeting	our	requirements.	It	provided	the	most
comprehensive	and	visually	appealing	user	interface,	including	graphs	and	advanced	visualisations,	of	any	of	the	tools	we	examined.	It	is,	however,	closed	source,
and	it	requires	a	license	fee	for	each	run-time	instance	of	a	deployed	model.	We	felt	that	the	inability	to	modify	the	source	code	meant	we	would	not	be	able	to	fully
tailor	it	to	our	needs,	particularly	in	the	area	of	statistical	analysis.	The	remaining	contenders	were	Repast	Simphony	v1.2	(North	2011a),	Repast	v3	(North	2011b),
and	Ascape	v5.6	(Parker	2011).	Like	Anylogic	they	are	all	well	developed,	with	substantial	histories	and	ongoing	development,	and	existing	user	and	support	bases.
Unlike	Anylogic	they	are	all	open	source	and	so	provide	complete	extensibility.	However,	they	are	ABM-specific	and	so	lack	data	input,	output,	and	analysis
functionality.

4.4 The	advantage	of	an	open	source	library	framework	like	Repast	or	Ascape	is	that	a	developer	can	select	and	reuse	only	those	library	functionalities	that	they	require.
Because	no	one	tool	provided	all	the	functionality	we	required,	we	finally	decided	to	combine	elements	of	multiple	open	source	libraries	in	order	to	meet	our
requirements.	Our	solution	was	to	use	Ascape	as	the	user	interface	and	for	simulation	control,	and	combine	this	with	R	(R	Development	Core	Team	2011)	for
statistical	analysis	and	output.	This	left	us	to	write	our	own	microsimulation	transformation	code	in	Java.	This	hybrid	solution,	"JAMSIM",	was	a	compromise	between
relying	completely	on	a	single	software	package	(none	of	which	offered	total	flexibility	or	met	all	our	requirements)	and	writing	our	own	from	scratch	(a	time-consuming
process).

4.5 The	existing	packages	we	sought	to	utilise	were	either	written	in	Java	or	provided	interfaces	to	Java.	We	realise	however,	that,	as	the	above	survey	shows,	C++	has
clearly	been	the	language	of	choice	of	micro-simulators.	This	is	probably	largely	influenced	by	their	age,	as	at	the	time	of	model	inception,	alternative	languages	such
as	C#	or	Java	were	unavailable	or	lacked	popularity.	In	addition	C++,	as	a	compiled	language,	offers	the	greatest	performance	potential.	However,	given	the	low
computational	requirements	of	our	particular	microsimulation	models,	we	decided	the	potential	performance	gains	from	a	machine-compiled	language	would	not	be
necessary.	Overall,	we	reasoned	that	the	availability	of	higher	level	programming	components	in	an	interpreted	language	such	as	Java	outweighed	the	advantages	of
speed	provided	by	a	direct	machine-compiled	language	like	C++.	This	was	the	same	conclusion	reached	by	Percival	(2007)	in	selecting	C#	over	C++.	Finally,	Java
matched	the	skill	set	available	in	our	organisation.

JAMSIM	overview

5.1 JAMSIM	is	a	unique	synthesis	of	open	source	packages	that	provides	an	environment	and	set	of	features	for	the	creation	of	microsimulation	models	that	are	to	be
executed,	manipulated	and	interrogated	by	non-technical,	policy-oriented	users.	JAMSIM	is	less	a	framework	and	more	a	loose	coupling	of	a	set	of	open	source
packages	to	provide	a	base	set	of	functionalities	for	microsimulation.	Table	3	lists	the	packages	JAMSIM	combines	and	the	functionalities	they	provide.	These
functionalities	include	a	user	interface,	file	input,	in-memory	data	set	storage	and	transformation,	access	to	statistical	functions	and	graphing	and	table	output
capabilities.	In	particular,	JAMSIM	combines	the	leading	open	source	statistical	package	R	and	the	Java-based	Ascape,	one	of	the	foremost	agent-based	modelling
graphical	tools.	JAMSIM's	loose	coupling	and	open	source	heritage	and	development	make	it	an	accessible,	extensible	toolkit	for	developers	who	want	complete
control	over	the	code	base.	The	source	code	and	binaries	are	freely	available	at	http://code.google.com/p/jamsim/.	This	paper	discusses	features	currently	available	in
JAMSIM	v1.3.4.

http://jasss.soc.surrey.ac.uk/15/1/8.html 3 12/10/2015

http://code.google.com/p/jamsim/

Table	3:	Third	party	Java	packages	used	in	JAMSIM

Package Description

Ascape The	Ascape	agent-based	modelling	toolkit	is	used	by	JAMSIM	as	the	GUI,	for	the	main	discrete-time	based	simulation	loop,	and	for	simulation
control	(stop,	start,	pause,	etc.).	It	has	been	adapted	to	provide	access	to	tabular	and	graphical	outputs	in	a	fashion	modelled	loosely	on	Modgen.

R JAMSIM	embeds	the	R	statistical	programming	language	which	makes	available	the	extensive	statistical	and	graphing	capabilities	of	R.	Simulation
objects,	such	as	the	agents,	parameter	files,	and	simulation	outputs	are	available	in	R	for	analysis	such	as	producing	descriptive	statistics.	An	R
console	is	also	embedded	in	the	Ascape	GUI	for	direct	user	interaction,	and	the	Ascape	GUI	has	been	extended	to	display	R	graphics.

Casper
datasets

A	microsimulation	model	requires	the	manipulation	of	micro-data	sets	and	additional	parameter	files.	These	data	sets	need	to	be	modifiable	and	to
have	input	and	output	interfaces.	Data	sets	in	JAMSIM	are	processed	using	Casper	datasets,	a	generic,	in-memory	data	set	manipulation	library.

Read
My
Tables

For	the	loading	of	tabular	data	stored	in	CSV	or	Excel	files,	such	as	the	base	file	and	parameter	files.

Colt JAMSIM	provides	conversion	of	microdata	sets	to	matrices	for	manipulation	in	Colt.	Colt	is	a	high	performance	scientific	and	technical	computing
library	for	Java	that	provides	multidimensional	matrices,	linear	algebra,	histogram	and	basic	statistical	capabilities.

JAMSIM	Models

6.1 This	section	describes	the	types	of	microsimulation	models	JAMSIM	can	be	and	has	been	used	for.	In	particular,	JAMSIM	is	currently	being	used	to	implement	policy-
oriented	health	dynamic	microsimulation	models.	Table	4	details	the	essential	components	of	a	JAMSIM	model	(JSM),	describing	what	they	do	and	in	which	location
(language)	they	may	be	implemented.

Table	4:	Components	making	up	a	JAMSIM	model	(JSM)

Component Location Description

RootScape Java Root	component	that	defines,	loads	and	sets	up	all	other	components.	Responsible	for	the	loading	and	initialisation	processes.

ScapeData Java Defines	all	inputs	used	by	the	JSM,	including	the	base	file,	data	sets,	data	dictionary,	parameter	sets	(including	weighting	calculators)
and	analysis	menu	commands.

MicroSimCell Java Defines	the	population	unit,	or	agent,	that	makes	up	the	base	file	and	is	the	micro	unit	of	analysis,	e.g.	patient,	child,	household,	etc.

Iteration
steps

Java Steps	that	transform	the	base	file.	These	implement	statistical	techniques	and	models	that	move	the	base	file	from	time	step	t	to	time
step	t+1.

Outputs Java	/	R The	output	tables	and	graphs	that	display	simulation	results.

6.2 JAMSIM	supports	both	static—providing	a	cross-sectional	snapshot—and	dynamic—incorporating	change	over	time—models.	To	project	a	static	model	forward	in
time,	final	simulated	results	can	be	reweighted	to	produce	a	distribution	that	matches	that	of	a	future	population.	In	a	more	realistic	way,	JAMSIM	can	dynamically
model	a	series	of	state	changes,	or	outcomes,	for	a	set	of	individuals.	For	example,	if	we	were	modelling	the	early	life	course	of	children	these	outcomes	may	be	a
change	in	parental	characteristic	(e.g.	Mother	starts	or	stops	smoking),	a	change	in	family	status	(e.g.	parents	break	up	or	partner)	or	a	health	status	outcome	(e.g.	a
visit	to	the	doctor).	JAMSIM	is	dynamic	in	that	these	changes	are	generated	as	part	of	a	time	sequence	in	which	the	current	state	at	time	t	is	dependent	on	the
previous	state	at	time	t-1.

6.3 JAMSIM	was	designed	for	modelling	problems	that	involve	discrete	time	state	changes,	rather	than	continuous	time	or	case	based	state	changes.	JAMSIM's	core
simulation	process	is	a	sequential	loop	in	which	state	changes	can	be	generated	at	fixed	intervals	(iterations)	simultaneously	for	all	individuals.	State	changes	may
occur	at	each	iteration	for	each	individual	according	to	a	set	of	transition	probabilities	and	the	individual's	unique	demographic	attributes.	Transition	probabilities	for
individuals	may	be	specified	via	external	tables.

6.4 After	generating	a	unique	transition	probability	for	each	individual,	a	Monte	Carlo	simulation	is	typically	used	to	determine	if	a	state	change	will	actually	occur	for	an
individual	or	not.	This	is	done	by	drawing	a	random	number	on	the	interval	[0,1]	from	a	specified	distribution.	The	drawn	random	number	is	compared	to	the	transition
probability,	and	if	it	is	less	than	the	random	number	then	the	transition	occurs.	While	JAMSIM	is	aimed	at	simulation	models	that	involve	probabilistic	state	changes,
its	Ascape	heritage	allows	deterministic	rule	models	to	be	used	in	much	the	same	way	as	they	are	with	ABMs.

6.5 The	Ascape	component	of	JAMSIM	provides	the	ability	to	create	not	only	closed	but	also	open	models,	in	which	new	population	members	can	be	generated	during
the	simulation.	As	in	Ascape,	JAMSIM	models	can	be	composed	of	a	hierarchy	of	`scapes',	which	is	a	collection	of	agents	that	can	represent	basic	units	such	as	a
child,	parent,	household,	etc.	(see	Parker	2001).	This	allows	for	models	that	have	multiple	levels	of	simulation	and	analysis,	such	as	individual,	family,	household	or
subpopulation.	Such	models	may	also	accommodate	specific	linkages	between	individuals	and/or	different	units,	such	as	links	between	parents	and	children,	or
individuals	that	are	partnered.

6.6 JAMSIM	has	been	used	for	the	development	of	static	health	microsimulation	models.	In	particular	it	has	been	used	to	model	pathways	to	primary	care	under

http://jasss.soc.surrey.ac.uk/15/1/8.html 4 12/10/2015

scenarios	of	population	ageing	(Davis	et	al.	2010;	Pearson	et	al.	2011).	The	implementation	involved	a	data	set	of	13,500	patients.	From	sets	of	discretely	specified
probability	distributions,	the	simulation	models	recent	illness	conditions	for	each	patient,	the	number	of	times	they	might	visit	a	general	practitioner	(GP),	the	primary
diagnosis	given	by	the	GP,	and	the	associated	GP	activity	(e.g.	investigation,	prescription,	followup,	referral).

JAMSIM	Model	Simulation	Process

7.1 The	JAMSIM	model	simulation	process	consists	of	setup,	simulation	and	output	phases.	This	section	describes	these	phases	using	the	JAMSIM	Example	Model
(JEM).	JEM	is	an	implementation	of	the	Simpex	model	from	Modgen	(Statistics	Canada	2011a).	It	is	a	fictitious	and	simplistic	model	that	serves	to	illustrate	key
features	of	JAMSIM.	JEM	simulates	the	disability	state	of	a	population	of	males	and	females.	A	disability	state	is	either	no	disability,	or	mild,	moderate	or	severe
disability.	The	disability	state	of	each	individual	influences	their	earning	capacity,	which	is	the	key	output	of	the	model.

Setup

7.2 A	population	in	JAMSIM	is	represented	by	a	collection	of	Java	MicroSimCell	objects.	The	initial	state	of	a	population	can	be	generated	from	parameters,	or	each
individual	unit	may	be	pre-specified	in	a	base	file.	When	starting	from	a	base	file,	each	item	in	the	base	file	represents	a	single	unit	(e.g.	child,	patient,	household)
with	a	corresponding	set	of	variables	(e.g.	gender,	age,	income,	visits	to	the	GP).	When	a	JSM	starts,	it	loads	a	user-specified	CSV	or	Excel	file	that	represents	this
initial	base	file.	The	variable	data	types	can	be	determined	automatically	by	inspection,	or	specified	by	a	data	set	definition	file.	A	variable	data	type	may	be	specified
as	"optional",	which	will	allow	missing	values.	For	each	row	in	the	base	file,	a	corresponding	MicroSimCell	is	created	with	the	variables	specified	in	the	base	file.	After
loading,	the	entire	set	of	MicroSimCells	is	stored	in	R	as	a	dataframe.

Figure	1.	Base	file	display

Figure	1	exhibits	the	base	file	from	JEM.	The	fabricated	base	file,	which	is	not	based	on	any	real	world	data,	contains	the	variables	age,	alive,	sex,	weight,	etc.	Those
variables	that	are	currently	empty	(e.g.	disabilityState.1)	will	be	generated	during	simulation.

7.3 A	JSM	may	rely	on	a	range	of	external	data,	e.g.	transition	tables,	statistical	coefficients	and	intercepts,	incidence	rates,	adjustment	factors,	and	event	probabilities.
These	can	all	be	supplied	as	CSV	or	Excel	files,	and	loaded	in	and	represented	as	Casper	data	sets,	matrices,	and/or	R	dataframes.	Once	loaded	they	are	available
globally	for	use	in	both	simulation	and	analysis.	Figure	2	shows	a	screenshot	of	the	data	sets	loaded	from	external	data	sources	by	JEM	to	be	used	in	the	simulation.
The	disability	state	transition	probabilities	shown	below	are	used	to	model	the	change	of	disability	state	from	year	to	year,	and	the	earnings	scale	is	used	to	calculate
the	amount	earned	per	year,	by	disability	state.

http://jasss.soc.surrey.ac.uk/15/1/8.html 5 12/10/2015

Figure	2.	Data	sets	displaying	statistical	model	parameters

Before	the	simulation	begins,	there	may	be	some	pre-simulation	calculations	that	need	to	take	place.	For	example	the	base	file	may	need	to	be	augmented	with
additional	fields	from	data	sets,	or	data	sets	may	need	to	be	replicated	and	adjusted	to	accommodate	seasonal	variations.	Such	manipulation	can	be	performed	in
either	Java	or	R.

7.4 In	particular	the	user	may	wish	to	test	a	particular	scenario.	This	can	be	done	by	changing	the	weights	applied	to	the	results	of	the	simulation	according	to	the	desired
proportions	of	a	particular	categorical	variable,	e.g.	to	see	what	the	results	would	be	if	the	balance	of	gender	proportions	of	the	results	were	changed	from	50-50	to	10-
90.	Figure	3	shows	the	user	interface	to	change	the	weightings	of	the	'sex'	variable	in	order	to	test	a	different	gender	scenario	in	JEM.	Alternatively	it	is	possible	to
adjust	continuous	and	categorical	variables	directly	in	the	base	file.	Continuous	variables	can	be	displayed	in	bands	and	an	adjustment	applied	to	each	band.
Categorical	variables	can	be	adjusted	to	match	desired	proportions	by	reassigning	the	variable	randomly	or	according	to	propensity	scores.	At	the	end	of	the
simulation,	results	will	be	displayed	for	both	the	baseline	and	the	scenario	tested.

Figure	3.	Reweighting	results	by	the	variable
Sex

7.5 Finally,	the	user	may	wish	to	perform	analyses	on	the	base	file	before	it	is	transformed	by	the	simulation.	This	may	involve	inspecting	graphs	specified	by	the	JSM,	or
by	user-specified	R	commands	entered	on	the	console.	Figure	4	illustrates	a	graphical	analysis	that	shows	how	the	distribution	of	gender	has	been	changed	to	test	the
10-90	female-male	scenario	in	JEM.

http://jasss.soc.surrey.ac.uk/15/1/8.html 6 12/10/2015

Figure	4.	Graphing	variables	in	the	base	file	before	simulation

Simulation

7.6 The	simulation	process	is	Ascape-based	and	consists	of	two	nested	loops.	The	outer	loop	is	a	user-specified	number	of	simulation	runs,	and	the	inner	loop	is	a	JSM-
specified	number	of	iterations.	An	iteration	represents	a	single	discrete	time	period,	e.g.	a	year,	and	may	occur	any	number	of	times,	e.g.	5	times	or	5	years.	Within
each	iteration	a	series	of	state	changes	or	outcomes	can	be	modelled	for	a	unit,	e.g.	individual	or	household.	Outcomes	within	each	iteration	are	ordered,	so	that
dependent	outcomes	are	processed	after	independent	outcomes.	JAMSIM	does	not	provide	a	declarative	framework	to	define	outcomes,	the	way	they	are	generated,
or	their	dependency	hierarchy.	Instead	outcomes	are	defined	directly	via	Java	code	and	so	their	order	is	implicit.

7.7 The	code	to	model	outcomes	is	specified	in	Java	relative	to	a	single	Java	object	(the	MicroSimCell).	Outcomes	are	generated	for	all	objects,	although	not	all	objects
may	have	their	state	changed.	An	outcome	is	stored	in	a	standard	Java	variable	and	generic	Java	code	can	be	used	to	generate	the	outcome.	Typically,	although	not
always,	outcomes	in	JSMs	are	stochastic	and	occur	via	a	Monte	Carlo	draw	from	a	set	of	probabilities.	These	probabilities	are	generated	based	on	the	unique
attributes	of	the	current	unit,	and	may	be	loaded	from	external	tables	of	probabilities.	As	an	example,	in	JEM	the	iteration	begins	by	probabilistically	calculating	the
current	disability	state	of	an	individual	from	discretely	specified	probability	distributions	based	on	their	sex,	age,	and	current	disability	state.	From	the	current	disability
state	their	annual	income	is	determined	by	looking	up	a	scale	and	adding	the	result	to	their	cumulative	life	total	of	earnings.	Finally,	whether	an	individual	dies	is
calculated	from	a	probability	which	varies	according	to	their	sex	and	age.

7.8 Each	outcome	can	be	stored	as	an	attribute	of	the	unit,	and	thus	may	be	used	as	an	input	to	other	outcomes	in	the	current	or	next	iteration.	In	addition,	an	outcome
may	be	stored	in	an	outcome	array	as	a	series	across	all	iterations.	This	preserves	the	outcome's	value	in	all	previous	iterations,	rather	than	overwriting	it	on	each
iteration,	so	that	it	can	be	used	to	produce	per-iteration	results.	After	each	iteration,	the	entire	set	of	MicroSimCells	is	output	to	R	as	a	dataframe.	Output	tables,
showing	frequencies	or	means,	and	graphs,	may	be	generated	between	iterations	(in	either	Java	or	R)	and	displayed	to	provide	in-progress	results.

Outputs

7.9 A	simulation	run	is	a	single	run	through	all	iterations.	After	a	run,	the	set	of	MicroSimCells	will	be	in	their	final	state	and	will	include	any	outcome	arrays	containing
results	from	all	iterations.	A	set	of	run	results	may	then	be	output	and	stored	in	R	before	the	MicroSimCells	are	reset	and	the	run	is	repeated.	At	the	end	of	all	runs,	the
individual	run	results	can	be	collated	in	R	or	Java	and	the	mean	of	results	across	all	runs	can	be	displayed	in	tables	or	graphs.

http://jasss.soc.surrey.ac.uk/15/1/8.html 7 12/10/2015

Figure	5.	End	of	simulation	output	tables

7.10 Figure	5	shows	the	following	single	run	table	outputs	from	JEM:

Number	of	agents	and	people
A	summary	table	which	shows	the	total	number	of	agents,	or	cases,	simulated—in	this	case	1,000.	These	are	scaled	up	to	a	population	size	of
69,899,568	for	both	the	base	simulation	and	the	scenario.

Population	by	gender
A	breakdown	of	the	population	by	gender,	for	both	the	base	simulation	and	a	scenario	in	which	10%	of	the	population	are	female	and	90%	are	male.

Population	age	groups	at	death	by	gender	(scenario)
A	cross	tabulation	showing	the	age	group	at	death	by	gender.

Population	average	age	at	death
The	average	age	at	death	of	the	base	and	scenario	populations.

Earnings	summary	(scenario)
A	summary	of	total	and	average	earnings	for	the	scenario	population.

Accumulated	earnings	(scenario)
The	accumulated	earnings	per	year	by	gender.

7.11 Likewise,	output	data	can	also	be	graphed	using	the	functionality	of	R	graphics.	Figure	6	displays	an	age-sex	pyramid,	a	bar	graph	of	earnings	by	age	group	and
gender	for	the	scenario	population,	and	line	graphs	which	can	be	used	to	compare	baseline	and	scenario	accumulated	earnings	over	the	life	course.

http://jasss.soc.surrey.ac.uk/15/1/8.html 8 12/10/2015

Figure	6.	Output	graphs	including	baseline	comparison	vs.	scenario	(weighted)

Limitations	and	future	enhancements

8.1 JAMSIM	has	been	built	for	models	that	run	within	the	capacity	and	time	constraints	of	a	typical	modern	desktop	machine.	There	is	no	hard	upper	limit	to	population
sizes	or	the	numbers	of	variables	that	may	be	used—instead,	the	main	restriction	is	the	amount	of	memory	available.	JAMSIM	has	been	comfortably	used	on	an	Intel
Core	2	Duo	machine	running	Windows	XP,	with	4GB	of	RAM.	As	an	example,	in	one	simulation	with	a	population	of	80,000	units	and	35	variables,	the	JAMSIM
process	running	on	this	machine	consumed	250MB	of	memory.	The	simulation	consisted	of	4	iterations	in	which	10	transitions	were	calculated	every	iteration.	A
single	run	took	9	seconds.

8.2 JAMSIM	uses	the	same	discrete-time	simulation	loop	as	Ascape.	Because	of	this,	it	does	not	support	some	of	the	more	comprehensive	discrete-event	scheduling
mechanisms.	For	example,	JAMSIM	does	not	have	an	event	queue	and	cannot	generate	events	that	occur	on	state	changes.	More	generally,	JAMSIM	does	not
support	continuous-time	changes.	Continuous-time	allows	state	change	events	to	occur	at	any	time,	rather	than	at	a	fixed	time	interval,	and	enables	them	to	be
triggered	by	other	changes.	For	example,	a	fertility	event	can	be	re-computed	whenever	a	partnering	event	occurs,	using	the	new	status	immediately	rather	than
waiting	until	the	next	cycle.	This	allows	for	more	flexibility	in	the	dependency	of	processes,	and	can	better	approximate	the	real	world	(for	more	on	this	see	Scott
2003:15).	While	continuous-time	changes	and	the	associated	use	of	survival	functions	has	been	prominent	in	some	well-known	microsimulation	models	and	toolkits
(e.g.	Modgen),	it	has	not	been	a	feature	of	the	health-related	models	we	have	developed.

8.3 JAMSIM	does	not	provide	a	comprehensive	set	of	domain	level	modules,	e.g.	marriage/partnering,	migration,	or	labour	market	modules.	Again,	this	is	largely
because	the	types	of	health	situations	we	have	modelled	have	not	required	these	modules.	These	types	of	modules	can	be	implemented	in	JAMSIM	but	the	lack	of
any	pre-existing	code	may	make	JAMSIM	less	appealing	to	those	performing	more	general	life-cycle	dynamic	microsimulation.	Nor	does	JAMSIM	provide	other
functionality	typical	of	these	types	of	simulations,	in	particular	alignment	functionality	or	a	facility	for	behavioural	feedback	loops.

8.4 One	of	the	key	features	of	JAMSIM	is	the	ability	to	test	different	scenarios.	However,	this	is	somewhat	underdeveloped.	Currently	it	is	possible	to	reweight	results,	or
to	change	continuous	and	categorical	variables	on	individuals	in	the	base	file	to	produce	a	single	scenario.	Future	development	will	include	the	ability	to	generate,
save	and	load	multiple	scenarios,	and	to	compare	them	with	the	baseline	and	with	one	another.

8.5 JAMSIM	lacks	a	declarative	framework	for	model	variables	and	instead	they	are	specified	directly	as	Java	variables	and	R	objects.	The	problem	this	poses	is	that	as
the	model	grows	it	becomes	difficult	to	keep	track	of	all	the	instances	where	a	variable	is	used,	which	increases	the	time	it	takes	to	make	model	changes.	The
disadvantage	of	a	declarative	framework	is	that	it	can	add	an	extra	level	of	runtime	overhead.	However,	computing	time	is	generally	cheaper	than	programmer	time
and	so	future	work	on	JAMSIM	will	involve	development	of	a	declarative	framework	which	will	allow	model	variables	to	be	parameterised	and	specified	in	external
parameter	files	rather	than	hard	coded.

8.6 JAMSIM	has	been	developed	to	be	used	by	policy	end-users,	but	data	agreements	may	not	allow	such	users	access	to	the	original	data	set.	JAMSIM	does	not
provide	base	file	encryption	functionality,	which	would	in	any	case	only	offer	a	moderate	level	of	protection	as	at	some	point	the	base	file	would	need	to	be	decrypted
to	be	used.	Instead	the	approach	we	plan	to	take	is	to	use	a	synthetic	base	file	that	does	not	represent	any	real	individuals	but	has	distributions	of	relevant
characteristics	that	are	similar	to	a	desired	population.	A	safe	alternative	would	be	to	only	offer	access	to	the	application	remotely	in	a	secured	environment.	This
would	require	establishing	and	maintaining	the	appropriate	server	infrastructure.

8.7 While	JAMSIM	combines	R	and	Java,	model	outcomes	to	date	have	only	been	implemented	in	Java.	R	has	only	been	used	for	results	generation	and	graphical
output.	This	underutilises	the	vast	array	of	existing	R	code	and	packages	that	are	useful	for	modelling	outcomes,	for	example,	the	ability	to	generate	outcomes	from
logistic	and	other	types	of	regression	models.	Many	of	these	R	packages	have	underdeveloped	corresponding	open	source	packages	in	Java,	or	none	at	all,	and
replicating	them	would	require	significant	work.	In	addition,	modelling	outcomes	in	R	makes	the	transition	to	microsimulation	easier	for	statisticians	who	may	not	be
familiar	with	Java.	For	these	reasons,	development	is	currently	underway	to	move	the	simulation	loop	and	the	modelling	of	outcomes	into	R.	The	Java	components
will	be	retained	and	used	specifically	for	the	user	interface,	as	existing	R	user	interfaces	are	relatively	undeveloped	and	less	attractive.

8.8 Other	future	plans	include	the	migration	of	JAMSIM	from	the	Ascape	Swing	GUI	to	the	alternative	Eclipse	Rich	Client	Platform	(RCP).	The	Eclipse	RCP	is	a	desktop
application	environment	that	provides	a	high-quality	native	looking	GUI	(McAffer	and	Lemieux	2006).	The	transition	to	the	Eclipse	RCP	is	planned	because	the	current
Ascape	user	interface	has	some	limitations	in	terms	of	usability.	For	example,	the	Navigator	tree	used	to	access	the	components	of	a	model	is	unordered	and	the
hierarchy	is	unintuitive.	Furthermore,	some	of	the	Ascape	agent-based	modelling	features	are	present	but	are	not	used	by	JAMSIM	and	ought	to	be	removed	for	a
cleaner	user	interface.	In	contrast,	an	Eclipse-based	user	interface	will	allow	more	direct	control	over	all	user	interface	components.	In	addition,	Eclipse	incorporates
the	robust	OSGI	component	model	which	supports	modular	and	extensible	plug-ins.	This	increases	reusability	of	software	components,	contributing	to	reduced	error
rates	and	lower	development	costs.	Overall,	the	Eclipse	RCP	environment	will	make	the	development	of	additional	output	features,	such	as	a	single	scrollable	window
containing	multiple	tables	and	graphs,	much	easier.

http://jasss.soc.surrey.ac.uk/15/1/8.html 9 12/10/2015

8.9 Prototypes	of	these	enhancements	are	currently	under	development	and	are	being	tested	in	a	dynamic	microsimulation	model	that	simulates	health	and	education
outcomes	for	children.	The	implementation	uses	a	base	file	of	1,100	children	derived	from	a	longitudinal	study.	For	each	individual	it	simulates	child,	parental	and
family	factors	and	from	these	a	set	of	final	health	and	education	outcomes.	Intermediate	factors	and	final	outcomes	are	generated	from	probabilities	derived	from
binomial,	negative	binomial	and	Poisson	regression	models.	In	addition,	any	of	the	variables	used	in	the	model	can	be	altered	to	test	a	particular	scenario	and	its
influence	on	outcomes.

Conclusion

9.1 JAMSIM	combines	relevant	components	from	open	source	packages	to	provide	an	environment	and	features	for	the	development	of	dynamic	discrete-time
microsimulation	models	and	their	use	by	non-technical,	policy-oriented	users.	It	has	been	designed	to	be	as	flexible	as	possible,	and	a	major	strength	is	its	open
source	nature,	which	gives	it	the	potential	for	further	enhancement	by	others	in	the	modelling	community.

	Acknowledgements

	The	completed	'Primary	Care	in	an	Ageing	Society'	project	was	funded	by	the	Health	Research	Council	of	New	Zealand.	The	in-progress	'Modelling	the	Early	Life
Course'	project	is	being	funded	by	the	Ministry	of	Science	and	Innovation.	We	thank	all	project	team	members.	We	would	also	like	to	acknowledge	the	constant,
ongoing	and	ever	responsive	support	of	Miles	Parker	during	the	development	of	JAMSIM,	and	the	very	helpful	comments	of	the	anonymous	reviewers	of	this	paper.
Finally,	we	are	indebted	to	Martin	von	Randow	for	his	meticulous	proof	reading	of	the	final	draft	of	this	paper.

	References

	BROWN,	Laurie	and	Harding,	Ann	(2002),	'Social	Modelling	and	Public	Policy:	Application	of	Microsimulation	Modelling	in	Australia',	Journal	of	Artificial	Societies	and
Social	Simulation,	5	(4),	6	http://jasss.soc.surrey.ac.uk/5/4/6.html.

DAVIS,	Peter,	Lay-Yee,	Roy,	and	Pearson,	Janet	(2010),	'Using	micro-simulation	to	create	a	synthesised	data	set	and	test	policy	options:	the	case	of	health	service
effects	under	demographic	ageing',	Health	Policy,	97	(2),	267-74.	[doi:10.1016/j.healthpol.2010.05.014]

EVANDROU,	Maria,	et	al.	(2007),	'The	SAGE	Model	:	A	Dynamic	Microsimulation	Population	Model	for	Britain',	in	Anil	Gupta	and	Ann	Harding	(eds.),	Modelling	Our
Future:	Population	Ageing,	Health	and	Aged	Care	(Amsterdam,	The	Netherlands:	Elsevier).

GAMPE,	Jutta,	et	al.	(2009),	'The	Microsimulation	Tool	of	the	MicMac-Project',	2nd	General	Conference	of	the	International	Microsimulation	Association	(Ottawa,
Canada).

GILBERT,	Nigel	and	Bankes,	Steven	(2002),	'Platforms	and	methods	for	agent-based	modeling',	Proceedings	of	the	National	Academy	of	Sciences	of	the	United
States	of	America,	99	(3),	7197-8.	[doi:10.1073/pnas.072079499]

GILBERT,	Nigel	and	Troitzsch,	Klaus	(2005),	Simulation	for	the	social	scientist	(2nd	edn.;	Maidenhead:	Open	University	Press).

HIMMELSPACH,	Jan	and	Uhrmacher,	Adelinde	M.	(2007),	'Plug'n	simulate',	40th	Annual	Simulation	Symposium	(Norfolk,	Virginia,	USA:	IEEE),	137-43.

HOLM,	Einar,	et	al.	(2007),	'SVERIGE',	in	Anil	Gupta	and	Ann	Harding	(eds.),	Modelling	Our	Future:	Population	Ageing,	Health	and	Aged	Care	(Amsterdam,	The
Netherlands:	Elsevier).

HOLMER,	Martin,	Janney,	Asa,	and	Cohen,	Bob	(2011),	'PENSIM	Overview',	(Office	of	Policy	and	Research,	Employee	Benefits	Security	Administration,	U.S.
Department	of	Labor).

IMMERVOLL,	Herwig,	O'Donoghue,	Cathal,	and	Sutherland,	Holly	(1999),	'An	Introduction	to	EUROMOD',	EUROMOD	Working	Papers.

LAWSON,	Tony	(2008),	'Methods	and	Tools	for	the	Microsimulation	and	Forecasting	of	Household	Expenditure	-	A	Review',	Technology	and	Social	Change	Working
Papers.

LEOMBRUNI,	Roberto	and	Richiardi,	Matteo	(2006),	'LABORsim:	An	Agent-Based	Microsimulation	of	Labour	Supply—An	Application	to	Italy',	Computational
Economics,	27	(1),	63-88.	[doi:10.1007/s10614-005-9016-0]

MCAFFER,	Jeff	and	Lemieux,	Jean-Michel	(2006),	Eclipse	Rich	Client	Platform:	Designing,	Coding,	and	Packaging	Javaª	Applications	(Upper	Saddle	River,	NJ:
Addison-Wesley).

NIKOLAI,	Cynthia	and	Madey,	Gregory	(2009),	'Tools	of	the	trade:	A	survey	of	various	agent	based	modeling	platforms',	Journal	of	Artificial	Societies	and	Social
Simulation,	12	(2),	http://jasss.soc.surrey.ac.uk/12/2/2.html.

NORTH,	Michael	(2011a),	'Repast	Simphony',	http://repast.sourceforge.net/repast_simphony.html,	accessed	7	March.

NORTH,	Michael	(2011b),	'Repast	3',	http://repast.sourceforge.net/repast_3/,	accessed	7	March.

O'DONOGHUE,	Cathal,	Lennon,	John,	and	Hynes,	Stephen	(2009),	'The	Life-cycle	Income	Analysis	Model	(LIAM):	a	study	of	a	flexible	dynamic	microsimulation
modelling	computing	framework',	International	Journal	of	Microsimulation,	2	(1),	16-31.

PARKER,	Miles	(2001),	'What	is	Ascape	and	Why	Should	You	Care?',	Journal	of	Artificial	Societies	and	Social	Simulation,	4	(1),	5
http://jasss.soc.surrey.ac.uk/4/1/5.html.

PARKER,	Miles	(2011),	'Ascape',	http://ascape.sourceforge.net/,	accessed	7	March.

PEARSON,	Janet,	et	al.	(2011),	'Primary	Care	in	an	Aging	Society:	Building	and	Testing	a	Microsimulation	Model	for	Policy	Purposes',	Social	Science	Computer
Review,	29	(1),	21-36.	[doi:10.1177/0894439310370087]

PERCIVAL,	Richard	(2007),	'APPSIM-Software	Selection	and	Data	Structures',	NATSEM	Working	Papers	(Canberra).

R	Development	Core	Team	(2011),	'R:	A	Language	and	Environment	for	Statistical	Computing',	http://www.r-project.org/,	accessed	7	March.

RAILSBACK,	Steven,	Lytinen,	Steven,	and	Jackson,	Stephen	(2006),	'Agent-based	simulation	platforms:	Review	and	development	recommendations',	Simulation,	82
(9),	609-09.	[doi:10.1177/0037549706073695]

ROPELLA,	Glen,	Railsback,	Steven,	and	Jackson,	Stephen	(2002),	'Software	Engineering	Considerations	For	Individual-Based	Models',	Natural	Resource	Modeling,
15	(1),	5-22.	[doi:10.1111/j.1939-7445.2002.tb00077.x]

http://jasss.soc.surrey.ac.uk/15/1/8.html 10 12/10/2015

http://jasss.soc.surrey.ac.uk/5/4/6.html
http://dx.doi.org/10.1016/j.healthpol.2010.05.014
http://dx.doi.org/10.1073/pnas.072079499
http://dx.doi.org/10.1007/s10614-005-9016-0
http://jasss.soc.surrey.ac.uk/12/2/2.html
http://repast.sourceforge.net/repast_simphony.html
http://repast.sourceforge.net/repast_3/
http://jasss.soc.surrey.ac.uk/4/1/5.html
http://ascape.sourceforge.net/
http://dx.doi.org/10.1177/0894439310370087
http://www.r-project.org/
http://dx.doi.org/10.1177/0037549706073695
http://dx.doi.org/10.1111/j.1939-7445.2002.tb00077.x

ROWE,	Geoff	and	Gribble,	Steve	(2007),	'LifePaths	Model',	in	Anil	Gupta	and	Ann	Harding	(eds.),	Modelling	Our	Future:	Population	Ageing,	Health	and	Aged	Care
(Amsterdam,	The	Netherlands:	Elsevier).

SAUERBIER,	Thomas	(2002),	'UMDBS	-	A	New	Tool	for	Dynamic	Microsimulation',	Journal	of	Artificial	Societies	and	Social	Simulation,	5	(2),	5
http://jasss.soc.surrey.ac.uk/5/2/5.html.

SCOTT,	Anne	(2003),	'A	computing	strategy	for	SAGE:	2.	Programming	considerations',	(London:	Citeseer).

SONNESSA,	Michele	(2003),	'JAS:	Java	Agent-based	Simulation	library.	An	open	framework	for	algorithm-intensive	simulations',	Workshop	on	Industrial	and	Labor
Dynamics	-	The	Agent-Based	Computational	Aproach	(Gandolfi	1999	edn.;	Torino,	Italy:	World	Scientific	Publishing	Co.	Pte.	Ltd.).

SONNESSA,	Michele	(2011),	'JAS:	Java	Agent-based	Simulation	Library',	http://jaslibrary.sourceforge.net/,	accessed	7	March.

STATISTICS	CANADA	(2011a),	'Modgen	(Model	generator)',	http://www.statcan.gc.ca/microsimulation/modgen/modgen-eng.htm,	accessed	7	March.

STATISTICS	CANADA	(2011b),	'Microsimulation	approaches',	http://www.statcan.gc.ca/microsimulation/modgen/new-nouveau/chap2/chap2-eng.htm,	accessed	7
March.

SUTHERLAND,	Holly	(2007),	'EUROMOD	-	The	Tax-Benefit	Microsimulation	Model	for	the	European	Union',	in	Anil	Gupta	and	Ann	Harding	(eds.),	Modelling	Our
Future:	Population	Ageing,	Health	and	Aged	Care	(Amsterdam,	The	Netherlands:	Elsevier).

SUTHERLAND,	Holly,	et	al.	(2008),	'Improving	the	Capacity	and	Usability	of	EUROMOD—Final	Report',	EUROMOD	Working	Papers.

TOBIAS,	Robert	and	Hofmann,	Carole	(2004),	'Evaluation	of	free	Java-libraries	for	social-scientific	agent	based	simulation',	Journal	of	Artificial	Societies	and	Social
Simulation,	7	(1),	6	http://jasss.soc.surrey.ac.uk/7/1/6.html.

UHRMACHER,	Adelinde	M.,	et	al.	(2011),	'JAMES	II',	http://wwwmosi.informatik.uni-rostock.de/mosi/projects/cosa/james-ii/,	accessed	7	March.

WITTENBERG,	Raphael,	et	al.	(2007),	'PSSRU	Long-Term	Care	Finance	Model	and	CARESIM:	Two	Linked	UK	Models	of	Long-Term	Care	for	Older	People',	in	Anil
Gupta	and	Ann	Harding	(eds.),	Modelling	our	future:	population	ageing	health	and	aged	care	(Amsterdam,	The	Netherlands:	Elsevier).

XJ	TECHNOLOGIES	(2011),	'Anylogic	Professional	Edition',	http://www.xjtek.com/anylogic/,	accessed	7	March.

ZINN,	Sabine,	et	al.	(2009),	'MIC-CORE:	A	Tool	for	Microsimulation',	Winter	Simulation	Conference	(Austin,	Texas,	USA).

http://jasss.soc.surrey.ac.uk/15/1/8.html 11 12/10/2015

http://jasss.soc.surrey.ac.uk/5/2/5.html
http://jaslibrary.sourceforge.net/
http://www.statcan.gc.ca/microsimulation/modgen/modgen-eng.htm
http://www.statcan.gc.ca/microsimulation/modgen/new-nouveau/chap2/chap2-eng.htm
http://jasss.soc.surrey.ac.uk/7/1/6.html
http://wwwmosi.informatik.uni-rostock.de/mosi/projects/cosa/james-ii/
http://www.xjtek.com/anylogic/

	Abstract
	Introduction
	Requirements
	Software evaluation—Microsimulation models
	Software evaluation—ABM toolkits
	JAMSIM overview
	JAMSIM Models
	JAMSIM Model Simulation Process
	Setup
	Simulation
	Outputs

	Limitations and future enhancements
	Conclusion
	Acknowledgements
	References

