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Abstract: In line with previous research, the evolution of social conventions is explored by n-way coordination
games. A convention is said to be established if the decisions of all actors become synchronised over time.
In contrast to the earlier studies, an empirically well-grounded process of reinforcement learning is used as
behavioural assumption. The model is called melioration learning. It is shown by agent-based simulations
that melioration enables the actors to establish a convention. Besides the payo�s of the coordination game,
the network structure of interactions a�ects the actors’ ability to coordinate their choices and the speed of
convergence. The results of melioration learning are compared to predictions of the Roth-Erev model.
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Introduction

1.1 Social conventions play decisive roles in everyday life. These rules of conduct assist in social interactions by
prescribing the choice of one particular alternative if several are available. Examples are the rule of right- or
le�-hand driving in a country, theway of greeting amongmembers of a cultural group, or the usage of the same
so�ware in a company. In either case, multiple alternatives are feasible, but the agreement on one alternative
is advantageous. Therefore, conventions di�er from other social norms by being self-preserving once they are
established. Compliance is sought by everyone because of an automatic punishment a�er deviation.

1.2 Amore complicated issue in the explanation of social conventions is their initiation. Schelling (1960) addressed
this di�iculty in his study of social conflict. Due to limited communication andperception, the initial agreement
on a behaviour can be problematic although the common behaviour is in everyone’s best interest (Schelling
1960, p. 84). In any situation without central authority, the actors must coordinate their choices, and the out-
come depends on the available information and the actors’ way of decision-making. Hence, themain question
in the study of social conventions concerns their establishment.

y

A B

x
A (10,10) (0,0)

B (0,0) (6,6)

Table 1: A sample coordination game

1.3 Following the work of Schelling, the evolution of social conventions has usually beenmodelled by n-way coor-
dination games (e.g., Young 1998). These games refer to the sequential play of two-person coordination games
with multiple partners. A sample two-person coordination game is shown by Table 1. The two actors, which
are denoted by x and y, must decide between alternativesA andB. Given a pair of decisions, the table defines
the rewards. Nothing is gained in case that actors choose di�erent alternatives. If both actors take the same
alternativeA orB, they receive a reward of 10 or 6, respectively.
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1.4 Given an n-way coordination game, a social convention is said to be established if all actors agree on one alter-
native. Young (1993) analysed these games in case of random actor matching. At each round of the game, two
actorswere randomly drawn froma large population. Both actors knew the reward structure of the stage game,
and decisions weremade by selecting an alternative with the highest expected reward given some information
about previous interactions. As result, Young (1993) found that actors learn to establish a convention and,more
specifically, play a risk-dominant equilibrium of the stage game (see also Kandori et al. 1993). The concept of
risk-dominance takes into account that, if the partner’s decision is not known with certainty, one action may
be less risky than another one (Harsanyi & Selten 1992, pp. 82-84). For example, the game of Table 1 has two
pure Nash equilibria (A,A) and (B,B) with the former being risk-dominant. Risk-dominance is not necessarily
equivalent to e�iciency, which denotes the equilibriumwith the highest rewards (see game II of Table 2).

1.5 In addition to random matching, Young (1998, ch. 6) also considered n-way games in networks. In any larger
group, interaction between members is limited. Every actor has a small group of partners with whom he/she
interacts. Additionally, information about previous encounters is restricted to this group. Similar to the model
with random interactions, the analysis of Young (1998, ch. 6) indicated that only risk-dominant equilibria are
stable, and all members of a connected component1 of the network eventually choose the same alternative.

1.6 In other words, the network structure had no e�ect on the outcome of the n-way game. This result was due
to random mistakes, which the actors made with strictly positive probability. Without mistakes, the network
structurea�ects theoutcome (Buskens&Snijders 2016), andalso risk-dominatedequilibriaoccur. Furthermore,
it is possible that two di�erent conventions coexist in some networks (see also Berninghaus & Schwalbe 1996).

1.7 Overall, the results suggest that the particular combination of behavioural assumptions and network structure
is relevant. In regard to behavioural assumptions, the models of all previously mentioned studies can be char-
acterised as “myopic best reply” (Berninghaus & Schwalbe 1996, p. 300). Given this model, actors learn about
the partners’ behaviour from past interactions and use this knowledge to choose a best action given the re-
ward structure of the game. This means that information about the situation and past actions of the partners
was presumed to be available in all former studies.

1.8 While these are reasonable assumptions in most situations, this paper asks about the theoretical implications
of dropping them: Is it possible to explain the emergence of conventions if actors are neither aware of the pay-
o� structure nor the choices of other actors. The contribution of this paper is, thus, mainly theoretical, but
with relevance to future empirical research. For instance, in case that the results di�er from previous studies,
conclusions can be drawn from empirical macro-level observations to micro-level assumptions.

1.9 A behavioural model in which an actor’s decision is based only on her own previous actions and rewards is
called completely uncoupled (e.g., Babichenko 2012). Despite this limiting setting, some learning models still
ensure the convergence of behaviour to Nash equilibria (Foster & Young 2006; Germano & Lugosi 2007; Young
2009; Babichenko 2012). For example, Pradelski & Young (2012) introduced a model of completely uncoupled
learning that yields welfare-maximising Nash equilibria in two-person coordination games.

1.10 However, the behavioural model of Pradelski & Young (2012) was designed to converge to equilibria. The as-
sumptions were not justified by empirical observations or psychological experiments. In contrast, most psy-
chologicalmodels of learningwere developed to represent the development of humanbehaviour as realistic as
possible (e.g., Staddon 2001). Some popular instances of realistic models implement a form of learning known
as operant conditioning or reinforcement learning (Sutton &Barto 1998; Staddon&Cerutti 2003). Thesemodels
are completely uncoupled but do not necessarily converge to an equilibrium in interactive situations.

1.11 In this paper, a simple and empirically grounded model of reinforcement learning is used to analyse the be-
haviour in n-way coordination games. Following past research, this model is calledmelioration learning. The
details are given in the next section. A�erwards, it is shown that actors who learn by melioration are able to
coordinate their decisions in n-way coordination games and, hence, to establish a convention. The long-term
outcome is a risk-dominant equilibrium of the two-person stage game if one exists. The results are compared
to the predictions of another, well-known model of reinforcement learning: the Roth-Erev model (Roth & Erev
1995). While the outcomes are qualitatively similar, the models di�er in their speed of convergence, especially
in regard to the e�ects of the network structure.

Melioration Learning

2.1 Given a situation of repeated decision-making, melioration learning states that a behaviour is strengthened if
it comes with the currently highest average value. The theory was introduced by Herrnstein & Vaughan (1980)
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in order to explain a widely observed empirical regularity known as the matching law (Baum 1979; Pierce &
Epling 1983; McDowell 1988; Herrnstein 1997; Vollmer & Bourret 2000; Borrero et al. 2007). The predictions of
melioration learning were tested and confirmed in numerous psychological experiments (e.g., Vaughan 1981;
Mazur 1981; Herrnstein et al. 1993; Antonides & Maital 2002; Tunney & Shanks 2002; Neth et al. 2005).

Themodel

2.2 Unlike previous formal representations of melioration (Brenner & Witt 2003; Sakai et al. 2006; Loewenstein
2010), this paper uses a model that is perfectly consistent with the ideas of Vaughan & Herrnstein (1987) and
builds on an algorithm of decision-making that is called ε-greedy strategy (Sutton & Barto 1998, p. 28). This
strategy takes a parameter ε ∈ (0, 1), which is called exploration rate and specifies the probability of an al-
ternative being chosen uniformly at random. With probability 1 − ε, an alternative with the currently highest
value is selected. Ifmultiple alternatives have thehighest value, oneof them is chosen randomly. Inmelioration
learning, the value of an alternative is the average of the corresponding past rewards.

Figure 1: The situation of sequential decision-making: A�er every choiceXt from a set of choice alternativesE,
a rewardRt ∈ (0,∞) is obtained.

2.3 Figure 1 illustrates the decision-making process, which takes place along discrete time steps t ∈ N. Given a
finite set of choice alternatives E, actions are emitted by the choice of an element Xt ∈ E from the set of
alternatives. A�er every decision, a non-negative reward Rt ∈ (0,∞) is received from the environment and
processed by the actor. The information processing is very simple and specified by algorithm 1.

Algorithm 1 Themelioration learning algorithm
Require: exploration rate ε ∈ (0, 1), set of alternativesE
1: t← 0
2: initialise V1(j)← 0, for all j ∈ E
3: initialiseK1(j)← 0, for all j ∈ E
4: repeat
5: t← t+ 1
6: if ε > random number between 0 and 1 (uniformly distributed) then
7: choose a random actionXt ← e ∈ E using a uniform distribution
8: else
9: choose actionXt ← e such that e ∈ argmaxj∈E Vt(j) (uniformly at random if multiple candidates)
10: end if
11: observe rewardRt = y
12: Kt+1(e)← Kt(e) + 1
13: Vt+1(e)← Vt(e) +

1
Kt+1(e)

· (y − Vt(e))
14: for all j 6= e do
15: Kt+1(j)← Kt(j)
16: Vt+1(j)← Vt(j)
17: end for
18: until termination

2.4 In algorithm 1, an actor is assumed tomaintain a set of values {Vt(j)}j∈E that are iteratively updated. Initially,
all values are set to zero. A set of frequencies {Kt(j)}j∈E keeps track of the number of choices of each alterna-
tive. The reward realisation y = Rt is used to modify the value of the chosen alternative such that it gives the
average of all past rewards of e.
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Comparison with other models of learning

2.5 In economics, Brenner (2006) distinguished two types of learning: reinforcement learning and belief learning
(a similar categorisation is found in Camerer 2003, ch. 6). Melioration is categorised as reinforcement learning
because it is less cognitively demanding than belief learning models. The di�erences are elaborated in the
following. Additionally, a comparison with other models of reinforcement learning is given.

Belief learningmodels

2.6 In algorithm 1, an actor learns the value of an alternative, which constitutes a belief about the environment.
Since the actor responds to these beliefs in an optimal way, melioration learning can be seen as a rudimentary
formofbelief learning. However,melioration learning isdi�erent frommostbelief learningmodels. In the latter,
the formationof beliefs generally exceeds the level of actions. Instead, the valuesof actions are externally given,
and beliefs about the reinforcementmechanism or the behaviour of other actors are acquired. For example, in
a two-person game-theoretic situation, the actors may know the structure of the game and learn the strategy
of the opponent. A general belief learning algorithm for this situation is given by the following pseudocode
(Shoham & Leyton-Brown 2009, p. 196):

Initialize beliefs about the opponent’s strategy
repeat:
Play a best response to the beliefs
Observe the opponent’s actual choice and update beliefs accordingly

One example of belief learning is fictitious play: “in fictitious play, an agent believes that his opponent is playing
the mixed strategy given by the empirical distribution of the opponent’s previous actions” (Shoham & Leyton-
Brown2009, p. 195). In otherwords, the actor remembers thedecisions of the opponent, forms the correspond-
ing relative frequencies, and chooses an action with the highest expected reward assuming that the relative
frequencies resemble the opponent’s probabilities of choice. Fictitious play di�ers from melioration learning
because the latter ignores the behaviour of the opponent and the expected future reward of an action. Instead,
it focuses on the average rewards of past actions, and nomental model of the situation is built.

Reinforcement learningmodels

2.7 Unlike belief learning, reinforcement learning is a simple idea about behavioural change. It can be summarised
by Thorndike’s lawof e�ect: “pleasure stamps in, pain stamps out”. More specifically, behaviour that is followed
by a positive experience is likely to reoccur, but, if provoking negative reactions, it diminishes over time. Two
examples of reinforcement learning are the Bush-Mosteller and the Roth-Erev model.

2.8 TheBush-Mostellermodel (Bush&Mosteller 1964) states that a probability of choice changes linearly in the level
of satisfaction. More specifically, anactor choosesanelemente ∈ E at time t ∈ Nwithprobability qe(t) ∈ [0, 1].
A�er receiving a reward yt ∈ R for choosing e, the probability is updated by

qe(t) = qe(t− 1) +

{
(1− qe(t− 1)) · σ(yt) if σ(yt) ≥ 0
qe(t− 1) · σ(yt) if σ(yt) < 0

. (1)

The function σ : R→ [−1, 1] expresses the level of satisfaction with the result yt. Equation (1) can be found in
a similar form in Macy & Flache (2002, p. 7231) or Izquierdo et al. (2007, p. 262).

2.9 The dynamics of Bush-Mosteller learning di�er from the dynamics ofmelioration. This is seenwhen comparing
the probabilities of choosing an action. According to algorithm 1, the probability of choosing e at time t is:

1−ε
|argmaxj∈E Vt(j)| +

ε
|E| , if e ∈ argmaxj∈E Vt(j), and

ε
|E| , if e /∈ argmaxj∈E Vt(j).

(2)

When comparing equations (1) and (2), behaviour that follows the Bush-Mosteller model changes more gradu-
ally thanmelioration behaviour. Furthermore, the dynamics of equation (1) depend on the level of satisfaction
σ(yt). In the past, this function was implemented by comparing the actual outcome to an aspiration level (e.g.,
Macy& Flache 2002). This aspiration level is a key factor and significantly a�ects the long-termbehaviour (Macy
1991; Macy & Flache 2002; Bendor et al. 2007).
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2.10 The Roth-Erev model describes another form of reinforcement learning and is widely known in economics. Al-
gorithm 2 specifies its basic version (Roth & Erev 1995, p. 172). Instead of average values, the actor holds a set
of accumulated values {Pt(e)}e∈E , which are called propensities. At each time step, an alternative e ∈ E is
chosen with probability Pt(e)∑

j∈E Pt(j)
. The parameter εmaintains a level of exploration.

Algorithm 2 The Roth-Erev learning algorithm
Require: exploration rate ε ∈ (0, 1), set of alternativesE
1: t← 0
2: initialise P1(e)← 1, for all e ∈ E
3: repeat
4: t← t+ 1

5: choose actionXt ← e ∈ E randomly using the probabilities
{

Pt(e)∑
j∈E Pt(j)

}
e∈E

6: observe rewardRt = y
7: Pt+1(e)← Pt(e) + (1− ε)y
8: for all j 6= e do
9: Pt+1(j)← Pt(j) +

ε
|E|−1y

10: end for
11: until termination

2.11 In the following analysis, the outcomes of melioration learning are compared to the predictions of the Roth-
Erev model. In contrast to other learning processes, Roth-Erev is very similar to melioration. Both models take
a “mechanistic perspective on learning”, which means that “people are assumed to learn according to fixed
mechanisms or routines” (Brenner 2006, p. 903). Additionally, simple versions with only one parameter (the
exploration rate) exist. Other models of reinforcement learning, such as Bush-Mosteller, require additional as-
sumptions or the specification of further parameters.

2.12 Bush-Mosteller and Roth-Erev are just two of many forms of reinforcement learning. Other models are, for ex-
ample, developed and analysed by computer scientists in a field called RL (Sutton & Barto 1998). While these
models di�er from the ones in economics (Izquierdo& Izquierdo 2012), most of themare completely uncoupled
asdefinedabove. Moreover,melioration learning, asgivenbyalgorithm1, constitutesa relatively trivial instance
of an RLmethod that is calledQ-learning (Watkins 1989). However, unlike the general version ofQ− learning,
melioration neglects any possible consequences of present actions on future rewards.

2.13 As pointed out at the beginning, melioration learning accounts for empirical observations in situations of re-
peated choice (see also Sakai et al. 2006, p. 1092). However, generally, there is “tremendous heterogeneity in
reports on human operant learning” (Shteingart & Loewenstein 2014, p. 94). In particular, melioration seems
too simple to accurately represent the complexity of human decision-making (e.g., Barto et al. 1990, p. 593)
and more sophisticated models of learning have been suggested (e.g., Sutton & Barto 1998; Sakai et al. 2006).
Nevertheless, it may serve as valid micro-level model in the study of social phenomena.

Analysis

3.1 Given that melioration leaning is implemented as instance of the ε-greedy algorithm with Q-learning, results
from previous research can be adopted. On the one hand, algorithm 1 converges to optimal behaviour under
certain assumptionsof stationarity (Watkins&Dayan 1992). These situations includeMarkovdecisionprocesses
(Bellman 1957) and, therefore, many non-social settings. Besides stationarity, convergence also requires that
the exploration rate decreases su�iciently slowly towards zero, e.g. if a time-dependent exploration rate εt :=

ε
1+

∑
j∈E Kt(j)

instead of ε is used in line 6 of algorithm 1 (Jaakkola et al. 1994).

3.2 On the other hand, convergence is not guaranteed if multiple persons interact and reinforcements are contin-
gent upon the decisions of everyone (Nowé et al. 2012, p. 451). While equilibria are reached in some two-person
games (Sandholm & Crites 1995; Claus & Boutilier 1998; Gomes & Kowalczyk 2009), the behaviour fails to con-
verge ingeneral (Wunder et al. 2010). Moreover, there is noworkabout theconvergenceofQ-learning (and, thus,
melioration learning) in situations with more than two actors. Because of the complexity of these situations,
the convergence of any learning process is di�icult to derive analytically.

3.3 In particular, a Markov chain (MC) analysis of themodel (e.g., Izquierdo et al. 2009; Banisch 2016) is impeded by
the adjustment of the values {Vt(j)}j∈E as historical averages. In order to obtain a time-homogeneousMarkov
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chain, each state must contain the sets {Vt(j)}j∈E and {Kt(j)}j∈E of all actors. The resulting chain is not
irreducible because the frequencies Kt(j) cannot decrease with time. Only a time-inhomogeneous MC may
be irreducible. However, either approach precludes the application of standard techniques. Fortunately, com-
puter simulations can still be employed to analyse the model and derive hypotheses for particular situations.

3.4 In the following simulations, algorithm 1 (melioration learning) and algorithm 2 (Roth-Erev) are applied to n-
way coordination games. In both cases, the exploration rate is set to ε = 0.1 and kept constant during the
whole simulation. This strictly positive rate allows a trade-o� between the exploitation of the currently best
action and the exploration of alternatives. Because of the finite nature of every simulation run, a continuously
decreasing exploration rate would actually hinder the appearance of stable results. The actors would react too
slowly to changes in the environment.

I y

A B

x
A (10,10) (0,0)

B (0,0) (b,b)

II y

A B

x
A (10,10) (0,6)

B (6,0) (b,b)

Table 2: Two classes of coordination games that are analysed in the simulations

3.5 Table 2 shows the two classes of coordination games that are analysed. The parameter b is set to an element
of {2, 4, 6, 8, 10}. Hence, (A,A) and (B,B) are always pure Nash equilibria, and the classes cover games with
di�erent relationships between the two equilibria. In game I, the outcome (A,A) is e�icient and risk-dominant
as long as b < 10. If b = 10, both outcomes (A,A) and (B,B) are e�icient, and there is no risk-dominance
relationship between them. In game II, the outcome (A,A) is e�icient as well. But it is risk-dominant only if
b < 4. In case of b = 4, there is no risk-dominance relationship, and, if b > 4, (B,B) risk-dominates (A,A)
although it may be ine�icient (b < 10).

3.6 If these games are repeatedly playedby the same twopersons,melioration learning aswell as Roth-Erevpredict
a pure Nash equilibrium. In Figure 2, results of simulations with 50 000 pairs of actors are shown (ε = 0.1).
Distributions over the four outcomes of the games are measured at the 1 000th round of the simulation. While
melioration learning has stabilised at this round, Roth-Erev continuous to evolve (see Figure 9 in the appendix).
Nevertheless, most pairs have already coordinated their choices to (A,A) or (B,B). The latter outcome is
observed even if it is ine�icient and risk-dominated (game I with b < 10).

Figure 2: Distributions of 50 000 pairs of actors over the four possible outcomes of the coordination game at the
1 000th iteration of the simulation; ε = 0.1.

3.7 More specifically, the frequency of (B,B) increases with b and is higher in game II than game I. The first e�ect
is due to the larger rewards for choosing alternative B. The second e�ect occurs because, in both learning
models, the attachment of values (Vt(·) or Pt(·)) to the alternatives takes place irrespectively of the choice of
the other actor. Since ε > 0, also the outcomes (A,B) and (B,A) emerge occasionally. This implies that the
value of action B is slightly higher in game II.

3.8 The following simulationswere runwith groups of 50 actors, each ofwhom interactedwithmultiple partners. A
network specified the structure of interactions. While the vertices of the network represent the actors, an edge
exists between two vertices if the corresponding actors repeatedly take part in the same coordination game.
The actors do not distinguish between the partners. Only one set of values ismaintained, and the partner is not
taken into consideration when choosing between the alternatives. This means that, given the games of Table
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2, all members of a connected component of the network should agree on a single alternative in order to avoid
the inferior outcomes (A,B) and (B,A).

Figure 3: Examples of the small-world network with 10 vertices and di�erent parameter settings

3.9 In particular, the small-world (β-)model of Watts (1999, p. 67) is used to specify the structure of interactions.
This model has two parameters: the average number of neighbours d ∈ {2, 4, 6, . . . } and the probability of
rewiring β ∈ [0, 1]. While the small-world model reproduces only some properties that are found in real net-
works, it covers two important ones: high clustering and low distances. If β = 0, clustering and distance are
maximal. The network resembles a one-dimensional lattice in which each actor has exactly d neighbours (see
Figure 3). With an increasing β, more andmore edges are rewired from a close neighbour to a random actor of
the network. In case of β = 1, the average distance is minimal and no clustering remains. Networks with high
levels of clustering but still low distances are found for small but strictly positive values of β.

3.10 The small-world model is an excellent technique to study the e�ects of restrictive network structures. If β =
0, interactions are limited to rigid clusters. In large networks, this hinders the establishment of a convention
becauseahighnumberof rounds is required to coordinate theactionsbetweendistantparts of thenetwork. Ifβ
increases, interactions takeplace alsowithdistant regions. Thismayaccelerate theagreementona convention.

3.11 Each of the following plots reports the outcomes of 1 000 groups of 50 actors. First, one-dimensional lattices
with d = 2 are analysed. This means that the networks resemble polygons. The plots of Figure 4 show the
relative frequencies of alternativeAover the first 1 000 roundsof the simulations. The frequencies are averaged
over all groups by reporting the mean and standard deviation (ribbon in plots).

Figure 4: The temporal development of means and standard deviations (ribbons) of the relative frequency of
alternativeA averaged over 1 000 small-world networks with d = 2 and β = 0; network size: 50; ε = 0.1; the
first 1 000 rounds of the simulations are shown

3.12 In case of melioration learning, groups that play game I with b < 8 or game II with b > 4 are able to coordi-
nate their decisions within the first 1 000 rounds. With further rounds of the simulations, all groups eventually
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establish a convention as long as there is a risk-dominant equilibrium (game I with b 6= 10 and game II with
b 6= 4). This is shown in the appendix (Figure 10). The results of the simulations with Roth-Erev seem similar,
but the convergence takes place substantially more slowly. Nevertheless, the simulations confirm the result of
Young (1998, p. 98): the groups establish a convention by coordinating their members’ choices to a risk-dominant
equilibrium. This holds true even if the risk-dominant equilibrium is ine�icient (game II with 4 < b < 10).

3.13 In situations without risk-dominant equilibrium, both alternatives persists. Figure 5 shows nine of the 1 000
groups that played game I with b = 10. Di�erent colours indicate di�erent choices at the 1 000th round of the
simulations (without exploration). The actors are partitioned into clusters, which are stable over time. Actors
on the edge of a cluster have no incentive to change behaviour, for they receive a reward of ten from one of the
partners and zero reward from the other one. Switching to the other alternative would not change this pattern,
unless exactly one of the two partners switches as well.

Figure 5: Sample simulation results of game Iwith b = 10 and networkswith d = 2 and β = 0; network size: 50;
ε = 0.1; di�erent colours indicate di�erent choices at the 1 000th round of the simulation (without exploration)

3.14 The di�iculty of establishing a convention in games without risk-dominant outcome can be traced back to the
restrictive structure of polygons (small-world networks with d = 2 and β = 0). First, the convergence to a
single alternative is made possible by adding more connections to the network. Figure 6 shows this e�ect for
themelioration learningmodel and game I with b = 10. The relative frequencies of alternativeA aremeasured
at the 1 000th round of the simulations and for each of the 1 000 groups separately. The histograms picture the
frequencies of groupswith a particular relative frequency. The plots indicated that a higher number of network
partners d enables a larger fraction of groups to choose a single alternative. If d = 20, approximately half of the
groups can already coordinate their choices within 1 000 rounds. All groups achieve a convention in complete
or nearly complete networks (d = 40 or d = 50). While in half of the groups, everyone choosesA, in the other
half, a convention of selecting alternative B emerges.

Figure 6: Histograms over the relative frequencies of choosing alternativeA in 1 000 networks with β = 0; the
frequencies were measured at the 1 000th time step; game I with b = 10; only melioration learning; network
size: 50; ε = 0.1
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3.15 Figure 7 shows similar histograms for all problematic situations: game I with b ∈ {8, 10} and game II with b ∈
{2, 4}. To make the plots accessible, the histograms are reduced to five intervals: [0, 0.2], (0.2, 0.4], (0.4, 0.6],
(0.6, 0.8], and (0.8, 1]. In case of melioration learning, the frequencies of the two outer intervals increase with
d, which means that more and more groups agree upon a common alternative. Since the relative frequencies
are measured at the 1 000th round of the simulations, a comparison with Figure 4 reveals that a high number
of interaction partners (given by d) either accelerates the establishment of conventions (game I with b = 8 and
game II with b = 2) or makes it possible in the first place (game I with b = 10 and game II with b = 4). In
simulations of the Roth-Erev model, the number of contacts d increases the frequency of conventions only in
game I and at a slower rate. In game II, Roth-Erev is incapable of quickly coordinating a group.

Figure 7: Histograms over the relative frequencies of choosing alternativeA in 1 000 networks with β = 0; the
frequencies were measured at the 1 000th time step; network size: 50; ε = 0.1

3.16 Furthermore, alsoahighprobabilityof rewiring (β) facilitates thecommonchoiceof a singlealternative. Similar
to a larger number of partners, connections to random agents support the coordination within the network.
Figure 8 illustrates this e�ect for networks with d = 10. While simulations of melioration learning indicate
that the frequencies of the inner intervals, which contain groups without convention, decrease with β, this
parameter a�ects the results only slightly in case of Roth-Erev.

Figure 8: Histograms over the relative frequencies of choosing alternativeA in 1 000 networks with d = 10; the
frequencies were measured at the 1 000th time step; network size: 50; ε = 0.1

3.17 In summary, a more dense or a more random structure supports the establishment of a convention. In game I
with b = 8 and game II with b = 2, a convergence to the risk-dominant outcome (A,A) is seen. In the games
without risk-dominance relation, the results di�er. While thegroupsare equally dividedamong the twoe�icient
outcomes in game I with b = 10, the actors settle on the ine�icient outcome (B,B) in game II with b = 4.

JASSS, 20(3) 1, 2017 http://jasss.soc.surrey.ac.uk/20/3/1.html Doi: 10.18564/jasss.3428



Conclusion

4.1 With melioration learning, a simple and empirically grounded model of reinforcement learning was shown to
explain the emergence of conventions. In contrast to previous research on this subject (e.g., Young 1998; Bern-
inghaus & Schwalbe 1996; Buskens & Snijders 2016), this study proves that conventions emerge even if the ac-
tors are neither aware of the payo� structure nor the decisions of other actors. However, melioration learning
should not be seen as more general than the previous models. It applies to di�erent settings. Since humans
can be assumed to take various information into account, the previous models might be more appropriate in
situations inwhich information onpayo�s andother actors is available. For other settings,melioration learning
should be used.

4.2 In some aspects, melioration learning is actually similar to the behavioural model of Young (1998). The actors
aremyopic, takepast occurrences into account, andmake randommistakes. However, unlike the earliermodel,
less strict assumptions about available information and the actors’ cognitive skills are required. Although they
must be able to observe their payo�s and to aggregate them to average values, no advanced reasoning about
the given situation is necessary. Moreover, apart from the exploration rate, an alternative with the highest av-
erage value is selected with certainty. No further assumptions about probabilities of choice or stochastically
independent decisions (cf. Roth-Erev) are needed.

4.3 The computer simulations revealed that theoutcomesofmelioration are largely in linewith the results of Young
(1998). In the long run, a convention is established by converging to a risk-dominant Nash equilibrium of the
stage game. Given the particular settings of the simulations, the final outcome is independent of the network
structure. However, the network structure is relevant in two other respects. First, it a�ects the speed of con-
vergence in games with risk-dominant Nash equilibrium. Second, it impedes or enables the establishment of
conventions in games without risk-dominance relationship.

4.4 While games without risk-dominance relationship have not been considered by Young (1998), Buskens & Sni-
jders (2016, p. 8) stated that, in these situations (corresponding to RISK= 0.5), “there are no e�ects of network
characteristics whatsoever”. For example, in game II with b = 4, the model of Buskens & Snijders (2016) pre-
dicts “an average percentage of actors playing [B] of 50% at the end of the simulation runs”. However, in the
simulations with melioration learning, this percentage depends on the network structure, andmay be close to
100% if the randomness parameter β or the average number of partners d is high (Figures 7 and 8). Hence, the
e�ects of network structure di�er between the model of Buskens & Snijders (2016) andmelioration learning.

4.5 In two-person games, even the risk-dominated Nash equilibrium emerges with high frequency. Only if inter-
actions take place with multiple partners and in large groups, the risk-dominant outcome prevails. The same
e�ect was seen in simulations with the Roth-Erev model. Generally, the results of melioration and Roth-Erev
correspond to each other. However, Roth-Erev converges considerably more slowly than melioration learning
to a stable state with convention. Furthermore, the e�ect of network structures is less pronounced and partly
missing in simulations with Roth-Erev.

4.6 Currently, there are no empirical confirmations of the predictions of the simulations. On the contrary, ex-
perimental studies yielded a likely convergence to the e�icient (payo�-dominant) outcome, even if it is risk-
dominated (e.g., Frey et al. 2012). Additionally, network e�ects on the outcome have been observed (Berning-
haus et al. 2002; Cassar 2007). In these experiments, the subjects knew the payo� structure of the game, and
information about the decisions of other actors was available. Therefore, melioration learning is inadequate in
situations inwhich this kindof information isprovided. However, inother situations,melioration learningmight
be a valid model of individual behaviour. Empirical studies that corroborate this hypothesis are still missing.
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Appendix A: Further results and sensitivity analysis

Figure 9presents the temporal development of decisions in two-person coordination games. Whilemelioration
stabilises a�er approximately 100 interactions, Roth-Erev takesmore than 10 000 interactions in some settings.

Figure 9: Temporal development of outcomes of the two-person simulations; 50 000 pairs of actors; ε = 0.1.

Similarly, theRoth-Erevmodel convergesmore slowly inn-way coordinationgames. Figure 10depicts data from
the same simulations as Figure 4 but for longer time periods. Only the di�icult cases are shown. Melioration
learning stabilises at the risk-dominant equilibria if one exists. The actors with Roth-Erev develop in the same
direction but even 1 000 000 interactions do not su�ice to converge under the present conditions.

Figure 10: The temporal development of means and standard deviations (ribbons) of the relative frequency of
alternativeA averaged over 1 000 networks with d = 2 and β = 0; network size: 50; ε = 0.1; the first 1 000 000
rounds of the simulations are shown; only the most di�icult games are reported

The simulations of Figure 4 (d = 2 and β = 0) were repeated for di�erent exploration rates ε. The relationship
between parameter b of the game and the distribution of groups is robust against small changes in ε (Figure 11).
A group’s ability to coordinate itsmembers’ choices still depends on the reward b. Only in case of Roth-Erev and
game II, the establishment of a convention is further impeded by high levels of exploration (ε = 0.2).
According to Figure 12, the results are also not altered by a smaller or greater network size, which is denoted
by n. This is in line with a statement of Young (1998, pp. 101-102): the speed of convergence to a risk-dominant
equilibrium is independent of the number of vertices if the network is close knit to a certain degree. Since the
networks of the simulations are polygons, this condition is satisfied (Young 1998, p. 101).
Finally, the e�ect of the rewiring parameter β was tested for robustness by altering the second parameter d.
In Figure 13, only results from simulations with melioration learning are included. On the one hand, the es-
tablishment of a convention is not facilitated by β if d = 2. In case of small d and β > 0, a network is o�en
disconnected, which hinders the coordination. On the other hand, the relationship between the randomness
parameter β and the distribution of choices is stronger in networks with a high average number of partners
(d = 20). This corresponds to the result that a large number of connections or a high level of randomness
supports the establishment of a convention.
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Figure 11: Histograms over the relative frequencies of choosing alternativeA in 1 000 networks with d = 2 and
β = 0; the frequencies were measured at the 1 000th time step; network size: 50

Figure 12: Histograms over the relative frequencies of choosing alternativeA in 1 000 networks with d = 2 and
β = 0; the frequencies were measured at the 1 000th time step; ε = 0.1; n denotes the network size

Appendix B: Simulation so�ware

The simulationswere run onNetLogo (Wilensky 1999)with two extensions thatmust bemanually installed. The
extensions are available at

https://github.com/JZschache/NetLogo-ql
and

https://github.com/JZschache/NetLogo-games

The NetLogo-file of the simulations can be found at

https://github.com/JZschache/NetLogo-games/blob/master/models/n-way-games.nlogo

The next section deals with the installation of both extensions. A�erwards, the usage and architecture of the
ql-extension is comprehensively described. It is the core of the simulations, for it implementsmelioration learn-
ing and handles the parallelisation of the simulations. In the last section, a short introduction to the games-
extension is given. It facilitates the definition of two-person games in NetLogo.

Installation

First, install NetLogo (testedwithNetLogo5.2.1). Second, create adirectory namedql in theextensions subdi-
rectory of the NetLogo installation (see also http://ccl.northwestern.edu/netlogo/docs/extensions.
html). Third, downloadall files fromthe repository andmove themto thenewly createddirectory. For example:

git clone https://github.com/JZschache/NetLogo-ql.git
mv NetLogo-ql/extensions/ql path-to-netlogo/extensions
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Figure 13: Histograms over the relative frequencies of choosing alternativeA in 1 000 networks; the frequencies
were measured at the 1 000th time step; only melioration learning; network size: 50; ε = 0.1

Similarly, thegames-extension is installedbycreatingadirectorynamedgames in theextensions subdirectory
of the NetLogo program, downloading all files, andmoving them to the newly created directory:

git clone https://github.com/JZschache/NetLogo-games.git
mv NetLogo-games/extensions/games path-to-netlogo/extensions

Since the games-extension is used in combination with the ql-extension, the configuration file extensions/
ql/application.confmust be edited:

net logo {
. . .
enable−p a r a l l e l −mode = t rue

p a r a l l e l {
. . .
# a l l a dd i t i o n a l j a r s tha t must be loaded by NetLogo
add i t i ona l− j a r s = [ " e x t ens i ons / games / games . j a r " ,

" e x t ens i ons / games / gamut . j a r " ]
. . .

}
}

Ensure that enable-parallel-mode is set to true.

The ql-extension

The ql-extension enables a parallelised simulation of agents who make decisions by melioration learning. In
order to explain the usage of this extension, listing 1 contains some parts of n-way-games.nlogo.

Listing 1: Some parts of n-way-games.nlogo
ex t ens i ons [ q l games ]
g l oba l s [ group−s t r u c t u r e ]
t u r t l e s −own [ q−va lues f r equenc i e s e xp lo r a t i on−r a t e exp lo r a t i on−method ]

to setup
c l ea r−a l l
; TODO : c r ea t e t u r t l e s
ask t u r t l e s [
s e t e xp lo r a t i on−r a t e 0 . 1
s e t e xp lo r a t i on−method " eps i lon−greedy "
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]
q l : i n i t t u r t l e s
s e t group−s t r u c t u r e [ ]
l e t i 0
wh i le [ i < ( count t u r t l e s ) ] [
ask t u r t l e i [
l e t ano the rTu r t l e t u r t l e ( ( i + 1 ) mod ( count t u r t l e s ) )
l e t group q l : c reate−group ( l i s t
( l i s t s e l f ( n−va lues 2 [ ? ] ) )
( l i s t ano the rTu r t l e ( n−va lues 2 [ ? ] ) ) )

s e t group−s t r u c t u r e l pu t group group−s t r u c t u r e
]
s e t i i + 1

]
r e se t−t i c k s

end

A�er the turtles are created, the ql-extension is initialised by ql:init. If the variables exploration-rate and
exploration-method are specified before ql:init is called, these values are used for the agents (otherwise,
default values are employed; see: application.conf).

The exploration rate is a positive number. Note that this rate cannot be interactively changed during the simu-
lation (as it is usually possible in NetLogo). Themethod of exploration “epsilon-greedy” denotes the implemen-
tation of algorithm 1. Another possible value is “Roth-Erev”.

As stated in the main text, the melioration algorithm requires the agents to use and modify values (V ) when
making decisions. The current state of these values are accessed via the agent variable q-values, which is a
list of numbers. This list is automatically updated during the simulation if defined by turtles-own. Besides
the values, also the frequencies of choice (frequencies) are continuously updated. The names of the variables
can be changed in the configuration file (application.conf).

Similar to the“smallworlds”model that is available fromtheNetLogocommons (http://ccl.northwestern.
edu/netlogo/models/SmallWorlds), the procedure of listing 1 embeds the turtles in a one-dimension lattice
with d = 2. It builds a set of groups, which is named group-structure. Each group contains two agents
(neighbours of the network) and is created by a special reporter: ql:create-group. This reporter creates a
group from a list of pairs. Each pair specifies an agent and a list of integers that stand for the choice alterna-
tives. In the previous simulations, the choice alternatives were the actionsA andB of the coordination game.

A�er turtles and network have been set up in the NetLogo world, the process logic of the simulation must be
implemented. However, the ql-extension alters the usual way of working with NetLogo because it parallelises
the calculations. In contrast to most NetLogo models, the simulations are controlled by the ql-extension, and
NetLogo is used as a convenient platform to specify the situation. This is explained in the following.

Simulationswith the ql-extension are started and stoppedby ql:start and ql:stop. A�er starting the simula-
tion, three functions are called repeatedly by theql-extension and, hence,must be implemented in theNetLogo
model. Bydefault, the functionsarenamedget-groups,get-rewardsandupdate (thenamescanbechanged
in the file application.conf). The first function is used by the extension to retrieve a set of groups in which
the interaction takes place. In the example of theprevious simulations, these are two-person groups of network
neighbours. The second function is responsible for calculating the rewards of a group of agents (specified by
the coordination game). It comes with exactly one parameter (headless-id). The third function is executed
repeatedly a�er every agent has received a reward. In listing 2, examples for all three functions are given.

Listing 2: Sample NetLogo code of the three functions

to−r epo r t get−groups
r epo r t n−of 50 group−s t r u c t u r e

end

to−r epo r t get−rewards [ headless−i d ]
l e t group− l i s t q l : get−group− l i s t headless−i d
l e t r e s u l t map [ reward ? ] group− l i s t
r epo r t r e s u l t
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end

to−r epo r t reward [ group ]
l e t agents q l : get−agents group
l e t d e c i s i o n s q l : get−de c i s i o n s group

l e t dec−x f i r s t d e c i s i o n s
l e t dec−y l a s t d e c i s i o n s

ask f i r s t agents [ s e t co l o r dec−x ]
ask l a s t agents [ s e t co l o r dec−y ]

l e t r 1 games : get−reward means−x−matr i x dec−x dec−y
l e t r2 games : get−reward means−y−matr i x dec−x dec−y

r epo r t q l : set−rewards group get−reward ( l i s t r 1 r2 )
end

to update
t i c k

end

Theql-extension is able toparallelise the simulationandutilisemultiple coresbydeploying theAkka framework
(Akka 2.0.5, http://akka.io). Akka handles the di�iculties of data sharing and synchronisation by amessage-
passing architecture. More concretely, it requires the implementation of “Akka actors” that run independently
and share data by sending messages to each other.
Simulations are parallelised in two ways. First, the NetLogo threads are not used for the ql-extension, which
means that the latter runs independently of the former. Second, the learning and decision-making of agents
take place simultaneously because the ql-extension runs onmultiple threads.
Nevertheless, many parts of the simulation are executed by NetLogo, which does not parallelise naturally. This
is a major bottleneck of the simulations. The ql-extension must wait for NetLogo to finish its calculations. The
ql-extension solves this problem by the operation of multiple concurrently running instances of NetLogo. This
feature is enabled by setting enable-parallel-mode to true (application.conf).
For a better understanding of the parallel mode, the architecture of the ql-extension is illustrated by the class
diagram of Figure 14. It clarifies the connection between the extension and the NetLogo package org.nlogo. It
also shows how concurrency is implemented by “Akka actors”. First, each NetLogo agent (a turtle or a patch) is
linked to an “Akka actor”. This is realised by the QLAgent class, which constitutes the counterpart of a NetLogo
agent in the ql-extension. It is characterised by an exploration rate, a list of QValues, and a decision-making
algorithm (e.g. “epsilon-greedy”). A QValue instance is created for each alternative and specifies its current
value. The decision-making algorithm returns an element of a list of alternatives (a list of integers). It uses the
exploration rate and the QValues.
Agents are grouped together by the class NLGroup. This is a subclass of org.nlogo.api.ExtensionObject,
whichmakes it accessiblewithinNetLogo code. It consists of NetLogo agents and the corresponding QLAgents.
Objects of this class are created by the command ql:create-group.
Themain “Akka actor” of the extension is the NetLogoSupervisor. There is only one instance of this class. The
NetLogoSupervisor has mutliple tasks. For example, it supervises all NLGroups and continuously triggers
the choices of agents. The speed of the repeated trigger is regulated by the corresponding slider of the NetLogo
interface. When triggering the choice of agents, a list of NLGroups is forwarded to the NetLogoHeadless-
Router. Depending on the number of NetLogoHeadlessActors, the router splits this list into multiple parts.
A�erwards, the NetLogoHeadlessActors handle the choices of the agents, and the NetLogoSupervisor is
free to do other things.
When initialising the NetLogoSupervisor by ql:init, several headless workspaces of NetLogo are started
in the background. Headless means that no graphical user interface is deployed. The number of headless
workspaces is specified in the configuration file (application.conf). A separate NetLogoHeadlessActor
controls each headless NetLogo instance. This actor continuously receives a list of NLGroups.
The headless NetLogo workspaces and the NetLogoHeadlessActorswere added to the ql-extension in order
to improve the performance. Their only task is to repeatedly calculate the rewards of a group of agents. The
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Figure 14: Class diagram of the ql-extension

performance of repeatedly calling a function is optimised by compiling this function only once. This is prob-
lematic because the NetLogo extensions API does currently not support the passing of arguments to a com-
piled function (see https://github.com/NetLogo/NetLogo/issues/413). A solution was mentioned by
Seth Tisue in the corresponding discussion (https://groups.google.com/forum/#!msg/netlogo-devel/
8oDmCRERDlQ/0IDZm015eNwJ) and is implemented in the ql-extension. This solution requires that each Net-
LogoHeadlessActor is identified by a unique number. This number is forwarded to the reward function when
it is called by the NetLogoHeadlessActor. The reward function calls ql:get-group-list with the identi-
fying number and receives a list of NLGroupChoices. Besides the agents, an NLGroupChoice also contains
a list of agents’ decisions. The agents and their choices are accessed by the reporters ql:get-agents and
ql:get-decisions. The rewards are set to an NLGroupChoice by ql:set-rewards. The reward function can
also be used to update the (NetLogo) agents directly, e.g. bymoving the agents within the NetLogo world or by
setting variables. Since the agents are passed from the main NetLogo instance, the changes take e�ect in this
instance as well. Finally, the reward functionmust return a new list of NLGroupChoices that correspond to the
received list but with the rewards set.

The following list summarises the usage of the main commands of the ql-extension:

• ql:init initialises the ql-extension by specifying a turtleset or a patchset.

• ql:create-group creates a group from a list of pairs. Each pair is a list of two elements: first, an agent
and, second, a list of integers (the alternatives). An object of type NLGroup is returned.

• ql:set-group-structure takes a list of objects of type NLGroup as parameter. It sets a static group
structure.

• ql:start or ql:stop starts or stops the simulation.

• ql:get-group-list can only be called from the reward function and must forward the headless-id.
It returns a list of objects of type NLGroupChoice.

• ql:get-agents returns the listofNetLogoagents (turtlesorpatches) thatareheldbyanNLGroupChoice.
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• ql:get-decisions returns the list of decisions that are held by an NLGroupChoice. The indices of the
decisions correspond to the indices of the agents that are held by the NLGroupChoice such that the de-
cision at index i belongs to the agent at index i.

• ql:set-rewards sets a list of rewards for the decisions that are held by an NLGroupChoice. It returns a
copy of the NLGroupChoicewith the rewards attribute set. The indices of the rewards must correspond
to the indices of the agents that are held by the NLGroupChoice such that the reward at index i belongs
to the agent at index i.

The games-extension

The games-extension provides a convenient way to define normal-form game-theoretic situations. Optimal
points andNash equilibria are calculated and returned to NetLogo in awell-arranged form. A two-person game
can be definedmanually or by a predefined name. The first way is demonstrated with the help of Figure 15.

Figure 15: NetLogo interface of the games-extension

In Figure 15, two NetLogo input fields named means-x and means-y are seen. Each field contains the mean
rewards of player x or player y, respectively, given the choices of both players. Player x is the row-player in both
fields. In order to create a game from the two input fields, two game-matricesmust be created by the reporter
games:matrix-from-row-list and joint together by games:two-persons-game (see function set-game in
n-way-games.nlogo).

The second way of creating a two-person game requires only a name and, occasionally, the numbers of alter-
natives for both players:

l e t game games : two−persons−gamut−game game−name n−a l t−x n−a l t−y

The reporter games:two-persons-gamut-game is based on the Gamut library (http://gamut.stanford.
edu). Gamut makes available over thirty games that are commonly found in the economic literature. The
games-extension currently supports the following parameters as name of a game:

• "BattleOfTheSexes"
• "Chicken"
• "CollaborationGame"
• "CoordinationGame"
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• "DispersionGame" (considers first number of alternatives)
• "GrabTheDollar" (considers first number of alternatives)
• "GuessTwoThirdsAve" (considers first number of alternatives)
• "HawkAndDove"
• "MajorityVoting" (considers first number of alternatives)
• "MatchingPennies"
• "PrisonersDilemma"
• "RandomGame" (considers both numbers of alternatives)
• "RandomZeroSum" (considers both numbers of alternatives)
• "RockPaperScissors"
• "ShapleysGame"

Further commands of the games-extension are described in the following list:

• games:game-matrix returns a game-matrix of a game.

• games:matrix-as-pretty-strings converts a game-matrix into a list of lists of strings. The strings are
“pretty”because it is accounted fordi�erences in lengthof thenumbersby inserting spaces. Anadditional
general cell shi� can be specified by a second parameter, for example two spaces (" ").

• games:matrix-transpose takes a game-matrix as parameter and returns the transpose of this matrix.
This reporter assists when defining symmetric games. The input matrix must be quadratic.

• games:get-reward returns an entry of a game-matrix. Therefore, three parameters are required: the
matrix, a row index, and a column index.

• games:get-solutions-string can be used to update a NetLogo input field (see sample-equilibria
in Figure 15). It prints (strictly)mixedNashequilibria (if someare found). It alsoprints theexpected reward
of each player and indicates, by an O in the last column, whether a solution is (Pareto) optimal compared
to the other (pure andmixed) solutions. A second parameter is used to adjust the cell shi�.

• games:get-fields-string can be used to update a NetLogo input field (see fields in Figure 15). It
prints a joint payo� matrix. Each field of the matrix contains an index and the mean rewards as speci-
fied by the game. It also indicates the pure Nash equilibria (N) and pure (Pareto) optima (O). A second
parameter is used to adjust the cell shi�.

• games:pure-solutions returns a list of boolean values, one for each field of the joint payo� matrix (as
givenbygames:get-fields-string). Eachvalue indicateswhether this field is apureNashequilibrium.

• games:pure-optima returns a list of boolean values, one for each field of the joint payo�matrix (as given
by games:get-fields-string). The boolean value indicates whether this field is (Pareto) optimal com-
pared to the other (pure andmixed) solutions.

While pure Nash equilibria are easily identified, the search for a Nash equilibrium in general is computationally
intensive (see e.g., Shoham & Leyton-Brown 2009, ch. 4). Nevertheless, existing algorithms run e�iciently in
practice (e.g., Codenotti et al. 2008). One of the better known (but not the fastest) one (Shoham & Leyton-
Brown 2009, p. 91) is the Lemke-Howard algorithm (Lemke & Howson 1964). This algorithm is implemented in
the games-extension (as given by Codenotti et al. 2008). Even though the Lemke-Howard algorithmnecessarily
finds a Nash equilibrium, it is generally not able to find all equilibria (Shoham& Leyton-Brown 2009, p. 98). The
implementation of the games-extension tries to find multiple equilibria by starting the algorithm with every
possible variable that can be part of the solution (see the pseudocode in Shoham& Leyton-Brown 2009, p. 96).
This step is repeated for every solution that has already been calculated. Since not all Nash equilibria are found,
the input field of the NetLogo interface was named sample-equilibria.

Furthermore, theproblemof statingwhetheraNashequilibrium isParetooptimal isNP-hard (Shoham&Leyton-
Brown 2009, p. 102). With a finite set of outcomes, the search for the optimal ones can be completed in poly-
nomial time (and, on average, even in linear time, Godfrey et al. 2007). Consequently, the games-extension
inspects only the pure and mixed Nash equilibria that are found directly or by the Lemke-Howard algorithm.
The labelling of an outcome by an Omust, hence, be understood relatively to the outcomes that are shown.
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Notes

1A connected component is a part of a network in which everymember is reachable by every othermember
via a sequence of edges.
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