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Abstract
Fuzzy	Logic	is	a	framework	particularly	useful	to	formalise	and	deal	with	imprecise	concepts	and
statements	expressed	in	natural	language.	This	paper	has	three	related	aims.	First,	it	aims	to	provide
a	short	introduction	to	the	basics	of	Fuzzy	Logic	within	the	context	of	social	simulation.	Secondly,	it
presents	a	well-documented	NetLogo	extension	that	facilitates	the	use	of	Fuzzy	Logic	within	NetLogo.
Finally,	by	providing	a	concrete	example,	it	shows	how	researchers	can	use	the	Fuzzy	Logic
extension	to	build	agent-based	models	in	which	individual	agents	hold	their	own	fuzzy	concepts	and
use	their	own	fuzzy	rules,	which	may	also	change	over	time.	We	argue	that	Fuzzy	Logic	and	the	tools
provided	here	can	be	useful	in	Social	Simulation	in	different	ways.	For	example,	they	can	assist	in	the
process	of	analysing	the	robustness	of	a	certain	social	theory	expressed	in	natural	language	to
different	specifications	of	the	imprecise	concepts	that	the	theory	may	contain	(such	as	e.g.	"wealthy",
"poor"	or	"disadvantaged").	They	can	also	facilitate	the	exploration	of	the	effect	that	heterogeneity	in
concept	interpretations	may	have	in	a	society	(i.e.	the	significance	of	the	fact	that	different	people	may
have	different	interpretations	of	the	same	concept).	Thus,	this	paper	and	the	tools	included	in	it	can
make	the	endeavour	of	translating	social	theories	into	computer	programs	easier	and	also	more
rigorous.
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Introduction
''The	main	contribution	of	fuzzy	logic	is	a	methodology	for	computing	with	words.
No	other	methodology	serves	this	purpose''
Zadeh	(1996,	103)

Motivation

1.1 	Imagine	someone	tells	you:	"A	tall,	blonde,	middle-aged	guy	with	long	hair	and	casually	dressed	is
waiting	for	you	at	the	lobby".	We	believe	most	people	would	find	this	instruction	sufficiently	precise	as	to
start	walking	towards	the	lobby	with	confidence	that	they	will	find	the	described	person.	However,	it
would	not	be	straightforward	to	implement	an	artificial	agent	who	behaves	in	the	same	confident
manner.	Even	if	the	agent	could	perceive	the	precise	height,	age,	colour	and	length	of	hair	–	and	all
other	relevant	features	–	of	all	the	people	in	the	lobby,	the	task	would	not	be	trivial.	The	reason	is	that

terms	such	as	"tall",	"blonde",	"middle-aged"	and	"long"	are	imprecise	(or	vague[1])	in	nature.

1.2 	Focusing	on	the	word	"tall"	for	concreteness,	a	possible	approach	would	be	to	define	a	numeric
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threshold	x	such	that	a	person	is	considered	"tall"	if	and	only	if	his	height	is	at	least	x.	This	approach,
which	can	be	suitably	applied	to	the	other	linguistic	terms	too,	would	identify	a	subset	of	people
satisfying	all	the	conditions	in	the	provided	instruction,	but	what	happens	if	such	a	subset	is	empty,	or	if
it	contains	more	than	one	person?	More	importantly,	do	we	(human	beings)	deal	with	imprecise	terms	in
this	way?	(i.e.	do	we	really	reduce	the	gradual	nature	of	properties	such	as	tallness	to	two	clearly
defined	categories	such	that	everyone	in	one	category	is	definitely	"tall"	while	everyone	in	the	other
category	is	definitely	"not	tall",	leaving	nothing	in	between	these	extremes?)

1.3 	It	seems	clear	that	defining	hard	thresholds	for	imprecise	terms	does	not	capture	the	essence	of	how
we	use	and	reason	with	such	concepts.	Most	people	are	reluctant	to	state	that	a	person	of	height	x	is
definitely	"tall",	but	a	person	1	mm	shorter	is	definitely	"not	tall".[2]	Concepts	such	as	"tall"	are	not	binary
in	nature;	they	are	fuzzy.	Consequently,	most	often	we	do	not	find	it	natural	to	assert	that	the
proposition	"Person	x	is	tall"	is	definitely	true	or	definitely	false.	Instead,	we	seem	to	be	more
comfortable	conceding	that	such	propositions	may	be	true	to	some	extent	(i.e.	they	may	have	a	truth
value	that	lies	somewhere	in	between	the	two	absolute	extremes	true	and	false).	Allowing	for	more	than
two	truth	values	(besides	the	traditional	true	and	false)	takes	us	into	the	realm	of	many-valued	logics,	of
which	a	particularly	relevant	instance	for	Social	Simulation	is	Fuzzy	Logic.

1.4 	To	summarise,	it	seems	that:

1.	 Human	beings	have	evolved	to	feel	remarkably	comfortable	using,	communicating	and
reasoning	with	imprecise	or	fuzzy	terms	whose	applicability	is	a	(potentially	subjective)	matter
of	degree.

2.	 Computers,	however,	do	not	readily	share	our	remarkable	ability	to	deal	and	reason	with
imprecise	concepts.

3.	 Fuzzy	logic	is	a	type	of	many-valued	logic	that	is	particularly	useful	to	formalise	and	reason	with
imprecise	concepts.	Consequently,	many	scholars	see	it	as	"a	step	towards	formalizing	human
reasoning"	(Freksa	1994,	21).

Thus,	we	believe	Fuzzy	Logic	and	this	paper	will	be	of	interest	to	anyone	interested	in	building	Social
Simulation	models	that	contain	artificial	agents	who	can	follow	rules	that	include	imprecise	terms	(e.g.
"find	an	inexpensive	flat	which	is	close	to	work"),	an	ability	that	seems	naturally	intrinsic	to	humankind.

Brief	History	of	Fuzzy	Logic

"All	traditional	logic	habitually	assumes	that	precise	symbols	are	being	employed.
It	is	therefore	not	applicable	to	this	terrestrial	life	but	only	to	an	imagined	celestial
existence"
Russell	(1923,	pp.	88–89)

1.5 	The	scientific	quest	for	an	adequate	"theory	of	vagueness"	(i.e.	a	sound	theoretical	framework	suitable

to	deal	with	vague	or	imprecise	concepts)	dates	back	at	least	to	the	early	20th	century	(Russell	1923;
Black	1937).	Since	then,	the	scientific	study	of	vagueness	has	been	approached	in	different	ways	in
various	fields,	including	philosophy,	logic,	mathematics,	linguistics,	computer	science,	physics	and
medicine	(see	a	nice	historical	account	by	Seising	(2008)).

1.6 	A	major	breakthrough	was	triggered	by	the	publication	of	Zadeh's	(1965)	paper	on	fuzzy	sets.	Fuzzy
sets	are	an	extension	of	classical	(often	called	"crisp")	sets	in	the	sense	that,	besides	full	membership
and	full	non-membership,	fuzzy	sets	allow	for	partial	membership.	That	is,	an	element	may	belong	to	a
certain	fuzzy	set,	may	not	belong,	or	may	belong	to	some	extent.	Thus,	graded	concepts,	such	as	"tall",
can	be	naturally	modelled	as	fuzzy	sets,	with	individual	people	belonging	to	the	set	"tall"	to	a	greater	or
a	lesser	degree	(which	can	be	interpreted	as	the	truth	value	of	the	proposition	"Person	x	is	tall").

1.7 	Zadeh's	(1965)	paper	led	to	the	emergence	of	a	whole	new	field	called	Fuzzy	Logic,	aimed	at
developing	"a	methodological	framework	which	is	tolerant	of	imprecision	and	partial	truths"	(Zadeh
1973,	29).	Early	on,	the	approach	taken	by	Zadeh	to	formalise	vagueness	started	to	be	applied	to
"fuzzify"	many	disciplines	by	virtue	of	Zadeh's	"extension	principle"	(Zadeh	1975a,	1975b,	1975c).	In
Zadeh's	(1994a)	words,	"any	field	X	can	be	fuzzified	–	and	hence	generalized	–	by	replacing	the
concept	of	a	crisp	set	in	X	by	a	fuzzy	set."	Thus,	the	theory	of	fuzzy	sets	led	to	the	foundation	and
development	of	various	new	fields,	such	as	fuzzy	topology	(Chang	1968),	fuzzy	clustering	(Bellman	et
al.	1966;	Ruspini	1969),	fuzzy	control	(Zadeh	1972,	1973;	Mamdani	&	Assilian	1975;	Mamdani	1974,
1976),	fuzzy	graphs	(Rosenfeld	1975;	Yeh	&	Bang	1975;	Mordeson	&	Nair	2000),	fuzzy	algebra	(Dubois
&	Prade	1979),	fuzzy	calculus	(Dubois	&	Prade	1982a,	1982b,	1982c)	and	fuzzy	time	series	(Song	&
Chissom	1993a,	1993b,	1994).

1.8 	While	applications	of	Fuzzy	Set	Theory	were	successfully	expanding	over	different	domains	(see	e.g.
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Zimmermann	2001),	professional	logicians	started	to	work	on	its	formal	foundations.	This	important
branch	of	Fuzzy	Logic	(FL),	which	is	often	named	"Mathematical	Fuzzy	Logic"	or	"Fuzzy	Logic	in	the
narrow	sense"	(Zadeh	1994a,	1994b;	Hájek	1998,	2002,	2010;	Wang	et	al.	2007;	Novák	2012)	traces	its

roots	to	Goguen's	(1969)	work[3],	and	had	its	first	monograph	written	by	Hájek	(1998).	The	aim	of	FL	in
the	narrow	sense	is	"to	show	that	fuzzy	logic	as	a	logic	of	imprecise	(vague)	propositions	does	have
well	developed	formal	foundations	and	that	most	things	usually	named	"fuzzy	inference"	can	be
naturally	understood	as	logical	deduction"	(Hájek	1998,	preface);	and	it	achieves	this	aim	by	providing
and	developing	a	"systematic	treatment	of	deductive	aspects	and	structures	of	fuzzy	logic	understood
as	many	valued	logic"	(Hájek	1998,	preface).

1.9 	Fuzzy	Logic	in	the	narrow	sense	remains	an	active	line	of	research	(Cintula,	Hájek	&	Noguera	2011a,
2011b),	albeit	it	is	relatively	small	when	compared	with	all	the	work	conducted	in	"Fuzzy	Logic	in	the
wider	sense"	(which	is	more	or	less	synonymous	with	the	theory	of	fuzzy	sets	and	its	applications	–	both
technical	and	theoretical	(Zadeh	1994a)).	Thus,	FL	in	the	wider	sense	is	"an	extensive	agenda	whose
primary	aim	is	to	utilize	the	apparatus	of	fuzzy	set	theory	for	developing	sound	concepts,	principles	and
methods	for	representing	and	dealing	with	knowledge	expressed	by	statements	in	natural	language"
(Wang	et	al.	2007,	foreword)[4].

1.10 	It	is	also	important	to	recognise	FL	is	not	the	only	approach	to	formalise	and	deal	with	imprecise	or
vague	concepts	(see	e.g.	Keefe	(2000),	Shapiro	(2006)	and	various	different	perspectives	in	Cintula	et
al.	(2011)),	but	it	is	a	valid	and	solid	logical	framework	for	the	purpose	(Hájek	1998,	2002),	the	most
advanced	and	widely	used	approach	and,	possibly,	the	most	successful	mathematical	theory	of	the
vagueness	phenomenon	to	date	(Novák	2005).

Aims	and	Scope

1.11 	This	paper	has	three	related	aims,	namely:

1.	 To	provide	a	short	introduction	to	the	basics	of	Fuzzy	Logic	within	a	Social	Simulation	context.
2.	 To	present	and	disseminate	a	well-documented	NetLogo	extension	that	facilitates	the	use	of
Fuzzy	Logic	within	NetLogo	(Wilensky	1999).

3.	 To	illustrate	with	a	concrete	example	how	researchers	can	use	the	Fuzzy	Logic	extension	to
build	agent-based	models	in	which	individual	agents	hold	their	own	fuzzy	concepts	and	use
their	own	fuzzy	rules,	which	may	change	over	time.

1.12 	It	is	important	to	note	that	the	content	of	FL	included	in	this	paper	is	very	limited.	We	only	present	the
most	fundamental	concepts,	which	are,	naturally,	covered	in	the	first	chapters	of	any	monograph	on
Fuzzy	Set	Theory	or	FL.	The	interested	reader	can	find	more	advanced	material	in	excellent	textbooks
written	by	Klir	&	Yuan	(1995)	and	Zimmermann	(2001)	and	in	a	shorter	review	by	Zimmermann	(2010).
Political	scientists	may	find	Cioffi-Revilla's	(1981)	presentation	especially	attractive,	as	he	explains	the
basic	concepts	of	the	theory	for	purposes	of	modelling	and	theory	building,	and	focuses	on	the	context
of	international	relations,	presenting	several	potential	applications.	Engineering-oriented	readers	will
enjoy	instructive	textbooks	written	by	Ross	(2010)	and	Driankov	et	al.	(1996).

1.13 	Our	approach	here	is	more	computationally	oriented	and	practical.	As	such,	it	should	be	most	attractive
to	scientists	interested	in	building	computer	simulation	models,	especially	agent-based	models,	which
may	include	imprecise	terms.	To	this	end,	we	pay	special	attention	to	various	practical	aspects.	In
particular,	we	provide:

a.	 A	NetLogo	extension	that	facilitates	the	implementation	of	models	with	fuzzy	components
(Appendix	A);

b.	 A	detailed	documentation	on	how	to	use	it	(Appendix	B);
c.	 A	step-by-step	tutorial	that	guides	the	reader	through	the	whole	process	of	implementing	an
agent-based	model	in	which	individual	agents	hold	their	own	fuzzy	concepts,	and	follow	rules
that	contain	such	concepts	(Appendix	C).

1.14 	The	rest	of	the	paper	explains	the	basics	of	FL	in	a	Social	Simulation	context	(section	2),	presents	an
outline	of	the	functions	included	in	the	NetLogo	extension	(section	3)	and	provides	a	brief	description	of
the	fuzzy	agent-based	model	used	in	the	tutorial	(section	4).

An	Introduction	to	Fuzzy	Logic	in	a	Social	Simulation	Context

"The	theory	of	fuzzy	sets	is,	basically,	a	theory	of	graded	concepts
–a	theory	in	which	everything	is	a	matter	of	degree"
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Zadeh,	in	Zimmermann's	(2001)	foreword

Fuzzy	sets	and	membership	functions

2.1 	Fuzzy	sets	are	generalizations	of	conventional	sets	(also	called	"crisp"	sets).	A	conventional	(crisp)	set

S	can	be	defined	by	a	membership	function	μS(x)	that	specifies	for	each	possible	element	x	in	a	certain
universe	of	discourse	X,	whether	the	element	belongs	to	the	set	S	or	not.	If	an	element	x	belongs	to	S,
then	the	membership	function	of	set	S	applied	to	element	x	equals	1.	If	an	element	x	does	not	belong	to
S,	then	the	membership	function	of	set	S	applied	to	element	x	equals	0.	Thus:

μS(x) =
1 if	x ∈ S
0 if	x ∉ S

For	instance,	the	crisp	set	EvenNumbers	contains	the	elements	{2,	4,	6…},	so	its	membership	function
equals	1	when	applied	to	each	of	such	numbers	(e.g.	μEvenNumbers(2)	=	1).	By	contrast,	the	membership
function	of	the	crisp	set	EvenNumbers	equals	0	when	applied	to	numbers	such	as	1,	3,	or	5	(e.g.
μEvenNumbers(5)	=	0).

2.2 	The	sharp	dichotomy	in	the	concept	of	"belonging"	in	conventional	sets	(i.e.	an	element	belongs	to	the
set	or	it	does	not)	is	relaxed	with	fuzzy	sets,	which	allow	for	partial	membership.	This	can	be	useful	to
define	and	reason	with	imprecise	terms,	such	as	"tall"	or	"young,"	whose	applicability	to	any	particular
object	is	a	matter	of	degree.	Thus,	a	fuzzy	set,	representing	a	fuzzy	concept	such	as	"tall",	can	be
defined	by	assigning	to	each	possible	element	within	a	certain	universe	of	discourse	(e.g.	all	the	people
in	the	world)	a	value	between	0	and	1	that	denotes	the	extent	to	which	that	element	belongs	to	the	fuzzy

set	(i.e.	the	extent	to	which	that	particular	individual	is	tall)[5].	The	value	assigned	by	the	membership
function	of	a	fuzzy	set	F	to	a	particular	element	x	is	called	the	degree	of	membership	of	the	element	x	in
the	fuzzy	set	F	and	is	denoted	μF(x).

2.3 	Sometimes	one	wishes	to	define	a	fuzzy	set	such	that	the	degree	of	membership	of	any	element	x	in
the	set	depends	solely	on	one	single	measurable	property	of	the	element	x.	For	instance,	one	may	want
to	formalise	the	concept	"young	person"	in	a	certain	context	using	a	fuzzy	set	whose	membership
function	depends	only	on	the	person's	age.	In	those	cases,	rather	than	providing	the	whole	mapping

μF(x)	that	assigns	a	degree	of	membership	to	each	and	every	possible	element	x,	one	can	define	the
membership	function	of	the	fuzzy	set	as	a	function	of	the	property,	which	is	sometimes	called	the	base

variable.[6]	As	an	example,	one	could	define	the	fuzzy	set	representing	"young"	with	a	membership

function	whose	argument	is	a	real	number[7]	a(x)	∈	[0,150]	that	denotes	the	age	of	person	x	measured
in	years.	Fig.	1	shows	one	possible	function.

Figure	1.	Membership	function	of	a	fuzzy	set	created	in	NetLogo	running	the	code:	fuzzy:plot
fuzzy:gaussian-set	[0	50	[0	150]]

{ }
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2.4 	The	fuzzy	set	"young"	shown	in	Fig.	1	would	assign	a	degree	of	membership	1	to	every	person	with
age	0	years,	a	degree	of	membership	0.94	to	every	person	with	age	17	years	and	a	degree	of
membership	0.32	to	every	person	with	age	75	years.

2.5 	The	degree	of	membership	of	an	element	x	in	a	fuzzy	set	F,	i.e.	μF(x),	can	be	interpreted	as	the	truth
value	of	the	proposition	"x	belongs	to	F."	That	is:

TruthValue(x	belongs	to	F)	=	μF(x)

If	the	fuzzy	set	represents	a	fuzzy	concept	such	as	"young",	then	μyoung(x)	can	be	interpreted	as	the
truth	value	of	the	proposition	"x	is	young"	(Zadeh	1973,	1975a;	Klir	&	Yuan	1995,	215–216),[8]	implying:

TruthValue	(x	is	young)	=	μyoung(x)

This	interpretation	naturally	leads	to	a	many-valued	logic	with	a	continuum	of	truth	values	in	the	interval

[0,1]	(Zadeh	1965).[9]

2.6 	Importantly,	note	that	FL	by	no	means	aims	at	providing	a	universal	definition	of	vague	concepts	(such
as	"young")	which	should	be	valid	for	everyone	in	every	context.	On	the	contrary,	scholars	using	FL
naturally	recognise	that	vague	concepts	are	often	used	in	different	ways	by	different	people	in	different
contexts.	In	this	regard,	what	FL	provides	is	a	framework	within	which	people	can	explicitly	formalise
their	own	personal	definition	of	any	particular	vague	concept	in	a	specific	context.

Partial	truth	is	not	probability

"We	are	not	concerned	with	the	likelihood	that	a	man	is	short,	after	many	trials;
we	are	concerned	with	the	shortness	of	one	observation"	Goguen	(1969,	p.	333)

2.7 	A	common	misunderstanding	is	to	confuse	partial	truth	(or	graded	membership)	in	FL	with	probability
(or	randomness)	in	probability	theory.	This	point	is	clarified	in	many	papers	(e.g.	Zadeh	(1965,	339),
Zadeh	(1975a,	210–211),	Zadeh	(1975b,	302),	Bezdek	(1993),	Dubois	et	al.	(1994),	Dubois	&	Prade
(1997,	2001)	or	Novák	(2005)),	but	an	intuitive	illustration	may	be	appropriate	here.	As	already
described,	fuzzy	sets	are	particularly	useful	to	formalise	imprecise	terms	(e.g.	"young")	whose	fulfilment
is	a	matter	of	degree.	The	imprecision	is	inherent	to	the	term	in	natural	language	and	has	nothing	to	do
with	randomness,	probability	or	uncertainty	about	the	occurrence	of	events.	(Henceforth	we	use	the
term	"uncertainty"	to	refer	to	situations	where	there	is	something	unknown	yet	to	be	discovered.)	The
following	example	clarifies	this	issue.

2.8 	Imagine	someone	has	a	1-litre	bottle	filled	with	900	ml	of	water	(90%	of	its	capacity)	in	front	of	her.
There	is	no	uncertainty	about	the	bottle's	content	or	its	capacity;	indeed,	this	person	is	free	to	conduct
as	many	tests	as	she	deems	appropriate	to	convince	herself	that	the	bottle	is	indeed	filled	to	90%	of	its
capacity.	Looking	at	the	bottle	she	may	be	willing	to	attribute	a	truth	value	of	0.9	to	the	proposition:	"The
bottle	is	full".	(In	other	words,	she	may	be	willing	to	state	that	the	bottle	belongs	to	the	fuzzy	set	"full"
with	degree	of	membership	0.9.)	It	is	important	to	realise	this	assertion	would	be	about	what	the	term
"full"	means	to	this	person	(who	naturally	considers	the	term	"full"	to	be	a	matter	of	degree	to	some
extent),	and	would	have	nothing	to	do	with	any	uncertainty	about	reality,	as	this	person	has	full
knowledge	of	the	situation.

2.9 	A	very	different	matter	would	be	to	assign	a	probability	of	0.9	to	the	proposition	"The	bottle	is	full".	The
probability	assignment	implies	some	uncertainty	about	the	content	of	the	bottle;	it	means	that	there	is	a
90%	chance	that	the	bottle	is	full	and	a	10%	chance	that	it	is	not.	In	particular,	the	probability	assignment
presupposes	the	term	"full"	is	absolutely	precise	(i.e.	the	bottle	is	either	full	or	it	is	not)	and	it	should	be
perfectly	clear	when	it	is	in	one	state	or	the	other.	(A	necessary	condition	to	assign	meaningful
probabilities	to	events	is	that	we	can	distinguish	them.)	Besides	assuming	the	term	"full"	is	perfectly
defined	in	a	dichotomic	fashion,	the	probabilistic	assignment	also	implies	some	ignorance	about	the
state	of	the	bottle	and,	therefore,	it	would	be	inappropriate	to	hold	in	our	situation	of	certainty	and
perfect	knowledge.

2.10 	The	differences	between	FL	and	probability	theory	are	not	only	interpretative;	they	are	also	formal.	For
a	start,	probability	is	not	compositional	(or	truth-functional)	(i.e.	the	probability	of	a	compound	event	(e.g.
P(A	⋃	B))	does	not	generally	depend	only	on	the	probabilities	of	the	individual	events	that	compose	it
(P(A	⋃	B)	=	P(A)	+	P(B)	−	P(A	⋂	B))).	There	can	be	different	forms	of	dependencies	between	the	events
(in	our	example,	the	relation	of	dependence	between	A	and	B	would	affect	the	value	of	P(A	⋂	B)).	By
contrast,	we	will	see	in	the	next	section	that	FL,	like	classical	logic,	is	indeed	truth-functional	(i.e.	the
truth	value	of	a	formula	only	depends	on	the	truth	values	of	its	subformulae).	For	a	formal	treatment	of
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the	differences	(and	similarities)	between	probability	theory	and	(one	of)	fuzzy	logics,	see	Gaines
(1978).

Operations	with	fuzzy	sets	and	logical	connectives

"What's	crucial	to	realize	is	that	fuzzy	logic	is	a	logic	OF	fuzziness,
not	a	logic	which	is	ITSELF	fuzzy"
Kantrowitz,	Horstkotte	&	Joslyn	(1997)

2.11 	In	this	section	we	explain	the	fuzzy	set	operators	Intersection,	Union	and	Complement,	which	are	the
ordinary	set-theoretic	forms	of	the	logical	operations	AND	(or	logical	conjunction),	OR	(or	logical
disjunction)	and	NOT	(or	logical	negation)	respectively.

Fuzzy	intersection	and	logical	conjunction	(AND)

2.12 	The	membership	function	of	the	intersection	A⋂B	of	two	sets	A	and	B	is	a	function	of	the	membership
functions	of	A	and	B.	Formally:

μA⋂B(x)	=	T(μA(x),	μB(x))

In	terms	of	truth	values	of	propositions,	and	assuming	that	the	fuzzy	sets	represent	fuzzy	predicates:
[10],[11]

TruthValue(x	is	A	AND	x	is	B)	=	T(TruthValue(x	is	A),	TruthValue(x	is	B))

There	are	many	functions	T	that	can	be	used	to	compute	the	intersection	of	fuzzy	sets	(see
Zimmermann	2010).	The	usual	requirement	is	that	the	function	must	be	a	Triangular	norm	(T-norm;
Klement	et	al.	2000).	A	T-norm	is	a	function	T:	[0,1]	×	[0,1]	→	[0,1]	that	satisfies	the	following	axioms:

Commutativity:														T(a,	b)	=	T(b,	a)
Associativity:																	T(a,	T(b,	c))	=	T(T(a,	b),	c)
Non-decreasing:													T(a,	b)	≤	T(a,	c)	if	b	≤	c
Identity	element	1:									T(a,	1)	=	a

These	axioms	ensure,	in	particular,	the	fuzzy	intersection	is	a	correct	generalization	of	its	crisp
counterpart	(i.e.	T(1,	1)	=	1	and	T(0,	0)	=	T(0,	1)	=	T(1,	0)	=	0).	They	also	guarantee	that	a	decrease	in
the	membership	value	in	the	fuzzy	set	A	or	in	the	fuzzy	set	B	cannot	produce	an	increase	in	the
membership	value	in	the	fuzzy	set	A⋂B.

2.13 	The	use	of	one	T-norm	or	another	leads	to	different	fuzzy	logics	(Hájek	1998).	Here	we	mention	the	two
functions	that	are	most	widely	used	in	FL	in	the	broad	sense	(i.e.	the	minimum	(or	Gödel	T-norm)	and
the	product).	As	an	example,	let	us	compute	the	degree	to	which	a	certain	person	x	is	"Tall	AND	middle-
aged",	assuming	the	assigned	truth	value	to	the	proposition	"x	is	Tall"	is	0.8	and	the	assigned	truth	value
to	the	proposition	"x	is	Middle-aged"	is	0.4.	Using	the	minimum	function	as	the	conjunctive	operator,	we
would	obtain:

TruthValue(x	is	Tall	AND	x	is	Middle-aged)	=
=	min(TruthValue(x	is	Tall),	TruthValue(x	is	Middle-aged))	=	min(0.8,	0.4)	=	0.4

By	contrast,	if	we	used	the	product	function	as	conjunctive	operator,	we	would	obtain:

TruthValue(x	is	Tall	AND	x	is	Middle-aged)	=
=	product(TruthValue(x	is	Tall),	TruthValue(x	is	Middle-aged))	=

=	product(0.8,	0.4)	=	0.32

2.14 	The	decision	to	use	one	function	or	another	will	depend	on	the	context	and	on	the	purpose	of	the
modelling	exercise.	Zimmermann	(2010)	reviewed	several	T-norms,	some	of	them	dependent	on	a
parameter,	and	argued	"it	is	very	unlikely	that	a	single	nonparametric	operator	can	model	appropriately
the	meaning	of	'and'	or	'or'	context	independently,	that	is,	for	all	persons,	at	any	time	and	in	each
context"	(Zimmermann	2010,	324).	Thus,	care	should	be	put	into	selecting	the	function	for	the	context	at
hand.	Zimmermann	(2010)	provides	some	guidance	(and	further	references)	on	how	to	do	this
selection.

Fuzzy	union	and	logical	disjunction	(inclusive	OR)
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2.15 	The	membership	function	of	the	union	A⋃B	of	two	sets	A	and	B	is	a	function	of	the	membership
functions	of	A	and	B.	Formally:

μA⋃B(x)	=	S(μA(x),	μB(x))

In	terms	of	truth	values	of	propositions:[12]

TruthValue(x	is	A	OR	x	is	B)	=	S(TruthValue(x	is	A),	TruthValue(x	is	B))

As	with	intersection,	there	are	many	functions	S	that	can	be	used	to	compute	the	union	of	fuzzy	sets
(see	Zimmermann	2010).	The	usual	requirement	is	that	the	function	must	be	a	Triangular	co-norm	(also
called	S-norm;	Klement	et	al.	2000).	An	S-norm	is	a	function	S:	[0,1]	×	[0,1]	→	[0,1]	that	is	commutative,
associative,	non-decreasing	(see	previous	section)	and	has	0	as	its	identity	element,	i.e.	S(a,	0)	=	a.
The	selection	of	an	S-norm	guarantees,	in	particular,	the	fuzzy	union	is	a	correct	generalization	of	its
crisp	counterpart	(i.e.	S(0,	0)	=	0	and	S(0,	1)	=	S(1,	0)	=	S(1,	1)	=	1).	In	FL,	the	two	most	widely	used	S-
norms	are	the	maximum	(dual	to	the	minimum	T-norm)	and	the	probabilistic	sum	(dual	to	the	product	T-
norm;	probSum(a,b)	=	a	+	b	−	a·b).

2.16 	As	an	example,	let	us	compute	the	degree	to	which	the	person	x	in	the	previous	example	is	"Tall	OR
middle-aged".	Using	the	maximum	function	as	the	disjunctive	operator,	we	would	obtain:

TruthValue(x	is	Tall	OR	x	is	Middle-aged)	=
=	max(TruthValue(x	is	Tall),	TruthValue(x	is	Middle-aged))	=	max(0.8,	0.4)	=	0.8

By	contrast,	if	we	used	the	probabilistic	sum	as	disjunctive	operator,	we	would	obtain:

TruthValue(x	is	Tall	OR	x	is	Middle-aged)	=
=	probSum(TruthValue(x	is	Tall),	TruthValue(x	is	Middle-aged))	=

=	probSum(0.8,	0.4)	=	0.8	+	0.4	−	0.8·0.4	=	0.88

As	with	the	conjunctive	operator	AND,	the	decision	to	use	one	S-norm	or	another	for	the	OR	operator
will	depend	on	the	context	and	purpose	of	the	modelling	exercise.

Fuzzy	complement	and	logical	negation	(NOT)

2.17 	It	is	clear	that	the	function	used	to	compute	the	membership	function	of	the	complement	Ac	of	a	fuzzy
set	A	should	be	non-increasing	and	assign	0	to	1	and	vice	versa.	The	natural	(and	most	widely	used)
function	is	the	additive	complement:

μA
c
(x)	=	1	−	μA(x)						where	Ac	denotes	the	complement	of	set	A

In	terms	of	truth	values	of	propositions:

TruthValue(x	is	NOT	A)	=	1	−	TruthValue(x	is	A)

Using	the	numbers	in	the	example	above,	we	would	obtain:

TruthValue(x	is	NOT	Tall)	=	1	−	TruthValue(x	is	Tall)	=	1	−	0.8	=	0.2
TruthValue(x	is	NOT	Middle-aged)	=	1	−	TruthValue(x	is	Middle-aged)	=	1	−	0.4	=

0.6

The	axiom	of	contradiction	and	the	axiom	of	excluded	middle

2.18 	It	is	important	to	note	that	the	following	two	axioms	are	not	postulated	in	FL	(see	e.g.	Gaines	1978)	and,
in	stark	contrast	to	classical	logic,	they	do	not	generally	hold:	

Axiom	of	contradiction:

In	sets:																				A	⋂	Ac	=	∅					where	∅	denotes	the	empty	set.
In	logical	terms:					TruthValue(x	is	A	AND	x	is	NOT	A)	=	0

Axiom	of	excluded	middle:

In	sets:																				A	⋃	Ac	=	X					where	X	denotes
the	universal	set.
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In	logical	terms:					TruthValue(x	is	A	OR	x	is	NOT
A)	=	1

This	observation	can	be	illustrated	for	person	x	(for	whom	the	truth	value	of	the	proposition	"x	is	Tall"	is
0.8)	using	min	for	the	logical	AND	and	max	for	the	logical	OR:

TruthValue(x	is	Tall	AND	x	is	NOT	Tall)	=
=	min(TruthValue(x	is	Tall),	TruthValue(x	is	NOT	Tall))	=	min(0.8,	1	−	0.8)	=	0.2	≠

0

Thus,	in	this	example	we	would	assign	a	truth	value	of	0.2	to	the	proposition	"x	is	tall	and	not	tall"	(which
may	not	be	necessarily	undesirable).	Similarly,

TruthValue(x	is	Tall	OR	x	is	NOT	Tall)	=
=	max(TruthValue(x	is	Tall),	TruthValue(x	is	NOT	Tall))	=	max(0.8,	1	−	0.8)	=	0.8	≠

1

Linguistic	hedges

2.19 	Linguistic	hedges	are	terms	that	complete	our	natural	language.	They	alter	or	adjust	fuzzy	adjectives,
allowing	for	the	expression	of	hues	and	nuances	of	meaning	that	are	not	possible	through	the	use	of
adjectives	alone	(Zadeh	1975a).	Examples	of	hedges	are	words	such	as	"very",	"fairly",	"slightly",
"roughly"	or	"extremely",	which	modify	the	linguistic	term	they	accompany	to	express	its	meaning	in	finer
gradations.	Hedges	can	potentiate	(concentrate)	the	gradable	characteristic	(e.g.,	"extremely	popular")
or	dilute	it	("fairly	large").

2.20 	The	effect	of	applying	a	hedge	(e.g.	"very")	to	a	fuzzy	concept	(e.g.	"hot")	can	be	modelled	by	using	a
function	h:	[0,1]	→	[0,1]	to	modify	the	membership	function	of	the	original	fuzzy	set.	A	common	family	of

functions	is	hα(a)	=	aα.	For	example,	one	could	compute	the	membership	function	of	the	fuzzy	sets
representing	"very	hot"	and	"extremely	hot"	as	follows	(see	Fig.	2):

μvery	hot(x)	=	h2(μhot(x))	=	(μhot(x))2

μextremely	hot(x)	=	h6(μhot(x))	=	(μhot(x))6

Figure	2.	Membership	function	of	one	set	(in	green,	on	the	left),	its	square	(in	black,	in	the	middle),	and
the	green	set	powered	to	the	6th	(in	red,	on	the	right).

2.21 	Note	that	the	use	of	the	modifier	hα(a)	=	aα	with	exponents	α	greater	than	1	reduces	the	truth	value	of
the	fuzzy	predicate	to	which	it	is	applied,	something	that	may	be	appropriate	for	hedges	such	as	"very"

and	"extremely".	By	contrast,	the	use	of	the	modifier	hα(a)	=	aα	with	exponents	α	smaller	than	1
increases	the	truth	value	of	the	original	fuzzy	predicate,	so	it	may	be	appropriate	to	model	hedges	such
as	"slightly"	or	"fairly".
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Systems	of	fuzzy	IF-THEN	rules

2.22 	In	this	section	we	explain	the	so-called	"Interpolation	Method"	for	systems	of	fuzzy	IF-THEN	rules

(Zadeh	1983,	215–216;	Klir	&	Yuan	1995,	section	11.4,	317–12)[13],	including	fuzzification	and
defuzzification.	A	particular	instance	of	this	method	is	the	so-called	max-min	rule	(also	named	the
Mamdani	inference,	Mamdani-Assilian	inference	or	max-min	inference),	which	is	often	used	in	fuzzy
control	(Driankov	et	al.	1996).	Another	particular	instance	is	the	max-prod	inference	(also	called	the
scaled	inference).

"This	method	of	interpretation	of	fuzzy	IF–THEN	rules	is	very	convenient	when	we	need
a	nice
tool	for	the	approximation	of	functions	but	it	is	less	convenient	as	a	model	of	human
reasoning"
Novák	(2012,	35)

2.23 	Within	a	Social	Simulation	context	the	interpolation	method	can	be	useful	to	define	a	function	by	means
of	a	collection	of	fuzzy	rules.	The	procedure	is	best	understood	with	an	example.	Suppose	we	want	to
implement	an	artificial	agent	who	must	select	a	suitable	house	from	several	options,	and	his	two	main
concerns	are	the	price	of	the	house	and	the	distance	from	the	house	to	the	agent's	workplace.

2.24 	A	possible	approach	would	be	to	implement	a	function	f(p,	d)	that	takes	numerical	inputs	p	(for	price)
and	d	(for	distance	from	work),	and	produces	a	numerical	score	s	(for	suitability)	as	the	output,	i.e.	s	=
f(p,	d).	The	interpolation	method	(including	fuzzification	and	defuzzification)	is	a	procedure	that	allows
us	to	specify	such	a	function	f(p,	d)	using	a	collection	of	fuzzy	rules	of	the	form	"IF	Antecedent	THEN
Consequent"	such	as:

R1:	IF	(House	is	Inexpensive	OR	Close-to-work),	THEN	Suitability	is	Good.
R2:	IF	(House	is	Expensive	OR	Far-from-work),	THEN	Suitability	is	Low.
R3:	IF	(House	is	Averagely-priced	AND	About-50-km-from-work),	THEN	Suitability	is	Regular.

2.25 	Naturally,	as	part	of	the	process	not	only	will	we	need	to	provide	the	collection	of	rules,	but	we	will	also
have	to	explicitly	define	the	fuzzy	concepts	contained	in	the	rules	(e.g.	"Inexpensive"	or	"Close-to-
work")	and	make	a	number	of	assumptions	regarding	the	functions	we	want	to	use	for	the	logical	AND,
for	the	logical	OR	and	for	computing	the	output	of	each	rule.	Depending	on	our	choices	of	these
functions,	we	will	obtain	the	max-min	inference,	the	max-prod	inference,	or	some	other	type	of	inference.

2.26 	Fig.	3,	which	illustrates	the	max-min	inference	(or	the	Mamdani	inference),	includes	a	representation	of
the	nine	fuzzy	sets	involved	in	the	definition	of	the	rules	(i.e.	fuzzy	sets	"Inexpensive",	"Expensive"	and
"Averagely-priced",	with	price	(p)	as	base	variable;	fuzzy	sets	"Close-to-work",	"Far-from-work"	and
"About-50-km-from-work",	with	distance	(d)	as	base	variable;	and	fuzzy	sets	"Good	Suitability",	"Low
Suitability"	and	"Regular	Suitability",	with	suitability	(s)	as	base	variable).	Suitability	is	measured	here	as
a	score	than	ranges	from	0	(lowest	suitability)	to	10	(highest	suitability).
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Figure	3.	Illustration	of	the	max-min	inference	with	defuzzification	(centre	of	gravity).	A	numerical	suitability	(6.03845)	is
computed	from	numerical	inputs	price	=	50	(in	€1,000s)	and	distance	=	35	km.

2.27 	The	general	algorithm	has	5	steps:

1.	 Fuzzification	of	inputs	(optional)
Inputs	may	be	crisp	values	(e.g.	price	=	50)	or	fuzzy	sets	(e.g.	price	is	reasonable).	If	an	input	is
crisp,	it	may	optionally	be	fuzzified,	i.e.	turned	into	a	fuzzy	set	first	(Zadeh	1975a).	Fuzzification
of	crisp	values	may	be	appropriate	if	the	inputs	are	known	only	approximately	or	if	they	come

from	imprecise	measurements	or	observations.[14]	The	example	represented	in	Fig.	3	does	not
include	fuzzification.

2.	 Computation	of	degrees	of	consistency	between	facts	(inputs)	and	antecedents
In	this	step	we	evaluate	the	extent	to	which	the	antecedent	of	each	IF-THEN	rule	is	satisfied	for
the	given	inputs.	The	degree	of	consistency	rAntecedent(x0)	between	a	crisp	value	x0	and	a	fuzzy
set	Antecedent	is	simply	the	degree	of	membership	of	x0	in	the	fuzzy	set,	i.e.	rAntecedent(x0)	=

μAntecedent(x0).	The	degree	of	consistency	between	two	fuzzy	sets	Input	and	Antecedent	is
determined	by	the	height	of	the	intersection	of	the	two	sets,	i.e.	rAntecedent(Input)	=	height(Input

⋂Antecedent).[15]	

As	an	example,	consider	the	first	rule	(R1),	represented	at	the	top	row	of	Fig.	3,	which	has	as
antecedent:	"House	is	Inexpensive	OR	Close-to-work".	The	computation	for	a	house	with	crisp
price	p	=	50	and	crisp	distance	d	=	35,	using	the	function	Maximum	(Max)	for	the	logical	OR,
would	be:

Max(μInexpensive(p=50),	μClose-to-work(d=35))	=	Max(0.75,	0.51)	=	0.75

The	result	of	this	step	is	a	number	for	each	rule	(i.e.	the	degree	of	consistency	between	the
inputs	and	each	rule's	antecedent).

3.	 Reshaping	of	consequents
In	this	step	we	reshape	the	original	consequent	of	each	rule	given	the	degree	of	consistency
between	the	inputs	and	the	rule's	antecedent.	The	underlying	idea	is	that	the	consequent	of	a
rule	should	be	applied	to	the	extent	that	its	antecedent	is	satisfied.	Possible	operators	for	the
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reshaping	method	are	Truncate	(or	minimum)	and	Product	(which	acts	as	a	scaling

operator).[16]	As	an	example,	consider	again	the	first	rule	(R1),	represented	at	the	top	row	of
Fig.	3.	Assuming	that	the	function	Truncate	is	used	as	reshaping	operator,	the	membership
function	of	the	truncated	set	would	be:

μTruncated	Good	suitability(x)	=	min(μGood
suitability(x),	0.75)

Thus,	the	result	for	the	first	rule	would	be	the	fuzzy	set	Good	suitability	truncated	at	level	0.75
(see	the	grey-filled	fuzzy	set	represented	at	the	top	right	chart	of	Fig.	3).	Truncate	(i.e.	min)	is
the	function	used	in	the	max-min	inference.	Another	possibility	(which	is	used	in	the	max-prod
inference)	is	to	use	the	Product	as	reshaping	operator.	This	alternative	can	be	seen	in	the
interactive	figure	provided	in	Appendix	D.	In	this	case,	the	membership	function	of	the	reshaped
consequent	of	the	first	rule	is:

μScaled	Good	suitability(x)	=	μGood	suitability(x)	·
0.75

In	any	case,	the	result	of	the	reshaping	step	is	a	fuzzy	set	for	each	rule.

4.	 Aggregation	of	all	the	reshaped	consequents
In	this	step,	the	reshaped	consequents	are	aggregated	to	provide	one	single	fuzzy	set.	Possible
operators	for	the	aggregation	are	e.g.	the	Maximum,	the	Probabilistic	Sum
(ProbabilisticSum(a,b)	:=	a	+	b	−	a·b)	or	the	Sum	Clipped	at	1	(ClippedSum(a,b)	:=	min(1,	a	+
b)).	In	the	example	shown	in	Fig.	3	we	used	the	Maximum.	The	output	of	this	step	is	the	fuzzy
set	filled	in	grey	with	the	label	"Aggregated	Suitability"	at	the	bottom	right	chart	of	Fig.	3.

5.	 Defuzzification	of	the	aggregated	fuzzy	set	(optional)
The	defuzzification	transforms	the	aggregated	fuzzy	set	into	a	single	crisp	number.
Zimmermann	(2001,	section	11.4.2,	232–239)	discussed	several	defuzzification	strategies	and
analysed	their	main	properties.	The	five	defuzzification	methods	most	commonly	used	are:

Centre	of	Gravity	(COG).	This	method	returns	the	projection	(on	the	horizontal	axis)	of
the	centre	of	gravity	of	the	area	under	the	membership	function.
First	of	Maxima	(FOM).	This	method	returns	the	infimum	of	the	values	of	the	base
variable	for	which	the	membership	function	is	maximal.
Last	of	Maxima	(LOM).	This	method	returns	the	supremum	of	the	values	of	the	base
variable	for	which	the	membership	function	is	maximal.
Middle	of	Maxima	(MOM).	This	method	returns	the	average	of	the	FOM	and	the	LOM.
Mean	of	Maxima	(MeOM).	This	method	returns	the	mean	of	the	values	for	which	the
membership	function	is	maximal.

2.28 	In	the	example	shown	in	Fig.	3,	the	COG	was	used	to	reduce	the	aggregated	fuzzy	set	labelled
SUITABILITY	to	the	crisp	value	6.03845.

2.29 	It	is	clear	that	the	researcher	has	to	make	several	decisions	within	this	general	framework.	Specifically,
there	is	a	choice	of	operators	for	the	logical	AND,	the	logical	OR,	the	reshaping	method,	the	aggregation
method	and	the	defuzzification	method.	These	decisions	lead	to	different	functions	f(p,	d).	The
consequences	of	choosing	one	or	another	operator	can	be	seen	in	the	interactive	version	of	Fig.	3,
which	is	provided	in	Appendix	D.

2.30 	The	max-min	(or	Mamdani)	inference	appears	when	choosing	the	Minimum	for	the	logical	AND,	the
Maximum	for	the	logical	OR,	Truncate	as	the	reshaping	method	and	Maximum	as	the	aggregation
method.	By	contrast,	the	max-prod	inference	uses	the	Product	function	as	its	reshaping	method,	so	the
original	consequents	of	each	of	the	rules	are	scaled	down,	rather	than	truncated.	This	leads	to	a
different	aggregated	fuzzy	set	with	a	different	centre	of	gravity.	It	is	important	to	emphasise	that	the
procedure	described	in	this	section	produces	a	specific	function	f(p,	d)	that	takes	numerical	inputs	p	(for
price)	and	d	(for	distance	from	work),	and	produces	a	numerical	score	s	(for	suitability)	as	its	output,	i.e.
s	=	f(p,	d).	The	particular	function	corresponding	to	the	max-min	inference	system	with	three	rules
(illustrated	in	Fig.	3	for	particular	values	price	=	50	and	distance	=	35),	is	plotted	in	Fig.	4	for	any	price
and	distance,	for	the	sake	of	clarity.
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Figure	4.	Numerical	score	obtained	for	the	suitability	of	a	house	as	a	function	of	numerical	inputs	price	∈	[0,	200]	and
distance	∈	[0,	100]	when	using	the	max-min	inference	(with	centre	of	gravity	as	defuzzification	method)	illustrated	in	Fig.	3.

The	interpolation	method	is	not	logical	deductive	inference

"The	whole	procedure	is	quite	reasonable	and	gives	good	results.	However,	it	has	to	be	stressed	that	it
is	not	a
logical	inference,	i.e.,	a	procedure	aiming	at	the	derivation	of	new	facts	from	some	other	known	ones
using
formal	deduction	rules.	No	logical	implication	is	inside	and	thus,	no	modus	ponens	proceeds."	Klawonna
&	Novák	(1996,	331)

2.31 	The	interpolation	method	described	in	the	previous	section	was	originally	conceived	to	mimic	the
functioning	of	human	operators	in	charge	of	controlling	an	industrial	process	(Mamdani	&	Assilian	1975;
Mamdani	1974,	1976,	1977).	The	aim	was	to	condense	the	operator's	experience	into	a	set	of
(linguistic)	rules	that	could	be	used	by	a	machine	to	automatically	control	the	process.	This	aspiration	of
capturing	human	declarative	knowledge	is	still	widespread	in	the	literature,	with	scholars	from	different
fields	posing	the	interpolation	method	as	a	"natural	framework	to	include	expert	knowledge	in	the	form
of	linguistic	rules"	(Cordón	et	al.	2001,	15)	or	a	tool	that	somewhat	aims	at	"imitating	human	judgment	in
common	sense	reasoning"	(Bojadziev	&	Bojadziev	2007,	128).	However,	it	is	important	to	emphasise
that,	while	such	statements	may	not	be	necessarily	inexact	in	their	context,	the	intuitive	appeal	of	the
method	should	not	mislead	us	to	believe	it	follows	some	kind	of	logical	deductive	inference.

2.32 	As	an	illustrative	observation,	note	that	conflicting	rules	may	be	fired	simultaneously.	In	the	previous
example,	an	inexpensive	house	which	is	far	away	from	work	will	have	both	good	suitability	(according	to
rule	1)	and	low	suitability	(according	to	rule	2).	In	such	cases,	no	inconsistency	warnings	will	be	issued,
but	a	sort	of	average	will	be	silently	computed.	This	may	not	be	necessarily	inadequate	for	certain
purposes	(see	Bojadziev	&	Bojadziev	2007,	chapter	4),	but	it	does	indicate	the	method	is	best	seen	as
an	interpolation	technique,	rather	than	as	a	tool	for	logical	deductive	inference.	Another	important
observation	in	this	regard	is	that	the	inference	rule	modus	ponens	is	not	necessarily	satisfied	in	the
interpolation	method	in	the	sense	that	an	input	in	full	accordance	with	the	antecedent	of	a	rule	may	lead
to	an	output	that	does	not	satisfy	the	rule's	consequent	to	the	same	degree	(see	a	clear	illustration	in
Izquierdo	&	Izquierdo	(2015)).

2.33 	The	fact	that	the	interpolation	method	is	not	a	proper	tool	for	deductive	inference	is	well	known	and
discussed	in	many	papers	(see	Klawonna	&	Novák	1996;	Bodenhofer	et	al.	2007)	and	textbooks	(see
e.g.	Klir	&	Yuan	1995,	chapter	11;	Hájek	1998,	chapter	7).	Izquierdo	and	Izquierdo	(2015)	use	several
examples	to	illustrate	the	wide	range	of	problems	that	may	appear	when	interpreting	the	interpolation
method	as	logical	deductive	inference.
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2.34 	Nonetheless,	as	an	interpolation	technique,	the	method	does	have	very	convenient	properties.	For	a
start,	it	can	approximate	any	continuous	real	function	on	a	closed	domain	to	any	degree	of	accuracy
(Cao	et	al.	2001),	so	it	is	a	very	flexible	and	powerful	approach,	especially	when	combined	with	tuning
techniques	(see	e.g.	Driankov	et	al.	1996,	chapter	5;	Cordón	2011).	Its	success	in	this	area	is	mainly
due	to	its	rule-based	structure,	which	allows	individual	rules	to	be	suitably	adapted	for	specific	regions
of	the	state	space	without	affecting	the	fitting	achieved	in	neighbouring	regions	(Mamdani	1994).

2.35 	The	interpolation	method	has	been	used	in	various	fields	besides	fuzzy	control,	such	as	management
and	finance	(Bojadziev	&	Bojadziev	2007;	Korol	2012),	economics	(Stojic	2012;	West	&	Linster	2003),
risk	assessment	(Nait-Said	et	al.	2008;	Darbra	et	al.	2008	and	references	therein),	and	even	for
measuring	the	quality	of	education	(Valdés-Pasarón,	Márquez	&	Gaxiola	2011;	Valdés-Pasarón,
Márquez	&	Ocegueda-Hernández	2011).

Fuzzy	Logic	in	Social	Simulation	and	Agent-based	Modelling

2.36 	There	are	many	authors	that	have	used	FL	in	Social	Simulation	and	agent-based	modelling.	In	this
section	we	mention	some	representative	examples.	El-Nasr	et	al.	(2000)	used	fuzzy	sets	in	agent-
based	simulations	to	represent	emotions,	and	fuzzy	rules	to	represent	mappings	from	events	to
emotions,	and	from	emotions	to	behaviours.	These	authors	used	Mamdani	inference	in	their	fuzzy	rule-
based	models.	Ghasem-Aghaee	and	Ören	(2003)	and	Ören	and	Ghasem-Aghaee	(2003)	used	fuzzy
logic	to	formalise	different	types	of	personality	traits	for	human	behaviour	simulation.

2.37 	In	the	context	of	cooperation	in	social	dilemmas,	Fort	and	Pérez	(2005a,	2005b)	formalised	different
measures	of	success	as	fuzzy	sets	in	a	spatial	iterated	Prisoner's	Dilemma	and	explored	the
consequences	of	using	one	or	another.	Power	(2009)	suggested	using	fuzzy	sets	to	model	cooperation
and	defection	in	N-Person	prisoner's	dilemmas.	Neumann	et	al.	(2011)	proposed	the	use	of	fuzzy	logic
in	Social	Simulation	to	formalise	concepts	such	as	conflict,	violence	and	crime.

2.38 	Fuzzy	sets	have	also	been	used	in	the	context	of	trust	and	reputation	by	authors	such	as	Ramchurn	et
al.	(2004),	Falcone	et	al.	(2003)	and	Sabater	et	al.	(2006).

2.39 	Kim	et	al.	(2011),	Lee	et	al.	(2013)	and	Lee	et	al.	(2014)	explored	diffusion	dynamics	of	competing
products	in	different	markets	(automobiles,	netbooks	and	smartphones,	respectively)	using	agent-based
models	where	various	linguistic	terms	are	formalized	as	fuzzy	sets.

2.40 	Epstein	et	al.	(2006)	explored	a	fuzzy	version	of	Sugarscape	(Epstein	&	Axtell	1996).	Ross	(2010)
included	a	section	on	agent-based	models	in	his	textbook,	in	which	he	sketched	another	fuzzification	of
Sugarscape	implemented	by	Harp	(2007).	West	and	Linster	(2003),	Sperb	and	Cabral	(2004),	Sperb
and	Bughi	(2006),	Situngkir	(2007),	Sabeur	and	Denis	(2007),	Acheson	et	al.	(2013)	and	Machálek	et	al.
(2013)	incorporated	the	interpolation	method	in	the	decision	making	of	their	agents.

2.41 	Other	examples	of	agent-based	models	with	fuzzy	components	can	be	found	in	Hassan,	Garmendia	&
Pavón	(2007,	2010)	and	Hassan,	Salgado	&	Pavón	(2011)	and,	more	recently,	Dykstra	et	al.	(2015).

The	NetLogo	extension
3.1 	To	the	best	of	our	knowledge,	the	extension	provided	in	Appendix	A	is	the	first	FL	extension	for

NetLogo	that	has	been	publicly	released,	although	there	has	been	some	previous	work	on	similar
prototypes	(Castañón-Puga	et	al.	2014;	Flores-Parra	2013;	Flores	et	al.	2010).

3.2 	Our	extension	has	been	released	under	the	GNU	general	public	licence	version	3	(GPLv3),	which	is
one	of	the	licences	that	scores	best	against	the	criteria	set	out	by	Polhill	and	Edmonds	(2007)	for
releasing	scientific	software.	GNU	GPLv3	grants	the	right	to	inspect,	copy	and	distribute	the	source
code,	to	modify	it,	and	also	to	copy	and	distribute	any	modifications.	It	also	guarantees	that	any
modifications	will	be	issued	under	a	licence	that	preserves	these	rights	(i.e.	copyleft	protection).
Following	Polhill	and	Edmonds'	(2007)	guidelines	and	example	(Polhill	2015),	we	have	also	devoted	a
substantial	amount	of	work	to	facilitate	the	process	of	scientific	critique	of	this	research	by	carefully
commenting	the	code,	providing	extensive	documentation	(Appendix	B)	and	creating	a	tutorial	on	how	to
build	an	agent-based	model	using	the	extension	(Appendix	C).

3.3 	The	functionality	of	the	NetLogo	extension	(which	is	internally	coded	in	Java)	was	initially	implemented
as	a	library	of	functions	directly	written	in	NetLogo	language.	This	set	of	NetLogo	functions	–	together
with	its	own	documentation	and	tutorial	–	is	provided	in	Appendix	E.	The	advantage	of	the	extension
over	the	library	is	that	it	is	computationally	more	efficient	(both	in	terms	of	speed	and	memory	usage)
and	it	is	easier	to	use.	Some	researchers	may	still	find	the	original	NetLogo	library	useful	if	they	plan	to
inspect	and/or	modify	the	code	within	NetLogo.
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3.4 	The	following	is	a	list	of	the	main	functions	provided	in	the	extension:

Functions	to	create	fuzzy	sets:	fuzzy:discrete-numeric-set,	fuzzy:piecewise-linear-set,
fuzzy:trapezoidal-set,	fuzzy:logistic-set,	fuzzy:gaussian-set,	fuzzy:exponential-set,	fuzzy:interval-with-
points-set.

Functions	to	operate	with	fuzzy	sets:	fuzzy:min,	fuzzy:max,	fuzzy:sum,	fuzzy:prob-or,	fuzzy:not,
fuzzy:truncate,	fuzzy:prod,	fuzzy:power.

Function	to	plot	fuzzy	sets:	fuzzy:plot.

Functions	to	create	fuzzy	rules:	fuzzy:truncate-rule,	fuzzy:prod-rule,	fuzzy:min-truncate-rule,	fuzzy:max-
truncate-rule,	fuzzy:min-prod-rule,	fuzzy:max-prod-rule.

Functions	to	defuzzify	fuzzy	sets:	fuzzy:COG-of,	fuzzy:FOM-of,	fuzzy:LOM-of,	fuzzy:MOM-of,
fuzzy:MeOM-of.

Functions	to	manage	fuzzy	set	labels :	fuzzy:set-label-of,	fuzzy:clear-label-of,	fuzzy:set-with-label,
fuzzy:clear-label,	fuzzy:clear-all-labels,	fuzzy:label-of,	fuzzy:has-label?,	fuzzy:label-exists?.

3.5 	To	illustrate	the	use	of	the	extension,	we	include	here	the	implementation	of	the	Mamdani	system
explained	in	section	2.6	and	displayed	in	Fig.	3.	Our	objective	here	is	to	show	that	implementing	a
system	of	fuzzy	IF-THEN	rules	using	the	NetLogo	extension	requires	very	few	lines	of	simple	code.	For
a	detailed	explanation	of	each	of	the	functions	used,	see	the	documentation	in	Appendix	B.

3.6 	Step	1:	Implementation	of	a	procedure	that	creates	the	fuzzy	sets:	see	Fig.	5.

Figure	5.	Procedure	to	create	all	the	fuzzy	sets	of	the	Mamdani	system	explained	in	section	'Systems	of	fuzzy	IF-THEN
rules'

3.7 	Step	2:	Implementation	of	a	procedure	that	takes	a	price	and	a	distance	as	inputs	and	reports	a
numerical	suitability:	see	Fig.	6.
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Figure	6.	Procedure	to	compute	the	suitability	in	the	Mamdani	system	explained	in	section	'Systems	of
fuzzy	IF-THEN	rules'

3.8 	With	the	two	procedures	shown	above	in	place,	one	could	execute	the	code	"compute-suitability	50	35"
to	obtain	the	number	6.03845,	as	shown	in	Fig.	3.

A	simple	agent-based	model	with	fuzzy	components

"It	is	a	familiar	fact	that	concepts	change	with	time	and	user"
Goguen	(1969,	339)

4.1 	In	this	section	we	provide	a	general	description	of	a	simple	agent-based	model	in	which	agents	hold
their	own	fuzzy	concepts	and	follow	fuzzy	rules.	The	model	is	described	in	full	detail	in	Appendix	C,
which	provides	a	step-by-step	tutorial	to	implement	systems	of	fuzzy	IF-THEN	rules.	The	aim	is	to
illustrate	a	possible	way	of	using	FL	in	an	agent-based	model.

4.2 	Our	model	runs	in	discrete	time	steps.	Initially,	a	group	of	agents	conduct	a	sightseeing	tour	of	a
city/location,	which	they	may	later	recommend	with	a	certain	probability.	The	probability	of
recommending	the	tour	depends	on	a)	the	price	paid	for	the	tour;	and	b)	the	temperature	during	the	tour.
The	price	of	the	tour	is	a	parameter	of	the	model	and	the	temperature	is	generated	randomly	every	time
a	tour	takes	place.	The	function	used	by	each	agent	to	compute	the	probability	of	recommending	is
defined	using	fuzzy	rules	such	as:

IF	(price	is	inexpensive	AND	temperature	is	nice),	
																																																							THEN	it	is	likely	that	I	will	recommend.
IF	(price	is	expensive	OR	temperature	is	extreme),	
																																																							THEN	it	is	unlikely	that	I	will	recommend.

4.3 	The	rules	are	the	same	for	every	agent,	but	their	perceptions	are	different.	Thus,	each	individual	agent
has	its	own	concept	(i.e.	fuzzy	set)	of	nice	temperature,	extreme	temperature,	inexpensive	price,
expensive	price,	likely,	and	unlikely.	Fig.	7	shows	the	fuzzy	sets	representing	nice	and	extreme
temperature	for	different	agents.
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Figure	7.	A	representation	of	various	fuzzy	sets	corresponding	to	different	agents.	Each	agent	has	its
own	fuzzy	sets	representing	nice	(in	blue)	and	extreme	(in	red)	temperature.

4.4 	Thus,	even	though	the	price	and	the	temperature	are	the	same	for	every	agent	in	any	specific	tour,	the
assessment	of	these	two	variables	by	each	agent	is	different.	Using	the	interpolation	method	described
in	the	section	'Systems	of	fuzzy	IF-THEN	rules',	each	agent	computes	an	individual	probability	with
which	it	will	recommend	the	tour.

4.5 	In	the	model,	each	agent	is	given	a	number	of	opportunities	to	recommend	the	tour	to	neighbours	in	its
social	network.	At	the	end	of	the	period,	after	all	agents	have	been	given	the	opportunity	to	recommend
the	tour	(according	to	their	individually	computed	probabilities),	we	have	a	new	set	of	agents	who	have
been	recommended	to	attend	the	tour	and	will	do	so	if	there	are	available	places	(each	tour	is	limited	in
size).	The	following	time	period	starts	with	a	new	tour	(with	different	temperature	conditions)	that	will	be
assessed	by	the	new	set	of	agents.	These	new	attendees	will	compute	their	own	probability	to
recommend	the	tour	to	their	own	social	contacts.	In	this	way,	the	iterative	process	can	go	on	indefinitely.

4.6 	Importantly,	the	fuzzy	sets	of	each	individual	agent	do	not	necessarily	have	to	be	created	in	a
completely	unbiased	way.	They	could	be	created	using	specific	templates	for	optimistic	agents	(i.e.
those	who	tend	to	assess	experiences	with	a	favourable	bias),	neutral	agents	or	pessimistic	agents.
Thus,	one	could	study	the	effects	of	different	grades	of	homophily	(or	assortativity)	in	the	agents'	social
networks.	Specifically,	it	is	clear	the	number	of	tour	attendants	in	the	model	will	be	affected	by	the	extent
to	which	optimistic	agents	(who	are	more	likely	to	recommend)	tend	to	relate	to	each	other.

Conclusions
5.1 	Social	Simulation	as	a	scientific	field,	and	this	journal	in	particular,	are	devoted	to	the	exploration	and

understanding	of	social	processes	by	means	of	computer	simulation	(Gilbert	&	Troitzsch	2005,	preface).
This	aim	often	requires	the	translation	of	social	theories	and	concepts	expressed	in	natural	language
into	algorithms	written	in	formal	languages	that	computers	can	understand.	This	paper	shows	that	FL
can	be	useful	in	such	endeavour,	since	it	provides	a	framework	within	which	we	can	formalise	and	deal
with	imprecise	concepts	that	are	expressed	in	natural	language.

5.2 	However,	the	use	of	FL	in	Social	Simulation	should	not	be	taken	lightly.	For	a	start,	constructing
appropriate	fuzzy	sets	on	imprecise	concepts	is	not	a	trivial	task.	As	put	by	Kvist	(2007):	"Fuzzy	sets	are
not	fuzzy	in	the	sense	of	being	imprecise	or	ambiguous.	On	the	contrary,	fuzzy	sets	need	designing	to
accurately	reflect	theoretical	concepts	and	analytical	constructs	that	have	precise	meaning	to	those
researchers	using	them.	Fuzzy	sets	provide	a	way	of	operationalizing	a	concept	into	the	0-to-1	metric,
from	being	'fully	out'	to	'fully	in'	a	set"	(Kvist	2007,	477).	In	essence,	by	constructing	a	fuzzy	set	on	an
imprecise	concept	we	are	effectively	making	the	concept	precise	in	a	particular	way.	We	have	also
discussed	a	common	way	of	using	fuzzy	IF-THEN	rules,	i.e.	the	interpolation	method.	Importantly,	the
interpolation	method	is	not	a	method	of	logical	deductive	inference;	thus,	care	should	be	taken	when
using	it	and	interpreting	the	results	obtained	with	it.
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5.3 	This	paper	also	provides	a	set	of	well-documented	functions	written	for	NetLogo	(Wilensky	1999)	that
facilitate	the	use	of	FL	within	this	platform.	Using	these	functions,	it	becomes	simple	to	implement
agent-based	models	where	individual	agents	hold	their	own	fuzzy	sets	(representing	subjective
imprecise	concepts)	and	follow	fuzzy	rules	which	may	affect	the	way	agents	behave	and
interact.Appendix	C	is	a	step-by-step	tutorial	that	shows	how	to	do	this.	As	an	example	of	a	potentially
useful	application,	our	extension	makes	it	particularly	easy	to	analyse	the	robustness	of	a	certain	social
theory	expressed	in	natural	language	to	different	specifications	of	the	imprecise	concepts	that	the
theory	contains,	such	as	e.g.	"wealthy"	(which	may	be	represented	with	different	fuzzy	sets).	Also,	it
facilitates	the	exploration	of	the	effect	that	heterogeneity	in	concept	interpretations	may	have	in	a
society	(i.e.	the	significance	of	the	fact	that	different	people	may	have	different	interpretations	of	the
same	concept).

5.4 	Obviously,	neither	FL	nor	our	extension	are	strictly	necessary	to	build	models	with	agents	holding
different	instances	of	imprecise	concepts,	but	the	work	presented	here	helps	implement	such	models	in
a	natural	and	transparent	way.	Thus,	we	hope	that	this	paper	and	the	tools	included	in	it	will	make	the
endeavour	of	translating	social	theories	into	computer	programs	easier	and	more	rigorous	at	the	same
time.

Acknowledgements
	The	authors	are	very	grateful	to	Marcos	Almendres	for	converting	the	library	of	functions	written	in
NetLogo	language	into	an	efficient	NetLogo	extension	written	in	Java.	We	are	also	very	grateful	to	three
anonymous	reviewers	for	improving	the	manuscript	with	their	comments	and	suggestions.	This
research	was	supported	under	Australian	Research	Council's	Discovery	Projects	funding	scheme
(project	number	DP130100570,	"Modelling	Network	Innovation	Performance	Capability:	A
Multidisciplinary	Approach")	and	under	Spanish	Ministry	of	Science	and	Innovation's	project	CSD2010-
00034	(SIMULPAST).

Notes

	1In	the	following,	and	in	accordance	with	the	literature,	we	use	the	terms	imprecise	and	vague
indistinctively.

2However,	if	one	assumes	the	opposite,	i.e.,	that	"a	person	who	is	only	1	mm	shorter	than	a	tall	person
is	also	tall",	then	it	is	not	difficult	to	prove	in	classical	logic 	that	"everyone	is	tall"	(assuming	there	is	at
least	one	person	who	is	tall).	For	a	crystal-clear	and	fascinating	analysis	of	this	ancient	(Sorites)
paradox,	see	Goguen	(1969).

3A	detailed	historic	account	of	the	development	of	fuzzy	logic	in	the	narrow	sense	can	be	found	in
chapter	10	of	Hájek	(1998).

4The	quote	goes	on	as	follows:	"Although	work	in	fuzzy	logic	in	the	broad	sense	is	not	directly
concerned	with	the	issues	that	are	investigated	under	fuzzy	logic	in	the	narrow	sense,	the	importance	of
the	latter	is	that	it	provides	the	former	with	solid	theoretical	foundations"	(Wang,	Ruan	&	Kerre	2007,
foreword).

5One	could	legitimately	argue	that	a	partial	ordering	would	be	sufficient	to	capture	the	graduation	of
membership	(see	e.g.	footnote	3	in	Zadeh	(1965)),	and	that	numerical	graduation	of	membership	is	hard
to	justify	for	the	representation	of	cognitive	concepts	(see	e.g.	Freksa	(1994)).

6For	an	elaboration	of	this	argument	see	Zadeh	(1975a).

7Remember	that	the	illusion	of	continuity	is	implemented	in	most	computer	platforms	(NetLogo,	in
particular)	using	floating	point	numbers	(Izquierdo	&	Polhill	2006;	Polhill	et	al.	2005,	2006).

8For	a	detailed	and	clear	explanation	of	the	bridge	between	fuzzy	sets	and	fuzzy	propositions,	see	Klir
and	Yuan	(1995,	section	8.3).

9Formally,	there	is	an	isomorphism	between	set	theory	and	propositional	logic.

10Notation:	In	logic,	the	conjunctive	connective	is	usually	denoted	by	∧,	rather	than	by	the	word	AND.
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11Note	that	fuzzy	propositions	may	also	refer	to	elements	belonging	to	different	universes	of	discourse.

12Notation:	In	logic,	the	disjunctive	connective	is	usually	denoted	by	∨,	rather	than	by	the	word	OR.

13The	interpolation	method	is	actually	a	special	case	of	the	compositional	rule	of	inference,	where	the
fuzzy	relation	is	the	Minimum	or	the	Product	(see	e.g.	Klir	&	Yuan	1995,	318–320;	Wang	1997,	98).
However,	note	that	neither	the	Minimum	nor	the	Product	define	a	relation	of	logical	implication	in	the
sense	that	they	do	not	collapse	to	the	classical	implication	when	truth	values	are	restricted	to	0	and	1.

14The	simplest	way	of	fuzzifying	a	crisp	value	x0	is	to	convert	it	into	–	or	interpret	it	as	–	a	fuzzy
singleton,	i.e.	a	fuzzy	set	whose	membership	function	equals	1	at	x0	and	equals	0	for	any	other

element.	Here,	the	crisp	input	price	=	50	can	be	interpreted	as	the	fuzzy	singleton	F50	with	μF50(50)	=	1,
and	μF50(price)	=	0	for	price	≠	50.	We	use	the	term	"interpretation"	because	this	type	of	fuzzification	has
no	effect	in	the	subsequent	steps	of	the	procedure.	Naturally,	other	fuzzifications	are	possible	and	may
be	more	appropriate	in	certain	cases.

15The	height	of	a	fuzzy	set	is	the	largest	degree	of	membership	obtained	by	any	element	in	that	set.
Thus,	if	the	function	minimum	is	used	as	intersection	operator,	the	degree	of	consistency	between	fuzzy

sets	Input	and	Antecedent	would	reduce	to:	rAntecedent(Input)	=	sup	x∈X	min(μInput(x),	μAntecedent(x)).

16Some	authors	(see	e.g.	Mamdani	1977;	Driankov	et	al.	1996,	chapter	2;	Cordón	et	al.	2001,	8;	Ross
2010,	chapter	5)	and	computational	packages	(see	e.g.	Matlab	2014)	refer	to	these	functions	as
"Implication	operators".	We	prefer	to	avoid	this	terminology	because	these	functions	do	not	define	a
relation	of	implication	in	the	logical	sense;	in	particular,	they	do	not	generalize	the	implication	operator	of
classical	logic,	in	the	sense	that	they	do	not	collapse	to	the	classical	implication	when	truth	values	are
restricted	to	0	and	1	(see	e.g.	the	excellent	explanations	by	Klir	and	Yuan	(1995,	section	11.2)	and
Hájek	(1998,	p.	177)).	The	implication	connective	x→y	tries	to	quantify	the	degree	by	which	the
consequent	y	is	at	least	as	true	as	the	antecedent	x	(see	e.g.	Smets	&	Magrez	1987;	Hájek	1998,	28–
29,	section	2.1.4).	In	mathematical	fuzzy	logic,	it	is	most	often	defined	as	the	residuum	of	a	(left-
continuous)	T-norm	(Hájek	1998,	29,	definition	2.1.5).	The	implication	connectives	derived	from	each	of
the	three	fundamental	T-norms	are:	Łukasiewicz	implication	(residuum	of	Łukasiewicz	T-norm),	Godel
implication	(residuum	of	minimum	T-norm)	and	Goguen	–	or	product	–	implication	(residuum	of	product
T-norm)	(Hájek	1998,	30,	Theorem	2.1.8).

Appendix	A.	Fuzzy	logic	extension
	Download	file:	fuzzy.zip

Find	the	latest	release	at:
https://github.com/luis-r-izquierdo/netlogo-fuzzy-logic-extension/releases

Appendix	B.	Documentation	of	the	Fuzzy	Logic	extension
	Download	file:	fuzzy-logic-extension-documentation.pdf

Find	the	latest	release	at:
https://github.com/luis-r-izquierdo/netlogo-fuzzy-logic-extension/releases

Appendix	C.	Tutorial	and	sample	Model
	Download	file:	tutorial.zip

Find	the	latest	release	at:
https://github.com/luis-r-izquierdo/netlogo-fuzzy-logic-extension/releases

Appendix	D.	Interactive	figure

Netlogo	implementation:
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Download	file:	interactive-figure-netlogo.zip
Find	the	latest	release	at:
https://github.com/luis-r-izquierdo/netlogo-fuzzy-logic-extension/releases

Mathematica	implementation:

Download	file:	Fuzzy-System-of-IF-THEN-Rules.cdf
(executable	with	Wolfram	CDF	Player:	http://www.wolfram.com/cdf-player/)
Find	the	latest	release	at:
https://github.com/luis-r-izquierdo/Fuzzy-System-of-IF-THEN-Rules/releases

Mathematica	online	interactive	figure:

http://demonstrations.wolfram.com/InferenceWithFuzzyIFTHENRules/

Appendix	E.	Fuzzy	Logic	library
	Fuzzy	Logic	library	written	in	NetLogo,	with	documentation	and	tutorial.
Download	file:	fuzzy-logic-library.zip

Find	the	latest	release	at:
https://github.com/luis-r-izquierdo/netlogo-fuzzy-logic-library/releases
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