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Abstract: Human interactions and opinion exchanges lead to social opinion dynamics, which is well described
by opinion formationmodels. In thesemodels, a random parameter is usually considered as the system noise,
indicating the individual’s inexplicable opinion changes. This noise could be an indicator of any other influen-
tial factors, such as public media, a�ects, and emotions. We study phase transitions, changes from one social
phase to another, for various noise levels in a discrete opinion formation model based on the social impact
theory with a scale-free random network as its interaction network topology. We also generate another simi-
lar model using the concept of social power based on the agents’ node degrees in the interaction network as
an estimation for their persuasiveness and supportiveness strengths and compare both models from phase
transition viewpoint. We show by agent-based simulation and analytical considerations how opinion phases,
including majority and non-majority, are formed in terms of the initial population of agents in opinion groups
andnoise levels. Two factors a�ect the systemphase in equilibriumwhen thenoise level increases: breaking up
more segregated groups and dominance of stochastic behavior of the agents on their deterministic behavior. In
the high enough noise levels, the system reaches a non-majority phase in equilibrium, regardless of the initial
combination of opinion groups. In relatively low noise levels, the original model and the model whose agents’
strengths are proportional to their centrality have di�erent behaviors. The presence of a few high-connected
influential leaders in the latter model consequences a di�erent behavior in reaching equilibrium phase and
di�erent thresholds of noise levels for phase transitions.
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Introduction

1.1 One of themajor challenges in social sciences is predicting di�erent forms of collective behavior in population
level (Chacoma & Zanette 2015). Agent-based modeling has recently been widely used to study collective be-
haviors in social systems. While it is very simplistic to represent complex human beings by simple agents in
agent-basedmodeling, it is useful to study the whole system behavior inmacro-level throughmicro-processes
among agents. Opinion formation, a collective behavior process, has gained lots of attention during the last
decades due to its applications in everyday life as well as social and political sciences (Afshar & Asadpour 2010;
Albi et al. 2017), and is broadly discussed in statistical physics (Castellanoet al. 2009) and social network science
(Hu 2017).

1.2 This study focuses on the social impact model of opinion formation (Hołyst et al. 2001), based on the social
impact theory (Latané 1981). Two key parameters of thismodel are the individuals’ strengths of persuading and
supporting other individuals to change or persist in their opinions, respectively. Both parameters have a similar
meaning as ‘social influence’ or ‘social power’, defined as “change in the belief, attitude, or behavior of a person
[...], which results from the action, or presence, of another person” (Erchul & Raven 1997).

1.3 In the original social impact model of opinion formation, the strengths of persuasiveness and supportiveness
are assigned to the agents according to a uniform random distribution. In this research, the original model
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is compared with a more realistic similar model in which the strengths of persuasiveness and supportiveness
are assigned according to the social power of the agents, which is based on the agents’ node degree in the
interaction network (Jalili 2013; Hinz et al. 2011; Iyengar et al. 2011).

1.4 In opinion formation models, noise is introduced by allowing an individual opinion to change to another ran-
domly chosen value in the whole opinion space (Pineda et al. 2009). In social science applications of computa-
tional models, noise can increase e�iciency, improve predictability, and decrease diversity (Macy & Tsvetkova
2015). Some of the opinion formation models impose the simplifying assumption that there is no noise; there-
fore, the dynamics of the society is deterministic, but this assumption is not an innocent simplification. In the
last few years, e�ects of noise on the social influence models have attracted much attention, for example, on
the Axelrod’s model of social interaction (Axelrod 1997) in (Klemm et al. 2002, 2003); on the De�uant model
(De�uant et al. 2000) in (Pineda et al. 2009); on opinion clustering in the Durkheimian opinion dynamicsmodel
(Durkheim1997 [1893]) in (Mäsetal. 2010); andon thebounded-confidencemodels (Hegselmann&Krause2002;
De�uant et al. 2000) in (Kurahashi-Nakamura et al. 2016).

1.5 Social systems usually react gradually to changes in external forces, and similar to physical systems, there also
can be phase transitions in which the behavior of individuals, taken collectively, exhibits a change with a small
change in external conditions (Levy 2005). In this study, non-majority and majority are defined as two phases
for collective opinion, and transitions between them in Barabási-Albert random networks (Barabási & Albert
1999), a scale-free network topology ofmany real systems including social networks (Barabási 2009), consider-
ing the e�ect of noise, are studied. These phase transitions are analogous in some respects to phase transitions
in magnetization field of physics. Although phase transition has been studied on di�erent network topologies,
Barabási-Albert scale-free random network in social phase transition has attracted little attention. A study on
phase transitions of magnetic spins put onto Barabási-Albert scale-free networks has been reported in (Alek-
siejuk et al. 2002; Jun & Da-Ren 2007).

1.6 In this research, to understand social opinion phase transitions we used agent-based simulation scenarios and
studied the results. The noise level and the initial combination of the agents in two possible opinions (e.g.,
agree/disagree) are input parameters, and their e�ect on the phase transitions are discussed. Segregation phe-
nomenon,well-connectedsub-networkwitha fewconnections to thenodesoutof the sub-network, alsoa�ects
the phase transitions.

1.7 This study helps us to achieve a more accurate estimation of collective opinion phase transitions. From an
application viewpoint for future studies, understanding the present opinion and the current trend of opinions
of the relatedpeople is very valuable for thosewhose successesand failures aswell as their decisionsdependon
public opinions about them, such as governments, companies, and parliaments. For example, degree to which
citizens are in favor or against a vaccination program (Mäs et al. 2010) and its trend is essential information to
estimate how the program will e�iciently be run; if a company knows the present and trend of its customers’
opinions about features of its products, then it can better dedicate its limited resources accordingly to bemore
successful or avoid breakdown; before a presidential election, understanding public opinion and their trend
about the candidates in di�erent social categories such as regions, ages, and races, is beneficial for campaign
advertising to decide where they should focusmore; and if parliamentmembers know the public opinions and
the trends, they can regard them in their decisions.

1.8 The rest of this paper is organized as follows: In Section 2, the background of this research is summarized, in-
cluding the social impact model of opinion formation, persuasion and social power, segregation, and phase
transition. In Section 3, the proposed model is explained, and the model parameters are introduced. Two sce-
narios for the proposedmodel and their simulation results are presented in Section 4. The results are analyzed
and compared in Section 5, and finally, Section 6 concludes the paper.

Background

2.1 In this section, abrief reviewof themainconceptsused in this research ispresented. Sinceourmodel isbasedon
the social impact model of opinion formation, this base model is briefly reviewed. Social power is another key
concept used in this research, andwe explain among several possible definitions, which oneweused. Although
phase transition is a term in physics, it has been widely used in social systems, and the analogy between these
two fields is very helpful to understand the social dynamics. Therefore, the concept of phase transition is briefly
reviewed, and the phases in our agent-based modeling of social systems are introduced. A brief description of
agent-basedmodeling is also presented at the end of this section.
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The social impact model of opinion formation

2.2 Merriam-Webster’s Online Dictionary defines the meaning of opinion as a view, judgment, or appraisal formed
in the mind about a particular matter. Bing Liu (Liu & Zhang 2012) defines opinion by a 5-tuple containing 1)
entity; 2) an aspect of the entity; 3) orientation of opinion about the aspect of the entity; 4) opinion holder, and
5) the time when the opinion is expressed.

2.3 The process of opinion formation is treated as a collective phenomenon (Hołyst et al. 2001) which explains the
dynamicsof opinions inagroupof interactingagents andcanpredict theevolutionanddi�usionof theopinions
(Liang et al. 2016). During the last few decades, opinion formation in social networks has been an active area
of research in social psychology, statistical physics, mathematics, and computer science. A recently published
survey (Hauke et al. 2017) on articles published in Journal of Artificial Societies and Social Simulation (JASSS)
from2008 to2014 shows that the topicof ‘opiniondynamics’ hasattractedmoreattentionof researchers among
the social simulation research topics.

2.4 From the opinion presentation viewpoint, opinion formation models are categorized into two main classes:
continuous and discrete. In continuous opinion models, opinions are represented as real numbers, while in
discrete opinion models, opinions are represented from a finite set of discrete values.

2.5 The social impact model of opinion formation is a discrete model. In this model, every opinion takes one of
the two possible opinions: ‘for’ or ‘against’ the raised topic, where for a general mathematical formulation ‘+1’
and ‘-1’ are assumed respectively. The social impact model of opinion formation is based on the psychological
theory of social impact, formulated by Bibb Latané (Latané 1981). The social impact theory describes how the
impact on an individual is exerted by the real, implied or imagined presence or actions of one or more people
or even groups (sources), and the individual, in turn, influences other individuals. The impact depends on three
factors:

• the social immediacy or distance of sources from the subject, which could be spatial proximity or close-
ness in space, time or abstraction of personal relationship

• the sources’ strength or power of persuasion/support

• the number of sources

2.6 The social impact model of opinion formation (Castellano et al. 2009; Latané 1981; Hołyst et al. 2001) consists
of N agents sharing their opinions oi = ±1, i = 1, 2, ..., N . Each agent is characterized by two parameters:
persuasiveness pi and supportiveness si, describing the agent’s capability to convince another agent to change
or persist in its opinion respectively. There are some versions of the social impact model of opinion formation.
In the simplest one, an agent i experiences total impact Ii from the society according to:

Ii =

 N∑
j=1

pj
dαij

(1− oioj)

−
 N∑
j=1

sj
dαij

(1 + oioj)

 , (1)

where dij denotes the distance of any pair of agents i and j and α expresses how fast the impact decreases
between agents i and j when their distance dij increases. An agent’s distance from itself, dii, could be inter-
preted as the agent’s self-confidence in persisting in its opinion. The pressure of agents on agent i to change
and support its opinion is reflected in the two terms of Equation 1 respectively.

2.7 In any time step t, the dynamics of the opinion changes for agent i is given by:

oi(t+ 1) = −sign[oi(t)Ii(t) + hi], (2)

where hi is a random variable, indicating the agent’s inexplicable behaviors to change or persist in its opinion
and the influence of all sources other than peer agents, such as public media, a�ects, and emotions. hi may
have a bias toward one of the two possible opinions. According to Equations 1 and 2, if the pressure of both the
connected agents in the society and hi on the agent i to change its current opinion overcomes the pressure to
persist in, the agent changes its opinion in the next time step.

Persuasion and social power

2.8 In the early opinion formationmodels such as the Frenchmodel (French Jr 1956), themembers of a population
interact simultaneously and change their opinions to themean value of their own opinions. In such an opinion
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formationmodel, all the interacting members a�ect the final value of the opinions at the end of time step with
the same weight. In many next opinion formation models such as DeGroot (DeGroot 1974), Abelson (Abelson
1964), Friedkin-Johnsen (Friedkin&Johnsen 1990, 1999), andHegselmann-Krause (Hegselmann&Krause2002)
every member is assigned a weight representing the influence strength of that member in final opinion.

2.9 In the social impact model of opinion formation, the weight of every agent to influence the final opinion com-
bination of the population comprises two powers or strengths: persuasiveness and supportiveness. The per-
suasiveness strength refers to influencing the people who are initially disagreed with someone’s point of view
to change their opinions, and the supportiveness strength means to help the agreed people to resist influence
fromothers. Indeed, both strengths, usually assigned uniformly distributed randomnumbers at the simulation
initializations, are two sorts of persuasion for agreed and disagreed audiences.

2.10 Social psychologists have conductedmany experiments on the topic of persuasion. About 2400 years ago, Aris-
totle identified three aspects of persuasion situation: the source, the audience, and themessage content (Petty
2018). Themodern experimental study of persuasion began with Carl Hovland, who introduced Hovland’s Per-
suasion Model (HPM) (Hovland & She�ield 1949). Then other models of persuasion were introduced including
Elaboration Likelihood Model (ELM) (Petty & Cacioppo 1986) and Cognitive Dissonance Model (CDM) (Festinger
1957). The classical analysis (Laswell 1948) has summarized the communication into these distinct aspects:
‘who’ says ‘what’, ‘how’, and ‘to whom’. These aspects are more formally known as: ‘source’, ‘message’, ‘chan-
nel’, and ‘receiver’ factors; together, they constitute the context of persuasion (Ajzen 1992).

2.11 The source of sendingmessage is a key factor in persuasion. The source factors are observed or inferred charac-
teristics of the communicator, including biological attributes such as age, race, height, and sex; behavioral fea-
tures; social properties such as income, power, and social status; and personality traits such as self-confidence
and extroversion (Ajzen 1992). Based on a representative sample of 1.3 million Facebook users it was shown
that men aremore influential than women andmarried individuals are the least susceptible to influence in the
decision to adopt the product o�ered (Aral & Walker 2012).

2.12 The influence of an opinion leader on the others is related to (1) who one is: the personification of certain values
by the opinion leader’s figure; (2) what one knows: the competence or knowledge related to the leaders; and (3)
whom one knows: the strategic location in the social network (Katz 1957). “One’s influence on group opinions
depends not only on accuracy, but also on how well-connected one is in the social network that determines
communication” (DeMarzo et al. 2003).

2.13 Prior research has shown that centrality is positively related to the ability to influence others, and groupmem-
bers o�en perceive leaders based on volume of their communication and follow accordingly (Yoo & Alavi 2004;
Hu�aker 2010; Weeks et al. 2017). In a study, Noelle-Neumann’s (Noelle-Neumann 1983) proposed a 10 items
of ‘personality strength’ scale to measure to what extent people perceive self-confidence in leading and influ-
encing others. Items such as “I usually count on being successful in everything I do” are measured on 5-point
scales. According to a survey (n=270) accomplished by Weimann and colleagues, network centrality was com-
pared to the 10-item personal strength rating and a positive correlation of 0.54 was found between the individ-
ual’s number of communication links and the personality strengthmeasures, and they claimed this correlation
was even higher when relating the personality strength to the number of communication links within the indi-
vidual’s clique or group (Weimann et al. 2007). Another study on a fandomnewsgroup in USENET (Baym 2000),
revealed a direct correlation between the amount of posts with the influential ability. Therefore, from the so-
cial structure point of view, social power is based on the individual’s connections to others in the network, and
usually is defined as a function of node centrality, for example, degree of a node (Jalili 2013; Salehi & Taghiyareh
2016), and thewell-connected nodes, o�en called ‘hubs’, should be considered asmore influential people (Hinz
et al. 2011; Iyengar et al. 2011). In this research, we have used both random and node degree assignments for
persuasiveness and supportiveness strengths in the social impact model.

Phase transition

2.14 A phase transition is a change from one behavior to another (Kadano� 2009). The physicists usually use this
term in the context of systems in the thermodynamic ormacroscopic limit, which is the limit for a large number
of particles. The transition fromone phase to the other depends upon the values of a set of external parameters
such as temperature, pressure, and density characterizing the thermodynamic state of the system. The term
phase transition is o�en used to describe transitions between solid, liquid, and gaseous state ofmatter (Binder
1987). Another example is the ferromagnetic phase transition inmaterials such as iron, nickel, or cobalt, where
themagnetization increases continuously fromzero as the temperature is loweredbelowa critical value (Barrat
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Figure 1: An example for orderly fluctuated phase at no noise: the agents with opposite opinions (black and
white) and the same persuasiveness and supportiveness strengths change their opinions regularly.

et al. 2008, Chapter 5). The phase transition is also used in other sciences than physics such as social systems
(Fronczak et al. 2007; Perc 2016).

2.15 Similar to the studies reported in (Hołyst et al. 2001, 2000), we regard the noise level as a degree of randomness
in the behavior of individuals. In this research, regarding the social impact model with two possible opinions
and scale-free networks for the agents’ connections, the noise level causes oneof the followingpossible phases
occur in equilibrium:

• Majority phase: In this phase, the agents are divided into two non-equal size opinion groups. This phase
is analogous to a ‘ferromagnetic phase’ in magnetization, where most of the magnetic spins are in one
direction and the others in the other direction. The following cases may occur in this phase:

– Consensus: All of the agents have the same opinion, may occur when there is no or small noise.
– Frozen majority: The agents’ opinions change no more over time, may occur when there is no or
small noise. Indeed, the initial minority shrinks with respect to the initial number.

– Orderly fluctuatedmajority: The agents’ opinions change nomore over the time, except some agent
which alternate their opinions regularly at every time step. This phase may occur if there is no or
small noise. The sample network shown in Figure 1 illustrates howagentswith the samepersuasive-
ness and supportiveness strengths in no noise condition may switch between both possible opin-
ions at every time step according to the social impact dynamics.

– Non-orderly fluctuated majority: The agents’ opinions change randomly with no specific pattern,
but the number of agents from each opinion groups remain at a roughly specific range. This phase
occurs when there is enough noise.

• Non-majority phase: In non-majority phase, the agents fall into two (roughly) equal size opinion group.
The following cases may occur in this phase:

– Frozen non-majority: Starting from non-majority phase with no noise or small noise, the agents’
population in both opinions may remain the same at equilibrium.

– Orderly fluctuated non-majority: Starting from non-majority phase with no noise or small noise, the
agents’ population in both opinions may remain roughly the same in such a way that some agents
change their opinion regularly in every time step at equilibrium.

– Non-orderly fluctuated non-majority: The agents’ opinions change randomly with no specific pat-
tern, but thenumberof agents fromeachopiniongroups remain roughly the same. Thisphase forms
when there is enough noise. Since every agent has the probability of 0.5 for each possible opinion
due to enough noise level, majority phase does not form. This phase is analogous to ‘paramagnetic
phase’ in magnetization, where the material consists of a roughly equal number of magnetic spins
in each direction at any time snapshot, and therefore bring about nomagnetic property.

Segregation

2.16 Segregationphenomenonplaysakey role inopinionphase transitions in randomnetworksof interactingagents.
This phenomenon o�en emerges in human societies when two or more well-connected sub-networks with
mutually excluding traits coexist with infrequent interactions between the sub-networks; therefore, the sub-
networks are considered segregated (Zanette & Gil 2006; Shi et al. 2013). Political opinions, religious beliefs,
and cultural traits are some examples of the traits. In some studies, spatial relations (and the consequent spa-
tial segregations) are considered to reveal the causal link between the spatial segregation and the emergence
of opinion segregation (Feliciani et al. 2017). Posting opinions on social media could also be regarded as con-
nections. For example, in (ElTayeby et al. 2014) connections through twitter posts have been used to detect
segregated opinion groups related to some political topics.
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Figure 2: Segregation example: Three segregated balck agents with the same opinions are less influenced by
many white agents with opposite opinions due to few connections to them.

Parameter Value Parameter Description

N 1000 Population of the agents
MaxTimeStep 1000 Number of time steps for any simulation run
pmax 100 Maximum value of persuasiveness power (minimum value is 0)
smax 100 Maximum value of supportiveness power (minimum value is 0)
dij 1 The distance between any two nodes (agents) i and j in the network equals 1 if connected,

∞ otherwise.
m0 2 Random scale-free Barabási-Albert Network is generated withm0 initial nodes. In every

network construction steps, a new node is added withm(≤ m0) edges to previous nodes
until the network consists ofN nodes. Any node corresponds to an agent.

m 2

The total number of simulation runs with di�erent random seeds for the
same other parameters. Statistics of the output variable (the percentage of
the agents in both possible opinion groups) are calculated based on the
outputs ofNrun simulation runs.

Nrun 30

Table 1: Common parameters for the proposedmodel

2.17 Figure 2 shows an example of segregation in a network. Suppose all the agents in this network have the same
persuasiveness and supportiveness strengths with two possible opinions, black andwhite. The three specified
agents forma segregated groupbecause everymember is a�ected by two agreed agents and just one disagreed
agent; therefore, its opinion does not change, although there are more opposite agents in the network. If one
of the three agents of the segregated group changes its opinion, the segregated group breaks up because the
black opinion nomore dominates the white opinion for the groupmembers.

The Model

3.1 Following previous research on ABM (Macal & North 2014; Chattoe-Brown 2013), which also have suggested
many applications to opinion formation and dynamics (Bianchi & Squazzoni 2015; Hauke et al. 2017), we have
concentrated on the social impactmodel of opinion formation (Castellano et al. 2009; Latané 1981; Hołyst et al.
2001). Table 1 summarizes the common parameters of the proposedmodel with their brief description and val-
ues used in the simulation runs. Themodel consists ofN agents, sharing their opinions oi = ±1, i = 1, 2, ..., N
in every time step. Two parameters characterize each agent: persuasiveness pi and supportiveness si, that
both describe the agent’s capability to convince another agent to change or persist in its opinion, respectively.
The terms pi and si are randomvariables in the range [0..pmax] and [0..smax] respectively, and their probability
distributions di�er in our scenarios. Thedistance of twoagents i and j, dij , a�ects their influence on eachother.
The dynamics of the system is expressed by Equations 1 and 2.

3.2 For simplicity in the analysis, we regard dij in Equation 1 in such a way that if agents i and j are connected, dij
equals to 1; otherwise, it is infinite. Therefore, αwhich determines how fast the impact decreases between the
agents when their distance increases, could be neglected. Furthermore, the agents influencing the agent i are
divided into two groups: the disagreed agents and the agreed agents. In the former summation of Equation 1,
(1− oioj) equals 2 for the disagreed agents and zero for the agreed agents. Similarly, in the latter summation,
(1 + oioj) equals 2 for the agreed agents and zero for the disagreed ones. Therefore, Equation 1 is rewritten as:

Ii =

 ∑
j|oj 6=oi

2pj

−
 ∑
j|oj=oi

2sj

 . (3)
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3.3 We use Barabási-Albert random network topology (Barabási & Albert 1999) as the network of agents’ interac-
tions. Barabási-Albert random network is based on two assumptions: linear growth and preferential attach-
ment. Thenetwork is initializedwithm0 nodes, at every stepanewnode is added to thenetworkwithm(≤ m0)
edges that link the new node tom di�erent nodes already added to the network. The probability that an edge
of the new node is linked with the ith node is expressed by ki/(

∑
j kj) where ki denotes the degree of node

i. The iteration of this preferential growing process yields a scale-free network with power law distribution for
node degrees, P (k) ∼ k−γ where γ = 2.9± 0.1 (Barabási & Albert 1999).

3.4 The opinion of any agent i, denoted by oi, may change at any time step of the simulation run, a�ected by in-
teracting agents and the noise hi according to Equations 3 and 2; and in turn, agent i a�ects other agents to
change/persist in their opinions. The agents’ opinion express the agents’ current state. The agents’ parameters
for pi and si are initialized in the initialization step of the simulation and do not change during the simulation
run. At every time step, hi is a random variable generated from the uniform distribution Uniform(−h, h), where
the parameterh is an input parameter determining the system’s noise level. Themean value of this distribution
equals to zero; therefore, hi is not biased towards any opinion.

3.5 For every specific value set of the input parameters, the simulation has been run Nrun times with di�erent
random seeds. Then the details of the output variable and the calculated statistics have been reported.

Simulation Scenarios and Results

4.1 The output variable we are interested in as a result of each simulation run is the percentage of the agents in
both possible opinion groups at the end of simulation runs. We ran the simulations for enough time steps that
the changes in the population of agents in both opinion groups became trivial; therefore, the output variables
could be regarded for equilibrium states. The phase transition is considered regarding this output variable ex-
pressing thepercentageof theagents inbothgroups. In this section, basedon theproposedmodel, wedescribe
two simulation scenarios and their running results. In each scenario, the model has been run for the common
parameters of Table 1 and di�erent values of two input parameters: h and β.

4.2 The input parameter h determines the noise level as described in Section 3. When h = 0, there is no noise in
the system, and the systemdynamics becomes deterministic. Increasing h generatesmore noise in the system,
and causes more randomness of the agents’ opinions change/continuity at every simulation time step. In a
relatively high noise level (e.g., h = 2000 in our configuration), the random behavior of the agents dominate
their deterministic behavior and consequences a similar non-majority phase regardless of the valueof theother
input parameter, β. The input parameter β determines the opinions of what percentage of the agents initial-
ize to ’-1’ (and the others to ‘+1’). The value of β may change at simulation time steps until the last time step
(MaxTimeStep) at which βfinal describes the agents’ final opinion combination in the simulation.

4.3 The values of input parameters h and β change in a stepwise manner, and simulation runs generate results for
every combination of these two parameters. Table 2 briefly illustrates how these parameters are generated by
relevant sub-parameters.

4.4 Algorithm 1 describes more details of the simulation. The outputs of the simulation for input values of the
parameters h and initial β are generated by running the simulation for Nrun times with di�erent sequences
of random numbers, and then the output diagrams and required statistics for β from the first time step until
MaxTimeStep are reported.

4.5 Thesimulation scenariosdi�er in theassignmentofpersuasivenessandsupportiveness strengths to theagents.
In ‘uniform distribution based strength’ (UDBS) scenario the strengths are assigned to the agents using a uni-
form distribution random variable as depicted in the original model, but in node centrality based strength’
(NCBS) scenario, the strengths are assigned to the agents using the agents’ centrality in the interaction network
and interpreted as their social power. The following subsections describe more details on both scenarios.

Uniform distribution based strengths (UDBS) scenario

4.6 In the uniform distribution based strengths (UDBS) scenario, the agents interact according to the proposed
model described in Section 3. The persuasiveness power and supportiveness power are both assigned using
uniform distribution random functions Uniform(0, pmax) and Uniform(0, smax), respectively.

4.7 Figure 3 reports changes ofβ, the percentages of agentswith the opinion ‘-1’, for an extreme level with no noise,
h = 0. The right diagram shows statistics of βfinal against initial β. Every circle marker in this diagram shows

JASSS, 23(2) 3, 2020 http://jasss.soc.surrey.ac.uk/23/2/3.html Doi: 10.18564/jasss.4232



Algorithm 1 Pseudo code for the simulation
1: procedure SIMULATE(N, scenario) [N : Number of agents, scenario: UDBS or NCBS]
2: for h from hmin to hmax by hstep step do [noise levels]
3: for β from βmin to βmax by βstep step do [initial percentage of agents with opinoin ‘-1’]
4: for i from 1 toNrun do [simulation runs with di�erent random number sequences]
5: initialize rand_seed to a new seed value [to generate new random number sequence]
6: βtrend[i] = RUN_SIMULATION(N, scenario, h, β, rand_seed)
7: end for
8: saveN, scenario,Nrun, h, β, and βtrend
9: end for
10: end for
11: draw outputs from the saved variablesN, scenario, h, β, and βtrend
12: end procedure
13:
14: function RUN_SIMULATION(N, scenario, h, β, rand_seed) [rand_seed a�ects creation of random network

and assigning random values for persuasiveness and supportiveness strengths of the agents]
15: B_A =Create_barabasi-albert(N ,m0,m)[N nodes,m0 initial nodes,m edges addedwith anynewnode]
16: createN agents and assign each agent to one node ofB_A
17: randomly assign -1 opinion to β percent of the agents, assign others’ opinions to +1
18: initialize βtrend data frame to the agents’ initial opinions [βtrend contains the trend of opinion changes]
19: for each agentAi do
20: generate pi and si parameters regarding the scenario
21: end for
22: for time_step from 1 toMaxTimeStep do
23: for every agentAi do
24: Ai_con = the agents connected toAi according toB_A [assumeAi connects toAi itself too]
25: Ii_pers = Ii_sup = 0 [initialize sum of the impacts from persuading and supporting agents]
26: for everyAj inAi_con do
27: if Aj ’s opinion =Ai’s opinion then
28: Ii_sup = Ii_sup + sj [to calculate the sum of supportive impacts]
29: else
30: Ii_pers = Ii_pers + pj [to calculate the sum of persuading impacts]
31: end if
32: Ii = 2 ∗ Ii_pers − 2 ∗ Ii_sup [Equation (3)]
33: hi = random() from Uniform(−h,+h)
34: if Ii + hi > 0 then [opposite opinion overcomes the agent’s current opinion]
35: Ai’s next opinion = -1 *Ai’s opinion [change the opinion in next time step]
36: end if
37: end for[everyAj inAi_con]
38: end for[every agentAi]
39: for every agentAi do
40: Ai’opinion =Ai’s next opinion
41: AddAi’s opinion to βtrend for time step time_step
42: end for[every agentAi]
43: end for[time_step]
44: return βtrend
45: end function
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Parameter Value Parameter Description

At every time step, for each agent i, the value of hi used in Equation 2 is generated by a
random variable from Uniform(−h,+h). h is assigned di�erent values in di�erent
simulation runs in a stepwise manner according to the following sub-parameters:
• hmin: The minimum value (first step) of h, no noise,
• hmax: The maximum value (last step) of h,
• hstep: The step value to increment h from hmin to hmax.

hmin 0

hmax 2000

hstep 200

The percentage of agents with opinions ‘-1’ (other agents with opinions ‘+1’). The agents are
randomly selected to assign the initial opinions, then simulation runs. The stepwise
increment of the input parameter β for simulation runs is as follows:
• βmin: Minimum value of β
• βmax: Maximum value of β
• βstep: The step value to change β from βmin to βmax.

The system behavior for any β > 50% is similar to (1− β) replacing every agent’s opinion oi
with−oi; therefore βmax = 50%.

βmin 0%

βmax 50%

βstep 10%

Table 2: Sub-parameters to generate values of input parameters hi and β

Figure 3: UDBS Scenario, h = 0. Statistics for all simulation replications. Le�: Mean and (shaded) standard
deviation of β during simulations; Right: Mean (circle marker), standard deviation (black bars), min-max (red
bars), andmedian (blue bars) of βfinal.

the mean value of βfinal for Nrun simulation replications. The corresponding standard deviation, min-max
values, andmedian are shown as black bars, red bars, and blue bars, respectively. Every diagramat the le� side
shows the means and (shaded) standard deviations of β during simulation time steps from the initial state to
MaxTimeStep. When the simulation starts from an initial consensus, β = 0%, the simulation equilibrium is
absolutely the same because there is no opposite pressure and no stochastic behavior to change any opinion
during the simulation run. For other initial βs except 50% (e.g., 10%, 20%, 30%, 40%), the final percentage is
either frozen majority or orderly fluctuated majority. For these initial βs which are the percentage of minority
agents, βfinal becomes smaller at the equilibrium. In other words, the initial dominant opinion group attracts
some agents from the minority opinion group; therefore, there is a tendency toward the dominant opinion
group. As discussed in (Hołyst et al. 2000), if the network is complete, consensus will be formed at zero noise
level, but in our configuration with scale-free network, the segregation phenomenon, introduced in Section 2,
causes no consensus for β > 0. Starting the simulation from β = 50%, mean of βfinal remains at about 50%
at equilibrium. More details on β = 50%will be discussed later in this section.

4.8 Figure 4 shows the result of another set of simulation runs with the same input parameters as for Figure 3, but
the noise level is equal to 200, h = 200. Again the total behavior of the system is similar to Figure 3, but even
starting from consensus, β = 0%, the system may reach a βfinal > 0. Indeed, there is a minimum value for
themean value of βfinal (about 2%) that starting from βs less than 50% the system converges to that βfinal on
average in equilibrium. Very briefly, starting from β ≤ 40%, the system reaches to a stronger (more probably
frozen or orderly fluctuated than non-orderly fluctuated) majority phase in equilibrium.

4.9 For β = 50%, the figure indicates a high standard deviation and a high di�erence between the minimum
and maximum βs because as shown in Figure 8 and will be more discussed later, every simulation replication
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Figure 4: UDBS Scenario, h = 200. Statistics for all simulation replications. Le�: Mean and (shaded) standard
deviation of β during simulations; Right: Mean (circle marker), standard deviation (black bars), min-max (red
bars), andmedian (blue bars) of βfinal.

Figure 5: UDBS Scenario, h = 600. Statistics for all simulation replications. Le�: Mean and (shaded) standard
deviation of β during simulations; Right: Mean (circle marker), standard deviation (black bars), min-max (red
bars), andmedian (blue bars) of βfinal.

reaches to the majority of one of both opinion groups in equilibriumwith the same probability (0.5).

4.10 Increasing thenoise level to600 (Figure5) causes forminganon-orderly fluctuatedmajorityphasewithβfinal ≈
30%onaverage forβ ≤ 40%. Comparing Figure 5with Figure 4 forh = 200 reveals thatweakermajority phases
with higher standard deviations and higher min-max ranges are formed in equilibrium when h increases to
600. When the noise level increases to 1000 (Figure 6), a (non-orderly fluctuated) non-majority phase forms in
equilibrium for every initialβ, inwhichβfinal ≈ 50%. Further increasing noise level to 2000 (Figure 7), similarly
causes non-majority phase, but with lower standard deviations and lower min-max ranges.

4.11 Figure 8 details the system behavior during simulation time steps starting from β = 50% in di�erent noise
levels. Each curve shows β values for each simulation replication during simulation time steps. As the figure
shows, (non-orderly fluctuated) non-majority phase is formed for high enough noise levels, h ≥ 1000, and the
main di�erence is the dispersion of curves for h = 1000 and h = 2000. For lower noise level, h = 600, a (non-
orderly fluctuated)majority phase is formed, where about 30% of the agents fall in theminority group, and the
others fall in the majority group. A similar majority phase occurs for h = 400 with about 13% of the agents in
the minority group, and for h = 200 with about 2% of the agents in the minority group. For the last case with
no noise, h = 0, as the figure presents, more probably frozen majority or orderly fluctuated majority phases
(thicker curves) occur in equilibrium, and in some rare cases, frozen non-majority phase or orderly fluctuated
non-majority phase (fluctuating around β = 50%) may also occur.

4.12 Figure 9 shows another view on the simulation results in which the mean and (shaded) standard deviation of
βfinal for various initial β are shown in separate diagrams. Every diagram shows βfinal for various noise levels,
h, from 0 to 2000. As the figure shows, for noise levels above a specific value (about 1000), the system equilib-
rium phase is non-majority for every initial β. The figure also shows a non-monotonic trend of the curves for
β = 20%, 30%, and 40%, which shows a descending trend of minority (stronger majority) while the noise level
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Figure 6: UDBS Scenario, h = 1000. Statistics for all simulation replications. Le�: Mean and (shaded) standard
deviation of β during simulations; Right: Mean (circle marker), standard deviation (black bars), min-max (red
bars), andmedian (blue bars) of βfinal.

Figure 7: UDBS Scenario, h = 2000. Statistics for all simulation replications. Le�: Mean and (shaded) standard
deviation of β during simulations; Right: Mean (circle marker), standard deviation (black bars), min-max (red
bars), andmedian (blue bars) of βfinal.

increases from zero to 200. A�erward, while the noise level increases more, the ascending trend of the curve
is observed, thus minority increases (weaker majority). This trend continues until a noise level, where a non-
majority phase is formed. The segregation phenomenon, introduced in Section 2, justifies the non-monotonic
trend of these curves.

Node centrality based strength (NCBS) scenario

4.13 In the ‘node centrality based strength’ (NCBS) scenario, a configuration similar to the UDBS scenario has been
used, but the initial assignment of the agents’ persuasiveness and supportiveness strengths is proportional to
the agents’ social power (Friedkin 1986). As discussed in ‘Persuasion and social power’ subsection of Section 2,
node degree is a reasonable estimation of social power. Therefore, we define social power for agent i based on
its degree ratio as SPi = d(i)/∆, where d(i) denotes degree of node i in the network and∆ denotes the max-
imum degree of the nodes in the network, used for normalization. Since the node degrees of Barabási-Albert
Network follows a power law distribution, the persuasiveness and supportiveness strengths of the agents are
initialized by a power law distribution proportional to the node degrees. This power law distribution is com-
patible with the final social power distribution studied by the simulation reported in (Lu et al. 2015). Therefore,
in this scenario any agent i is initialized to proportional persuasiveness strength p′i in the range (0, pmax] and
proportional supportiveness strength s′i in the range (0, smax] according to Equation 4 and Equation 5, respec-
tively:

4.14
p′i =

d(i)

∆
pmax, (4)
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Figure 8: UDBS Scenario: simulation runs for β = 50% and various noise levels, h

Figure 9: UDBS Scenario: The mean and (shaded) standard deviation of βfinal for various βs and noise levels.
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Figure 10: NCBS Scenario, h = 0. Statistics for all simulation replications. Le�: Mean and (shaded) standard
deviation of β during simulations; Right: Mean (circle marker), standard deviation (black bars), min-max (red
bars), andmedian (blue bars) of βfinal.

s′i =
d(i)

∆
smax. (5)

4.15 Substituting pi and si with p′i and s′i respectively in Equation 3 we have Equation 6 for computing Ii in this
scenario:

Ii =

 ∑
j|oj 6=oi

2
d(j)

∆
pmax

−
 ∑
j|oj=oi

2
d(j)

∆
smax

 . (6)

4.16 Figure 10 reports the simulation results for h = 0. Comparing this figure with the corresponding figure in the
previous scenario (Figure 3),βs havehigher standarddeviations andwidermin-max ranges for an initialβ ≥ 20.
Furthermore, considering the values ofmeans andmedians for β = 20%, 30%, 40% shows a positive skewness
in the distributions of βfinal, which is related to the power law distribution of the agents’ persuasiveness and
supportiveness strengths as well as their connectivity. Indeed, there are a few high influential agents with high
connectivities and many agents with low strengths and low connectivities in the network. Therefore, in some
cases depending on the initial random assignments of opinions to the agents, a relatively high strength may
be generated by some hubs with minority opinion, and causes less shrink of minority opinion, or even for β =
40%, as min-max bar shows, βfinal becomes greater than the initial β. This phenomenon happens in some
higher noise levels as the mean and min-max statistics of βfinal similarly shows. Figure 10 also reveals that
any βfinal between 0% and 100% for β = 50% is possible because the probability of the initial configurations
regarding both opinion groups are the same; therefore, majority phases happens with the same probability
in both possible opinion groups. However, in some rare cases, a non-majority phase may occur because of
partitioning the agents into two equal-size opinion groups.

4.17 Figure 11 shows system behavior when the noise level increases to 200. This noise level causes a non-majority
phase in equilibrium for β ≤ 40%. For β ≤ 30% the system reaches a non-majority phase with expected
βfinal ≈ 30%, which could be interpreted that the noise level is high enough that the expected value of βfinal
is at least about 30% regardless of initial β. As min-max bars show, starting from β = 30% or β = 40% may
result in a majority phase with βfinal greater than the initial β, which could be interpreted as for β = 40% in
Figure 10.

4.18 The noise level more dominates the system behavior when increases to higher levels. Increasing noise level
to 600 (Figure 12) causes forming a weaker majority (higher percentage for minority opinion); therefore, com-
paring with Figure 11, for β ≤ 30% the system reaches to a higher expected value of βfinal ≈ 46% due to the
dominance of stochastic behavior of the system on its deterministic behavior.

4.19 The system behavior for h = 1000 and h = 2000 are shown in Figure 13 and Figure 14, respectively. The
equilibrium phase for both h = 1000 and h = 2000 are (non-orderly fluctuated) non-majority phase for all
initial βs; however, in equilibrium, the standard deviation for h = 2000 is less than the standard deviation for
h = 1000.

4.20 Figure 15 details the system behavior during simulation time steps starting from β = 50% in di�erent noise
levels. The figure reveals that (non-orderly fluctuated) non-majority phase is formed for high enough noise
levels, h ≥ 600, and the higher noise levels cause a lower standard deviation for βfinal. For the lower noise
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Figure 11: NCBS Scenario, h = 200. Statistics for all simulation replications. Le�: Mean and (shaded) standard
deviation of β during simulations; Right: Mean (circle marker), standard deviation (black bars), min-max (red
bars), andmedian (blue bars) of βfinal.

Figure 12: NCBS Scenario, h = 600. Statistics for all simulation replications. Le�: Mean and (shaded) standard
deviation of β during simulations; Right: Mean (circle marker), standard deviation (black bars), min-max (red
bars), andmedian (blue bars) of βfinal.

Figure 13: NCBS Scenario, h = 1000. Statistics for all simulation replications. Le�: Mean and (shaded) standard
deviation of β during simulations; Right: Mean (circle marker), standard deviation (black bars), min-max (red
bars), andmedian (blue bars) of βfinal.

level, h = 400, (non-orderly fluctuated) majority phase is formed, where about 40% of the agents fall in the
minority group and the others in the majority group. For h = 200, a majority phase forms dividing the agents
into about 30% and 70% groups on average. For the last case with no noise, h = 0, as the figure shows, similar
to UDBS, more probably frozenmajority or orderly fluctuatedmajority phases occur, and in some rarely cases,
frozen non-majority or orderly fluctuated non-majority (fluctuating around β = 50%) phases are possible. The
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Figure 14: NCBS Scenario, h = 2000. Statistics for all simulation replications. Le�: Mean and (shaded) standard
deviation of β during simulations; Right: Mean (circle marker), standard deviation (black bars), min-max (red
bars), andmedian (blue bars) of βfinal.

Figure 15: NCBS Scenario: simulation runs for β = 50% and various noise levels, h

range of possible βfinal is wider in this scenario.
4.21 Figure 16 shows the mean and standard deviation of βfinal for each initial β in various noise levels, from 0 to

2000. As the figure shows, for noise levels above a specific value (about 800), the system equilibrium phase is
non-majority for every initial β. In this scenario, unlike the previous one, the trend of the curves for all βs are
monotonic because it is more probable that the segregated groups break up due to the presence of a fewmore
influential agents with high connectivity in the network.

Analysis and Discussion

5.1 In this section, the experimental results of running the simulation scenarios expressed in the previous section
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Figure 16: NCBS Scenario: The mean and (shaded) standard deviation of βfinal for various βs and noise levels.

are discussed and statistically analyzed.

Analysis of the UDBS scenario

5.2 From the viewpoint of any agent i, the agents of the system could be partitioned into twodisjoint sets including
the disagreed agents and agreed agents. Equation 3 could be rewritten as:

Ii =

Nd∑
j=1

2pj −
Na∑
j=1

2sj , (7)

whereNd(Na) is the number of disagreed (agreed) agents connected to the agent i. The mean value of node
degrees in Barabási-Albert network is 2m; therefore,Nd +Na = 2m on average.

5.3 In the UDBS scenario, both pj and sj are random variables with uniform distributions Uniform(0, pmax) and
Uniform(0, smax) respectively. Since pmax = smax, we suppose c as c = pmax = smax; therefore,

pj = sj = Uniform(0, c), (8)

Thus, the mean and variance of pj and sj are calculated as:

µpj = µsj =
c

2
, (9)

σ2
pj = σ2

sj =
c2

12
. (10)

5.4 Since Ii is a linear combination of random variables pj and sj , from Equation 7 and Equation 9 we have the
mean value of Ii as:

µIi = 2Nd(
c

2
)− 2Na(

c

2
). (11)

5.5 The parameter β in the simulation determines the percentage of the agents with opinion ‘-1’. Starting the simu-
lation with β, without loss of generality, we suppose agent i is an agent whose initial opinion is ‘-1’, therefore, β
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percent of all the agents are initialized to opinions agreed with agent i, and (1− β) of the agents are initialized
to the other opinion. Since our network is a Barabási-Albert network withm edges for any newly added node
during network generation, any node is connected to 2m nodes on average (Barabási & Albert 1999). Therefore,
it is expected that agent i is connected on average to 2m(1− β) disagreed agents and 2mβ agreed agents (in-
cluding itself). Substituting 2m(1 − β) and 2mβ for Nd and Na respectively in Equation 11, µIi is calculated
as:

µIi = 2m(1− 2β)c. (12)

5.6 UsingEquation 10 for thevarianceofpj andsj , andEquation7 for the linear combinationofpj andsj togenerate
Ii, the variance of Ii, σ2

Ii
, is calculated as:

σ2
Ii =

2m(1−β)∑
j=1

22σ2
pj +

2m(β)∑
j=1

22σ2
sj =

2m

3
c2, (13)

and for standard deviation we have:

σIi =

√
2m

3
c. (14)

5.7 From Equation 12 for the mean value of Ii, it is clear that if β = 50%, i.e., the first impression is in such a way
that the sizes of both opinion groups are the same, the expected value of Ii becomes zero. Since the expected
value of noise level h equals zero, the expected value of the argument of sign function in Equation 2 becomes
zero aswell; therefore oi in the next time step is undetermined. Thus the probabilities for agents to stay/change
their opinions are the same (0.5). Consequently, depending on the randomassignments of persuasiveness and
supportiveness strengths to the agents as well as the topology of the randomnetwork, the system goes toward
amajority phasewith one of the possible opinionswith equal probability in equilibrium (Figure 8), and in some
rare cases, the systemmay remain in non-majority phase (frozen or orderly-fluctuated) .

5.8 From Equation 12 it is expected that if β < 50% then we have Ii > 0; therefore it is more probable that the
agents in theminor group change their opinions to themajority’s opinion. The trend of changing some agents’
opinion fromminority group to majority group stops a�er some time steps due to segregation phenomenon.

5.9 Our connection network is generated by Barabási-Albert algorithm; thus node degrees follow a power law dis-
tributionwith exponent γ ≤ 3, and as discussed in (Bianconi &Marsili 2006), contains a relatively huge number
of small loops. These small loops make a lot of segregated agents in the network that don’t change their opin-
ions at zero noise level. Thus, for zero noise level, as Figure 3 shows, starting from any β < 50%, results in
0 < βfinal < β in equilibrium.

5.10 By increasing the noise level, some of themembers of the segregated groups change their opinions because of
their more stochastic behavior. Therefore, when one ormore agents change their opinions, this may inevitably
lead other members of the segregated group to switch to the other opinion; therefore, initial β becomes more
important to determine βfinal. This segregation phenomenon expresses why in Figure 9 when the noise level
increases from zero to 200, the mean value of βfinal becomes lower for initial β equal to 20%, 30%, or 40%.

5.11 Increasing the noise level to enough values leads the system trend toward non-majority phase in which about
half of the agents have one of the two possible opinions at the end of the simulation run. To analyze this phe-
nomenon, without loss of generality we focus on the agents with opinion ‘-1’ and rewrite Equation 2 as:

oi(t+ 1) = sign[Ii(t)− hi]. (15)

5.12 Now we regard (Ii(t) − hi) as a new random variable composed of two independent random variables Ii(t)
and hi. Since hi is a random variable with the distribution Uniform(−h,+h), we have µhi = 0. Thus the mean
value of Ii(t)with noise level, (Ii(t)− hi), is the same as Equation 12. But for the variance of (Ii(t)− hi) using
Equation 13 we have:

σ2
Ii−hi

=
2

3
mc2 +

(h− (−h))2

12
=

2

3
mc2 +

h2

3
, (16)

and this means that although the mean value of Ii(t) does not change when noise level increases, its variance
increases, and Ii(t) more spreads out from its mean. Therefore, stochastic behavior of the agents dominate
their deterministic behavior, and for the high enough noise levels, the agents’ behaviors become completely
random and consequently, non-majority phase is formed. Figure 9 shows this phenomenon experimentally.
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Analysis of the NCBS scenario

5.13 In the NCBS scenario, pi and si are proportional to social power according to Equation 4 and Equation 5. Sub-
stituting c for pmax and smax, equation for p′i and s′i could be written as:

p′i = s′i =
d(j)

∆
c, (17)

where d(i) denotes the degree of node i in the network, and∆ denotes the maximum degree of the nodes in
the network for normalization.

5.14 For Ii, similar to Equation 7, we have

Ii =

Nd∑
j=1

2p′j −
Na∑
j=1

2s′j , (18)

and from Equations 17 and 18, Ii is calculated by:

Ii =
2

∆

 Nd∑
j=1

d(j)−
Na∑
j=1

d(j)

 c, (19)

whereNd(Na) is the number of disagreed (agreed) agents connected to the agent i.
5.15 Since the mean value of node degrees in Barabási-Albert network is 2m, the mean value of Ii which is a linear

combination of random variables d(j) is calculated from Equation 19 as:

µIi =
2

∆
(2m)(1− 2β)(2m)c. (20)

5.16 Comparing Equation 12 for µIi in the UDBS scenarios and Equation 20 for µIi in the NCBS scenarios we have:

µIi(NCBS) =
4m

∆
µIi(UDBS), (21)

which means that µIi for the NCBS scenario is much closer to zero than µIi for the UDBS scenario, because of
4m� ∆. Therefore:

|µIi(NCBS)| � |µIi(UDBS)|. (22)

5.17 Equation 22 implies that with the same configuration for both scenarios, since Ii is much closer to zero in the
NCBS scenario, the stochastic behavior because of the noise level more dominates the deterministic behavior
comparing with the UDBS scenario.

5.18 Another important point to compare the dynamics of both scenarios is comparing the variance of Ii in the sce-
narios. The probability distribution of node degrees, d(j), in Barabási-Albert network is power lawP (k) ∼ k−γ
where γ = 2.9± 0.1 (Barabási & Albert 1999). The standard deviation of the power law distribution is theoreti-
cally calculated as:

σ =
γ − 1

γ − 3
k2min, (23)

5.19 Thus, for γ ≤ 3 variance does not exist or is infinite theoretically. Therefore, this high variance plus the variance
imposed by the noise level leads the system to have amore tendency toward non-majority phase compared to
the UDBS scenario, as comparing Figure 9 with 16 clarifies.

5.20 It is also notable that due to the higher variance of persuasiveness and supportiveness strengths of the agents
in the NCBS scenario, the probability of segregation is much lower comparing with the UDBS scenario, and
as Figure 16 shows, leads the system to approach monotonically to non-majority phase when the noise level
increases. For high enough noise level, the system phase changes to non-majority very similar to the UDBS
scenario, but the higher variance of persuasiveness and supportiveness strengths in the NCBS scenario leads
the corresponding noise level to be lowered.

Conclusion

6.1 Power law distributions have been found in many natural and social phenomena, and simulations of social
phenomena based on this distribution aremore realistic inmany cases. We have investigated the social impact
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model of opinion formation (Hołyst et al. 2001; Latané 1981) in Barabási-Albert interaction networkswith power
law distribution of node degrees(Barabási & Albert 1999). In the social impact model of opinion formation, in
every time step, any individual/agent is a�ected by others to change or persist in his current opinion. Every
agent is characterized by persuasiveness and supportiveness strengths which are initialized using a uniform
probability distribution. We have considered two scenarios in this research based on the distribution of the
agents’ persuasiveness and supportiveness strengths: uniform distribution based strengths (UDBS) based on
a uniform distribution, as in the original model; and node centrality based strengths (NCBS) based on a power
law distribution proportional to the agents’ centrality in their network. The latter scenario is based on some
studies that show individuals’ centralities are positively related to their ability to influence others (Yoo & Alavi
2004; Hu�aker 2010; Weeks et al. 2017; Noelle-Neumann 1983; Weimann et al. 2007; Baym 2000).

6.2 The social impact model also has a noise parameter, indicating the individual’s inexplicable opinion changes
due to any other influential factors, such as public media, a�ects, and emotions. The noise levels a�ect the
system phase transition, and in this research, we considered the role of noise levels in phase transition in both
mentioned scenarios of the model. Two phases are possible in equilibrium: majority and non-majority; and
in each one, the possible cases are: frozen, orderly fluctuated, and non-orderly fluctuated. The consensus is a
special case of majority phase. The segregation phenomenon, which o�en emerges in human societies when
two or more well-connected sub-networks exist with a few connections to the nodes out of the sub-network
(Zanette & Gil 2006; Shi et al. 2013; Feliciani et al. 2017), also plays a key role in opinion phase transitions.

6.3 Weinvestigatedbyagent-basedsimulationsandanalytical considerations inbothscenarios, howopinionphases
are formed in equilibrium considering the noise level and various initial population size of agents in both opin-
ion groups. The results of increasing noise level are summarized as follows:

• At zero noise level, the system behavior is fully deterministic. Starting from the consensus, the system
stays in the consensus forever. In the UDBS, starting from a majority results in a relatively stronger ma-
jority for all the initial combinations of opinion group sizes. In NCBS scenario, although starting from a
majority results in amajority, for some initial combinations of opinion groups aweakermajority forms in
equilibrium. Indeed, in these cases, the fewhigh influential agentswithhigh connectivity in the scale-free
network have the same minority opinion and act as strong leaders in the society; therefore, the popula-
tion of the minority group increases in equilibrium.

• Increasing the noise level breaks some segregation groups and depending on the noise level, aminimum
value for themeanvalueofminority grouppopulation isobserved. Thisminimumvalue forNCBS ishigher
than the corresponding value for UDBS scenario. In NCBS scenario, for some combinations of the initial
population of the opinion groups, the minority group may become the majority group in equilibrium,
which is the consequence of the presence of few strong leaders in the minority opinion group.

• In high enough noise levels, the social system reaches a non-majority in both scenarios regardless of the
initial population of opinion groups due to the dominance of stochastic behavior of the system on its
deterministic behavior. This high enough noise level for NCBS scenario is lower comparing with UDBS
scenario.

6.4 The increase in the noise level from zero in UDBS scenario may cause a non-monotonic trend of the minority
population in equilibriumdue to the segregation phenomenon. However, in NCBS scenario, segregated groups
are more easily broken due to the presence of strong leaders with high connectivities, and consequences the
monotonic increase of minority population in equilibrium.

6.5 Starting from two equal size opinion groups, in zero or low noise levels, one of the opinion groups becomes
majority groupwith the equal probabilities in equilibrium; and for high enoughnoise levels, similar to the other
initial combinations, non-majority phase forms in equilibrium.

6.6 Although this research is a step toward a better understanding of the social opinion dynamics, somemore stud-
ies are needed to complete it. We estimated the social power of persuading others with the same power law
distribution of node degrees in the network. This social power has been estimated by power law distributions
in some other researches as well, but some more in-depth studies with real world data and case studies are
required to estimate it more precisely and refine our assumption considering other parameters. For example,
individuals have di�erent resistance to persuasion and opinion change across topics, sources, situations, and
so on (Briñol et al. 2004, Chapter 5). Furthermore, in many cases, a�ects and emotions are influential factors
in persuasion. According to ELM (Petty & Cacioppo 1986), when people are unwilling or unable to analyze re-
ceived information, for example, it is low in personal relevance or there are many distractions, variables such
as a person’s emotional state have an impact on attitudes; therefore, running a relatively simple and low e�ort
process such as forming a direct relationship between the feeling state and the opinion is expected.
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Model Documentation

The model is implemented in Python programming using the agent-based modeling framework mesa. The
code and necessary documents are available online here: https://www.comses.net/codebase-release/
2f3d7e0b-1942-422e-895c-61989d9ab99f/
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