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Abstract: Blockchain can be viewed as a public ledger maintained collectively by a large number of participa-
tors based on consensus protocol. We are interested in how di�erent consensus protocols and trade network
topologies a�ect the performance of a blockchain system, which has not been studied in the literature yet. In
this paper, we proposed an agent-basedmodel consisting ofmultiple trader andminer agents, and one system
agent. We investigated three consensus protocols, namely proof-of-work (PoW), proof-of-stake (PoS), and dele-
gated proof-of-stake (DPoS).We also examined three common trade network topologies: random, small-world,
and scale-free. We find that both consensus protocol and trade network topology can impact the performance
of blockchain system. PoS and DPoS are generally better than PoW in terms of increasing trade e�iciency and
equalizing wealth. Besides, scale-free trade network is not favorable because its trade e�iciency is quite low,
which moderates the price fluctuation and wealth inequality. Since connectivity inequality determines trade
e�iciency and wealth inequality, it is crucial to increase the connectivity among participants by means of not
only using better consensus protocols such as PoS or DPoS, but also incentivizing apathetic or newly-joined
participants to link with others. We suggest that our findings could be useful to the designers, practitioner and
researchers of blockchain system and token economy.
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Introduction

1.1 Blockchain can be defined as a distributed shared database generated based on cryptography technology. It
maintains a reliable database in a decentralizedway: a large number of participators commute through a peer-
to-peer (P2P) network, and the data they generated is digitally signed using cryptography protocols. More im-
portantly, such data will be packed as a block, and appended to a chain of blocks, i.e., the blockchain. Hence,
the blockchain can be viewed a large public ledger maintained collectively on the P2P network based on con-
sensus protocol (Antonopoulos 2014).

1.2 The technical architecture of blockchain can be divided into six layers (Yuan &Wang 2016), as demonstrated in
Figure 1. The consensus layer is a very unique and fundamental part of the blockchain system, because many
consensus protocol have been developed to ensure the sustainability of the system (Du et al. 2017). Another
interesting feature of blockchain system is the trade network among autonomous traders, which is di�erent
from the P2P network of hardware devices. Unlike the stock market, traders in the blockchain system have no
central counter party which provides clearing and settlement services (Nakamoto 2008). Instead, they have to
trade with the neighbors in the trade network. Therefore, we are interested in how di�erent consensus proto-
cols and trade network topologies a�ect the performance of a blockchain system, which has not been studied
in the literature yet.
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Figure 1: Blockchain technology architecture

1.3 In this paper, we propose an agent-based model to simulate a blockchain system with di�erent consensus
protocols and trade network topologies. In particular, we investigated three consensus protocols introduced
later inPreliminaries andModel Assumptions, namelyproof-of-work (PoW), proof-of-stake (PoS), anddelegated
proof-of-stake (DPoS). We also studied three common trade network topologies: random, small-world, and
scale-free. The performance of a blockchain is measured by three indicators explained in Numerical Simula-
tion: coin price index, request-satisfied ratio, Gini index of all participators. The later two indicators quantify
the trade e�iciency of the system and wealth inequality among agents, respectively.

1.4 The contribution of this paper is three-folder. Firstly, it is one of the first attempts to simulate blockchain system
using agent-based modeling and simulation (ABMS) technique. Secondly, the consensus protocols and trade
network topologies have beenwell-modeled and comprehensively studied in the context of blockchain system.
Thirdly, the resultsweobtained fromcomputational experiments reveal that the systemperformance isa�ected
by consensus protocols and trade network topologies. In particular, when designing a sustainable blockchain
system, it is crucial to increase the connectivity among participants for obtaining higher trade e�iciency and
lowering wealth inequality, by means of not only using better consensus protocols such as PoS or DPoS, but
also incentivizing apathetic or newly-joined participants to link with others. We suggest that our findings could
be useful to the designers, practitioner and researchers of blockchain system and token economy.

1.5 The rest of the paper is organized as follows. In Section Literature Review we survey related research streams,
followedby the sectionof preliminaries andassumptions. Wedescribe themodel indetail inModelDescription,
and design the simulation experiments in Section Numerical Simulation. Next, we present the experimental
results and discuss our research findings in Section Results and Discussion. Finally, we conclude the paper and
suggest potential topics for future research in Section Conclusion.

Literature Review

Consensus protocol

2.1 Since blockchain is a distributed computing system, it is essential to tackle the Byzantine generals problem
named by Lamport et al. (1982). This problem requires that participatorsmust agree on a concerted strategy to
avoid catastrophic system failure, but some of the participators are unreliable. Lamport et al. (1982) discussed
several solutions assuming a loyal general as the Commander. Later, Lamport (1998, 2001) proposed the Paxos
algorithm in which there are many roles such as client, voter, proposer, learner and leader. A well-known im-
plementation of Paxos is the Ra� algorithm (Ongaro &Ousterhout 2014). Since Castro & Liskov (1999) proposed
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the practical Byzantine fault tolerance (PBFT) algorithm with significantly-improved performance, many vari-
ants were developed, such as HQ (Cowling et al. 2006), MinBFT (Veronese et al. 2011), and RBFT (Aublin et al.
2013).

2.2 The first blockchain-based consensus protocol has been proposed by Nakamoto (2008), who called it “Proof of
Work” (PoW) protocol. Using the hash function, it is very di�icult to find the right input so that a certain number
of characters in the hash output string are all zeros. The general who finds the right input first is able to create
a block, and other generals will verify the hash string and accept the block. As the blockchain grows, unreliable
participators can barely attack the system unless their computation power is greater than 51%. Although PoW
has been successfully applied in the BitCoin system, vast energies are wasted because participators have to in-
crease their computationpower towin thecompetitionof solvingcryptographicpuzzles. Therefore,manyother
blockchain consensus protocols have been proposed. For example, King & Nadal (2012) introduced the proof-
of-stake (PoS) protocol and it was applied to the PPCoin system. It was improved by Ethereum, a blockchain-
baseddistributed computingplatform, as theCasperProtocol, i.e., security-deposit basedeconomic consensus
protocol (Buterin & Gri�ith 2017). Larimer (2014) created the delegated proof-of-stake (DPoS) protocol, which
was employed by Steemit, a well-known blockchain-based social media platform (Li & Palanisamy 2019). Other
blockchain-based consensus protocols include proof of retrievability (Juels & Kaliski Jr 2007), proof of space
(Dziembowski et al. 2015), etc. For recent surveys of consensus protocols, we refer the reader to Du et al. (2017)
and Wang et al. (2018). To the best of our knowledge, however, how to quantify the system-wide impact of a
blockchain-based consensus protocol remains unexplored.

Agent-based Model

2.3 An agent-based model (ABM) is a class of computational models for simulating the actions and interactions
of autonomous agents (both individual or collective entities such as organizations or groups) with a view to
assessing their e�ects on the system as a whole (Macal & North 2009). Based on the complex adaptive systems
theory (Holland 1996), agent-basedmodels have been widely used in many fields, such as supply chains (Lin &
Lin 2006), online-to-o�line food ordering and delivery markets (He et al. 2019a), waste treatment systems (He
et al. 2017), housing market (Schelling 1978; He et al. 2018), financial systems (Ho�mann et al. 2007; Oldham
2017), and economic systems (Farmer & Foley 2009).

2.4 Recently, agent-based models have been developed to study blockchain systems. Currently, there are three
studies most relevant to our work. Cocco & Marchesi (2016) created an ABM to simulate the economy of the
Bitcoin mining process, and successfully reproduced the unit root property, the fat tail phenomenon and the
volatility clustering of Bitcoin price series. Kaligotla & Macal (2018) proposed a generalized agent-based con-
ceptual framework of a blockchain system, in which essential elements (such as market agent, miner agent,
transactions, public ledger)werewell definedandmodeled. They also investigatedhow the strategy scenario in
which agents choose verification blocks a�ect energy e�iciency of blockchain system. The other similar agent-
based blockchain model was proposed by Lee et al. (2018), which integrated inverse reinforcement learning
to generate the behavioral rules of traders in blockchain system. Based on the bitcoin transactions data, the
bitcoin demand and supply protocols were simulated in the model, so that the movement of bitcoin price can
be emerged from agent interactions. Although these two insightful studies have enriched our understanding of
the blockchain system, they did not consider the impact of consensus protocols and trade network topologies
on the blockchain system performance.

Summary

2.5 Motivatedbyabove findings,westudied the researchproblemproposed inSection Introductionusing theABMS
technique, because each participator in the blockchain system is an autonomous decision-maker interacting
with his/her network neighbors, the dynamic of which can barely be modeled by other approaches such as
mathematical models.
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Preliminaries and Model Assumptions

Consensus protocol

3.1 Consensus protocol is an important component of a blockchain system. The goal of developing and applying
consensus protocol is to make all honest nodes maintain a public distributed blockchain, while satisfying two
properties: 1) Consistency. All honest nodes hold exactly the same blockchain. 2) E�ectiveness. Information
published by one honest node is eventually recorded by all other honesty nodes in their own blockchains. Cur-
rently, there are three popular consensus protocols, and the key di�erence among them is the way to select a
participator (i.e., a miner) for creating a new block. Usually, the selected miner will be rewarded with a certain
number of new coins, so that miners are willing to verify transactions and to maintain the sustainability of the
blockchain system.

3.2 PoW (proof-of-work) is the first consensus protocol as it was used in the BitCoin system (Nakamoto 2008). The
basic idea of PoW is to ensure data consistency and consensus security by repeatedly running a competition of
solving cryptographic puzzles. In particular, miners compete with each other based on their computing power
in order to be the first one who finds the right number that makes the hash value of the block head less than
or equal to the di�iculty target (Antonopoulos 2014). The miner fastest in solving puzzles will be rewarded by
the system with a certain number of coins, and a new block is created by this miner. Many miners decided
to purchase high-performance computation devices (i.e., mining rigs) to enhance their computation power, so
that the probability of being rewarded will be enlarged. Hence, we propose an assumption for modeling the
PoW consensus protocol:

Assumption H1: Under PoW consensus protocol, the probability that a miner gets coin reward is positively
associated with his/her computation power.

3.3 PoS (proof-of-stake) developed a di�erent approach tominer selection (Wang et al. 2018). A concept, stake, was
introduced. In some blockchain system, a miner’s stake is measured by his/her coin age, which is the product
of the number of coins multiplied by the number of days the coins have been held by the miner:

stake = (# coins)× (# days the coins have been held). (1)

Once the miner is selected to create and sign the next block, the stake (coin age) will be reset as zero, avoiding
the e�ect of “the rich get richer” and possible continuous attack from high-stake users (King & Nadal 2012).
Similar to PoW, the miner with higher stake is more likely to forge a block. Hence, we propose an assumption
for modeling the PoS consensus protocol:

Assumption H2: Under PoS consensus protocol, the probability that a miner gets coin reward is positively
associated with his/her stake.

3.4 DPoS (delegatedproof-of-stake)blockchain system is similar toa joint-stockcompany, inwhichactivedelegates
are voted into their roles by token holders (Bach et al. 2018). Usually, the delegates are chosen with the best
interest of the network at heart as they keep the blockchain system running smoothly and safely. To encourage
voting, a miner may need to show he/she owns considerable coins, so that his/her trade partners are willing to
vote. If a richminer also hasmany traders (i.e., large degree in the trade network), he/she is likely to be elected.
Hence, we propose an assumption for modeling the DPoS consensus protocol:

Assumption H3: Under DPoS consensus protocol, the probability that a miner gets coin reward is positively
associated with his/her stake and degree.

Trade network topology

3.5 Although many blockchains are public, we cannot identify the network topology of traders because typical
users have multiple coin accounts and the transactions are anonymous (Antonopoulos & Wood 2018). There-
fore,wehave to assume that the typeof tradenetwork topology couldbeoneof three commonnetwork topolo-
gies: random, small-world, or scale-free.

3.6 We suggest that the trade network could be a random network, which is o�en introduced in many studies as a
benchmark case (see, e.g., Huang et al. 2005). In a random network, every possible trade connection between
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two users occurs independently with a fixed probability. Hence, we propose an assumption for modeling the
trade network in blockchain system:

Assumption H4: The trade network in blockchain system is a random network.

3.7 Small-world networks have short average distance between two nodes. The distance is defined as the number
of edges in a shortest path connecting them. We suggest that the trade network in blockchain systemcould be a
small-world network because many empirical graphs show the small-world e�ect (i.e., short chain of acquain-
tances), including social networks (Zeppini & Frenken 2018). Hence, we propose an assumption for modeling
the trade network in blockchain system:

Assumption H5: The trade network in blockchain system is a small-world network.

3.8 Scale-free networks are o�en created in a way of preferential attachment: new users prefer to make a trade
connection to the more popular existing users. Consequently, the more connected a node is, the more likely it
is to receive new links. Under this mechanism, the degree distribution of scale-free networks follows a power
law, whichmeans that very few nodes have lots of connections while the vast majority of nodes are those with
small degree (Ohdaira & Terano 2011). Hence, we propose an assumption for modeling the trade network in
blockchain system:

Assumption H6: The trade network in blockchain system is a scale-free network.

Model Description

Notation

4.1 In this study, we proposed an agent-based model to simulate a blockchain system in which digital coins are
tradedbyagents as currency. Ourmodel consists ofmultiple trader agents,miner agents, andone systemagent.
Table 1 summarizes agent-related variables used inourmodel, where initial valuesofmanyexogenous variables
are determined arbitrarily.

4.2 In the following section, we explain the behavior of each agent type in a static time step t.

Trader’s behavior

4.3 Each trader agent (e.g., i) is initialized with two accounts (time step index t = 0): a cash account with balance
10000 (denoted byAi,0 = 10000) and a coin accountwith balance 100 (Ci,0 = 100). At time t, each trader agent
has tomake his/her trade decision: to buy, sell or hold coins. In ourmodel, the probabilities that trader i at time
t decides to buy, to sell or to hold coins are denoted by PrBi,t,Pr

S
i,t,Pr

H
i,t, respectively. Note that the sumof these

three probabilities is always 1.

Making trade decision

4.4 Similar to the classification of stock traders in the study by Liu & Serguieva (2018), there are three groups of
traders in our model: noisy traders, herd traders, and game traders. Since it is di�icult to obtain the empirical
percentages of traders and miners in blockchain systems, we simply let three groups have same traders and
miners, i.e.,Nn = Nh = Ng = 200 andMn =Mh =Mg = 100 as displayed in Table 1.

4.5 Noisy traders. The noisy traders make random decision on buying/selling/holding coins. Such agents rep-
resent the traders who use the blockchain system for payment, instead of investment. Therefore, their trade
decisions are independent of coin price changes. Following Cocco & Marchesi (2016) who suggests that “buy
and sell orders are always issued with the same probability (by random traders)”, the decision probabilities of
noisy trader i at time t are:

PrBi,t = 0.33, (2)

PrSi,t = 0.33, (3)

PrHi,t = 0.34. (4)

JASSS, 23(3) 2, 2020 http://jasss.soc.surrey.ac.uk/23/3/2.html Doi: 10.18564/jasss.4289



Agent Variable Typea Remark Value assignment

System Nn XV Number of noisy traders 200
Nh XV Number of herd traders 200
Ng XV Number of game traders 200
T XV Set of all traders
Mn XV Number of noisy miners 100
Mh XV Number of herd miners 100
Mg XV Number of gameminers 100
M XV Set of all miners
α XV Price sensitivity to the exceed demand 4000
β XV Price sensitivity to the new coins 10
γ XV The weight parameter of miner’s stake 0.5
Wt XV New coins added to miners at time t 10
θt XV Maximum number of transactions in a block at time t 10
Pt NV Coin price index at time t P0 = 100
∆t NV Change of coin price index at time t Equation 6
Bt NV Total demand of coin at time t Equation 17
St NV Total supply of coin at time t Equation 18
Xt NV Number of total transactions at time t
Gt NV Gini index of system at time t
Rt NV Average ratio of satisfied coin request at time t

Trader i Qi XV Trader i’s maximum percentage of tradable coins 0.5
λi XV Trader i’s sensitivity to price index change 0.05
Hi XV Set of trader i’s neighbors in trade network
degi XV Degree of trader i Equation 10
mi XV Number of previous minor decisions of trader i 2
Li XV Number of considering policies of trader i 100
Ai,t NV Trader i’s cash balance at time t Ai,0 = 10000
Ci,t NV Trader i’s coin balance at time t Ci,0 = 100

PrBi,t,Pr
S
i,t,Pr

H
i,t NV The probabilities of trader i’s decisions at time t

qi,t NV Trader i’s coin trade request at time t Equation 9
ri,t NV The percentage of satisfied coin request of trader i at time t Equation 11

Miner j Uj XV Computation power of miner j U(10, 110)
Kj,t NV Stake of miner j at time t Equation 14
Vj,t NV Stake-degree value of miner j at time t Equation 16

Table 1: Agent-related variables used in the model.
a DV: decision variable; NV: endogenous variable; XV: exogenous variable. The values of DVs and NVs are updated at each
time step t; while those of XVs remains unchanged a�er initialization.
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4.6 Herd traders. Herd traders are very sensitive to the fluctuation of coin price index (denoted by Pt), because
such agents represent the coin investors. Following Liu & Serguieva (2018), the probability that a herd trader i
will hold his/her coins at time t is computed as follows:

PrHi,t =
1

1 + λi|∆t|
, (5)

where λi is trader i’s sensitivity to price index change, and

∆t = Pt − Pt−1. (6)

Therefore, if the coin price index changes sharply (i.e., |∆t| is a large number), then PrHi,t will be decreased,
which means that most of herd traders will buy or sell their coins. The probability that a herd trader i will buy
coins at time t is computed as follows:

PrBi,t = (1− PrHi,t)
e∆t

e∆t + e−∆t
. (7)

Therefore, when the coin price index grows, the herd trader i is more likely to buy coins. Consequently, the
probability of selling coins is

PrSi,t = 1− PrHi,t − PrBi,t. (8)

4.7 Game traders. In financial markets, there are always a minority of traders who try to outwit others (Tanaka-
Yamawaki & Tokuoka 2006). They buy coins while others are selling and sell coins while others are buying, for
the purpose of chasing larger profits than behaving as herd traders. Therefore, game traders make decision
based on the previous minor decisions released by the system agent.

4.8 To model the decision-making process of game traders, we assume that game trade i only considers previous
mi = 2 steps following Liu & Serguieva (2018). Since there are three possible decisions (Buy, Sell, Hold), the
number of possible two-stage minor decisions is 32 = 9, as listed in the first column of Table 2. The number
of policies to deal with all possible scenarios is 39 = 19,683. For example, the first policy can be all “B”, which
means that no matter what the minor decisions in previous two time steps are, the game trader using Policy
1st will buy coins at current time step. If Policy 2nd is applied, the game trade will sell coins only if the previous
minor decisions are “HH”.

4.9 In our model, each game trade is initialized with Li = 100 randomly-selected policies as his/her policy pool
because it is infeasible for a trader to examine all 19,683 policies. Besides, a fitness is associate with each se-
lected policy to indicate policy value. Similar to the selectionmechanism of genetic algorithm, the game trade
in each time step will select and apply a policy selected from the pool according its fitness. At time t + 1, the
fitness of some policies will be increased if the decision given by these policies is the minor decision at time t,
and will be decreased if not. By doing so, the game traders are “smarter” than other traders since the policies
are applied dynamically and the trade decisions are made adaptively.

Possible two-stageminor decisions Policy 1st Policy 2nd .. . Policy 39-th

BB B B .. . H
BS B B . . . H
BH B B .. . H
SB B B . . . H
SS B B . . . H
SH B B . . . H
HB B B . . . H
HS B B . . . H
HH B S . . . H

Table 2: Possible two-stage minor decisions and policies for game traders.

Computing coin trade request

4.10 Once trader i has decided to buy, to sell or to hold coins, his/her coin trade request at time t is expressed as
follows:

qi,t =


0, if hold;
QiAi,t/Pi,t, if buy;
−QiCi,t, otherwise.

(9)
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A positive coin request qi,t means that trader i wants to buy qi,t coins, which is the product of maximum pur-
chasable coins Ai,t/Pi,t and the percentage limit of coin tradeQi = 0.5 ∈ (0, 1). In contrast, a negative coin
request means that trader iwants to sell |qi,t| coins, which depends on his/her coin balanceCi,t andQi.

Trading with available neighbors

4.11 Due to the absence of central counter party in the blockchain system, trader i has to trade with neighbors in
his/her trade network. Each trader agent (e.g., i) has a set of neighbors denoted byHi, the number of which is
the degree of trader i, i.e.,

degi = |Hi|. (10)

4.12 Because of agent heterogeneity and di�erent trade decisions, trader i’s coin request could not be satisfied. For
example, a coin buyer seeks coin sellers fromneighbors. He/Shewill continue seeking until his/her coin request
has been fulfilled, or there is nomore available seller in neighbors. If all the neighbors are also coin buyers, then
trader i’s satisfied ratio (denoted by ri,t) is 0. Formally, the trader i’s satisfied ratio is computed as follows:

ri,t =
min

{
|qi,t|,

∑
j∈Hi

|qj,t|1(−qi,tqj,t)
}

|qi,t|
, (11)

where 1(x) is the indicator function which yields 1 when x > 0, and yield 0 otherwise. If −qi,tqj,t > 0, the
trader i and j have made di�erent (and non-hold) trade decisions, and thus they can generate a transaction.
Meanwhile, the coin requests of both buyers and sellerswill be updated, aswell as their cash and coin balances.
All the transactions will be collected by the system agent introduced later in this section.

Miner’s behavior

4.13 The miner agents are special traders. Hence, miners are also divided into three groups: noisy, herd, and game
miners. They have the same endowment (initial cash, coins, neighbors) with traders, same trade behaviors,
e.g., making trade decision, computing coin trade request, and trading with available neighbors.

4.14 However, miners have additional attributes (e.g., computation power, stake) because some of themwill be se-
lected by the system agent to create blocks and get a certain number of coins as reward. Let Pr(j) denote the
probability that miner j will be selected, Assumption H1 can be expressed as follows:

Pr(j) =
eUj∑
l∈M eUl

, (12)

whereUj is miner j’s exogenous computation power, andM is the set of all miners.

4.15 Similarly, Assumption H2 can be expressed as follows:

Pr(j) =
eKj∑
l∈M eKl

, (13)

where miner j’ stake at time t is updated as follows:

Kj,t+1 = Kj,t + Cj,t. (14)

If the miner is selected and rewarded, the stakeKj,t+1 := 0.

4.16 Finally, Assumption H3 can be expressed as follows:

Pr(j) =
eVj∑
l∈M eVl

, (15)

where the time-dependent Vj,t is defined as the stake-degree value of miner j at time t:

Vj,t = γ × Kj,t

max{Kl,t}l∈M
+ (1− γ)×

degj,t
max{degl,t}l∈M

, (16)

where γ = 0.5 ∈ (0, 1) is the weight parameter of miner’s stake.
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System’s behavior

4.17 The system agent in our model performs many important tasks. First, it creates trader and miner agents and
initializes their exogenous variables. Second, if the model meets the stop criterion, the simulation will be ter-
minated and all important data will be saved for further analysis. Third, in each time step, the system agent
needs to collect coin supply-demand information, such as theminor trade decision of agents for game traders,
the number of total transactionsXt, and the total request of buying coinsBt:

Bt =
∑

i∈T ∪M
qi,t1(qi,t), (17)

where T is the set of all traders. Similarly, the total request of selling coins St is computed as follows:

St =
∑

i∈T ∪M
−qi,t1(−qi,t). (18)

4.18 Following the popular price update rule by LeBaron (2006)who suggested that the price of an artificial financial
market is anchored to the previous price and price change is a proportion of demand/supply excess, the coin
price index can be updated as follows:

Pt+1 = Pt +
Bt − St

α
− Wt

β
, (19)

where both α and β are positive parameters of price sensitivity. Consequently, the change of coin price index
in our model depends on not only the exceed demand (i.e.,Bt − St), but also the newWt coins generated for
incentivizing miners. The coin price index will increase if the exceed demand is large. However, the creation
of new coins will suppress the coin price index. In our model, these new coins are equally given to selected
miners. In particular, givenXt transactions, dXt/θte blocks will be created where θt is the maximum number
of transactions in a block, and dxe is the ceiling function which returns the smallest integer greater than x > 0.

Therefore, for each block, the corresponding miner will receive
Wt

dXt/θte
coins.

Summary

4.19 Before we start the simulation experiments, the agents’ behavior should be scheduled in a time step for im-
plementation in the computer simulation programs. Figure 2 summarizes the sequence of events in our model
in the form of a unified modeling language behavior diagram, in which parallel vertical lines indicate di�erent
processes or objects that live simultaneously, and horizontal arrows represent messages exchanged between
them in the order in which they occur. All the components in Figure 2 have been discussed above.

Numerical Simulation

5.1 We first conduct nine experiments — (H1, H2, H3)⊗ (H4, H5, H6) — with di�erent consensus protocols and trade
network topologies. Only three trade networks are generated, the node degree distributions of which are pre-
sented in Table 3. We develop the model using Python, and perform each experiment 100 times to ensure ro-
bust outputs against randomness in initializing the computation power, miner selection, policy selection, and
so on. All the 100 independent tests of each experiment can be well compared and reproduced by assigning
{0, 1, 2, ..., 99} as random seeds, whichmeans that the di�erences among experiments almost only depend on
the configuration of its consensus protocol and trade network topology.

Trade network topology Max degree Min degree Avg. degree Median degree

Random 21 1 10.09 10
Small-world 17 6 10.09 10
Scale-free 656 1 4.27 2

Table 3: The node degree distribution of three generated trade networks.
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Figure 2: The time sequence diagram of the agent-based blockchain system. The gray rectangles represent
involved objects such as agents and the model. White rectangles and horizontal solid lines demonstrate the
events and interactions among objects, respectively.

5.2 The events presented in Figure 2 were carried out 1000 times for each test, i.e., each simulation stops at t =
1000. Therefore, the total computation load is: 9 experiments× 100 tests with di�erent random seeds× 1000
time steps. During simulation, we collect necessary data to evaluate the performance of a blockchain, which is
measured by three indicators:

• Price index of coin Pt, as updated by Equation 19.

• Request-satisfied ratioRt is the division of total satisfied coin requests by total coin requests. The larger
theRt is, the higher the trade e�iciency of blockchain system is.

• Gini index of all traders and miners, denoted by Gt ∈ [0, 1], measures the degree of wealth inequality
among agents. In our model, an agent’s wealth is the sum of his/her cash balance and coin value (i.e.,
At + Ct × Pt). A largeGt implies that rich agents receiving much larger percentages of the total wealth
of the agent population, which may change the blockchain system from decentralized to centralized.

Results and Discussion

6.1 The averaged time series data of performance indicators are illustrated in Figure 3. The simulation results at the
final time step are presented in Table 4, in which the values are averaged across 100 samples, and the standard
deviations are given in brackets. Table 4 also reports the numbers of coin buyers/sellers/holds, as well as the
total coin demand and supply requests at the final time step.

The impact of di�erent consensus protocols

6.2 From three subplots in the first row of Figure 3, we observe that three curves, which respectively denote the
three consensus protocols, are very similar. A�er about 500 time steps, however, the coin prices with PoW
consensus protocol become larger than those with other two protocols, but only in random and small-world
networks. Regarding the request-satisfied ratio, we find that the performances of PoS and DPoS are very close,
and they are greater than that of PoW, as demonstrated in the second row of Figure 3. Similar situation also
happens when we compare the performance of Gini index shown in the third row of of Figure 3.

6.3 Why is the choice of consensus protocol able to significantly a�ect the performance of blockchain system, and
why is the PoWdi�erent? We suggest that PoW forms a positive feedback between large probability of being se-
lected and better condition inminer selection; while PoS and DPoS reset the stake of current selectedminer and
thus suppress such feedback. Hence, only fewminerswill be rewardedwith new coins under PoW, because this
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Figure 3: The averaged time series data of performance indicators based on 100 samples.
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Indicator Network topology PoW PoS DPoS

Coin price index Random 67.158(2.388) 66.030(2.350) 66.316(2.376)
Small-world 67.265(2.570) 66.076(2.317) 65.991(2.031)
Scale-free 66.758(2.151) 66.460(1.403) 66.200(1.469)

Request-satisfied ratio Random 0.641(0.025) 0.659(0.027) 0.660(0.026)
Small-world 0.653(0.033) 0.665(0.026) 0.661(0.033)
Scale-free 0.115(0.022) 0.123(0.021) 0.133(0.033)

Gini index Random 0.080(0.003) 0.057(0.002) 0.058(0.002)
Small-world 0.080(0.003) 0.056(0.002) 0.056(0.002)
Scale-free 0.056(0.002) 0.037(0.001) 0.042(0.002)

# coin buyers Random 213.740(11.447) 213.390(12.513) 211.900(13.543)
Small-world 214.899(11.630) 213.640(11.988) 211.960(11.005)
Scale-free 212.200(11.903) 212.910(11.652) 213.690(13.549)

# coin sellers Random 213.830(13.512) 215.660(12.050) 216.170(12.184)
Small-world 211.566(10.327) 214.620(12.525) 214.130(11.940)
Scale-free 213.680(13.597) 213.790(10.985) 211.950(12.087)

# coin holders Random 472.430(11.335) 470.950(12.486) 471.930(12.248)
Small-world 473.535(12.838) 471.740(11.646) 473.910(11.478)
Scale-free 474.120(12.242) 473.300(11.525) 474.360(12.285)

# coin demand Random 15627.701(1162.537) 15648.812(1053.905) 15579.353(1166.880)
Small-world 15597.787(1219.318) 15813.614(1064.904) 15577.361(1065.464)
Scale-free 15785.627(1036.439) 15851.415(980.607) 15912.821(1248.891)

# coin supply Random 11582.661(972.720) 11802.796(856.230) 11799.113(791.639)
Small-world 11589.891(835.521) 11837.646(874.807) 11728.049(849.268)
Scale-free 11858.211(1127.771) 11908.552(697.611) 11794.795(912.233)

Table 4: The simulation results at the final time step under di�erent combinations of consensus algorithm and
trade network topology.
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consensus protocol chooses miners only according to their computation powers, which are fixed in our experi-
ment. In contrast, theminer under PoSorDPoSwill be unlikely to be selected in several time steps later, leading
to the situation that more miners will be rewarded. The impact caused by this di�erence is three-fold. First, it
directly changes the wealth distribution among agents. The blockchain system under PoW has the largest Gini
index because of fewerminers being rewarded, which could harm the sustainability of blockchain system. Sec-
ond, it changes the balance between total coin demand and supply, and thus indirectly a�ects the coin price
index. For example, the PoWconsensus protocol leads to fewer new-coin sellers and consequently higher price,
as demonstrated in Table 4 (coin price index, # coin sellers). Third, it also impacts the request-satisfied ratio.
the PoS and DPoS are able to enlarge the request-satisfied ratio, probably due to the smaller wealth inequality.
In other words, if agents have the similar amount of coin demand-supply request whichmainly depends on the
wealth (see Equation 9), two of them could reach a prefect deal if there is a direct trade connection between
these twoagents. Under PoWconsensus protocol, however, a rich agent has to dealwithmany relatively poorer
agents to fulfill his/her coin request, leading to the low request-satisfied ratio. Therefore, we suggest that PoS
and DPoS bring greater trade e�iciency to the blockchain system.

6.4 In sum, the consensus protocol is truly important to a blockchain system as it can significantly a�ect the coin
price index, request-satisfied ratio and Gini index. In particular, both PoS and DPoS consensus protocol yield
relatively higher request-satisfied ratio and smaller Gini index; while PoW weakens the trade e�iciency and
enlarges the wealth inequality among agents, resulting in higher coin price index.

The impact of di�erent trader network topologies

6.5 When comparing the performance of di�erent trader network topologies, we find that random network and
small-world network produce alike results, mainly due to the similar node degree distribution listed in Table 3.
In fact, it is somewhat unfair to the scale-free trade network because the number of average degree (4.27) is
smaller than that (10.09) in randomnetwork and small-world network, becausewe have tomaintain the power
law degree distribution. Therefore, scale-free trade network has serious “connectivity inequality”, which can
explain the following four phenomena.

6.6 The first di�erence is the V-shape fluctuation of coin price index in random and small-world trade networks,
which cannot be found in scale-free trade network. At the beginning of simulation, coin price drops because
of the extra coin supply, i.e., coins are rewarded to selected miners. Consequently, herd agents try to sell their
coins, which in turn decreases the coin price index. The price becomes stable or even starts to climb because
of the game trades and miners who keep buying coins when many herd agents are selling. Therefore, it is not
surprising that the standard deviation of coin price index is small in Table 4. However, the above balancing
feedback loopwill lead to the V-shape fluctuation of coin price index only if both herd and gameagents canwell
engage in trade, which is relatively easy in random and small-world trade networks due to the high connectiv-
ity. On the other side, the connectivity inequality of scale-free trade network moderates the price fluctuation
because the trade probability between herd and game agents is lower.

6.7 The smaller price fluctuation could be a favorable feature of connectivity inequality, but the cost is the much
smaller trade e�iciency. As we can see from Table 4, the request-satisfied ratio in scale-free trade network is
about 11-13%, while it is 64-66% (almost six-fold) in other two networks. This big di�erence is caused not only
by the distance between average node degree (10.09/4.27 = 2.36), but also by the connectivity inequality.
Although the high-degree node is connected with many neighbors, a deal can only be reached with his/her
partial neighbors when the node has non-zero trade request.

6.8 Due to the low trade e�iciency, the third phenomenon is understandable: the Gini index in scale-free trade net-
work is smaller than that in others. However, it is still worrying that the Gini index climbs in all combinations of
consensus algorithmand tradenetwork topology, indicating that the “winner-takes-all” situation couldhappen
in many blockchain systems.

6.9 The last finding is that in scale-free trade network, the performance di�erence between PoS and DPoS is sharp-
ened: DPoS has greater request-satisfied ratio and Gini index than PoS. Under DPoS consensus protocol, a
miner’s degree is considered for miner selection, as described by Equation 16. If a miner is the high-degree
node, he/she will be likely to be selected again even if his/her stake is reset, resulting in the greater Gini index.
Consequently, when this miner decides to buy or sell coins, the absolute coin request will be larger than that
under PoS consensus protocol, and thus more coin supply or demand requests from his/her neighbors will be
satisfied.

6.10 In sum, the trade network topology can comprehensively a�ect the performance of blockchain system. In par-
ticular, compared with random and small-world trade networks, the scale-free trade network has slight price
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fluctuation and small Gini index due to its much smaller request-satisfied ratio. In a scale-free trade network,
the DPoS consensus protocol will obtain better trade e�iciency at the cost of great wealth inequality.

The impact of di�erent node degree distributions in random and small-world networks

6.11 Since the performances of random and small-world networks are similar due to the almost identical range de-
grees, it becomes interesting to investigate the impact of di�erent node degree distributions on system per-
formance1. Therefore, we randomly generate eight more networks, the node degree information of which is
presented in Table 5. Four of new networks have smaller average node degree, while other four have larger av-
erage degree. Note that Rd3 and Sw3 are the current random and small-world networks in our model, serving
as the baseline.

6.12 Table 6 and Figure 4 report the system performance with di�erent random and small-world networks. We first
observe that the PoW consensus protocol can truly raise the coin price, increase Gini index, and lower the
request-satisfied ratio. These results are consistent with the findings when analyzing the impact of di�erent
consensus protocols. However, when all other factors are fixed, the price change is seemingly not correlated
with the average node degree of these two network types. In contrast, when the average node degree is in-
creased, both request-satisfied ratio and the Gini index monotonously grow, indicating that higher network
connectivity accelerates the flows of information and wealth. This finding can also be obtained from current
economic globalization enpowered by information technology: the participants (traders, nations) are closely
connected by the Internet; they share information and exchange values; althoughmore deals have beenmade,
the gap between the rich and the poor is enlarged.

6.13 When investigating the performance di�erence caused by trader network topology, we find that the request-
satisfied ratio is strongly a�ected by the average node degree. Subplots in the second row of Figure 4 demon-
strate that the two curves under di�erent consensus protocols cross only in the baseline cases because they
have thesameaveragenodedegree (10.09). Another finding is that randomnetworkso�enhavesameor slightly
larger Gini index than small-world networks, possibly due to the greater upper bound and smaller lower bound
of node degree, as listed in Table 5. Based on the analyses of di�erent trader network topologies and node
degree distributions, we hence may be able to draw a conclusion: connectivity inequality determines wealth
inequality.

6.14 In sum, this additional study on node degree distribution proves the findings observed from previous nine ex-
periments. We also find that average node degree is positively associated with request-satisfied ratio and the
Gini index in random and small-world trade networks. We conclude that connectivity inequality determines
wealth inequality, and thus suggest that when designing a sustainable blockchain system, it is crucial to in-
crease the connectivity among participants, bymeans of not only using better consensus protocols such as PoS
or DPoS, but also incentivizing apathetic or newly-joined participants to link with others.

Trade network
topology

Exp. Name Max degree Min degree Avg. de-
gree

Median de-
gree

Total edges

Random Rd1 11 0 5.08 5 4568
Rd2 16 1 7.14 7 6428
Rd3 21 1 10.09 10 9078
Rd4 31 4 14.12 14 12710
Rd5 31 6 18.21 18 16392

Small-world Sw1 10 3 6.00 6 5400
Sw2 14 4 8.00 8 7200
Sw3 17 6 10.09 10 9078
Sw4 18 7 12.00 12 10800
Sw5 20 9 14.00 14 12600

Table 5: The node degree distributions of generated trade networks.

Findings corroboration

6.15 Since the general findings above were obtained from our theoretical model, we attempted to confront them in
this subsection. Note that it is extremely di�icult to validating our model based on real data for the following
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Random Small-world
Indicator Protocol Rd1 Rd2 Rd3 Rd4 Rd5 Sw1 Sw2 Sw3 Sw4 Sw5

Coin price
index

PoW 66.350 66.538 67.158 66.324 67.033 67.049 67.448 67.265 67.013 66.661

PoS 65.251 65.436 66.030 66.035 65.564 65.512 66.148 66.076 65.734 65.755
DPoS 65.053 65.343 66.316 66.176 65.808 65.808 66.020 65.991 66.100 65.693

Request-
satisfied

PoW 0.460 0.548 0.641 0.716 0.763 0.534 0.599 0.653 0.683 0.715

ratio PoS 0.473 0.560 0.659 0.724 0.777 0.535 0.606 0.665 0.690 0.726
DPoS 0.473 0.560 0.660 0.732 0.773 0.543 0.614 0.661 0.695 0.720

Gini index PoW 0.077 0.080 0.080 0.084 0.086 0.078 0.079 0.080 0.083 0.084
PoS 0.054 0.056 0.057 0.060 0.061 0.054 0.055 0.056 0.058 0.059
DPoS 0.054 0.056 0.058 0.060 0.061 0.054 0.055 0.056 0.058 0.059

Table 6: The simulation results at the final time step under di�erent node degree distributions of trade net-
works.

Figure 4: The averaged performance with di�erent node degree distributions. Note that the five tick labels on
the x axis (Exp. 1-5) correspond to the five experiment names in Table 5 for random or small-world networks.
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two reasons. First, although the blockchain data is o�en available, we cannot identify the network topology
of real traders because of anonymized user information. Second, many model settings cannot be empirically
determined at present due to the high cost of data collection, preventing us from reproducing the evolution of
true blockchain systems.

6.16 To corroborate our findings, the first way is to compare with previous studies. Tanaka-Yamawaki & Tokuoka
(2006) investigated the relationship betweenm (number of steps), s (number of possible policies) and key per-
formance indicators such as the number of winners in Minority Game. They found that when s was fixed, the
system performances were similar under di�erent m > 1, except m = 1. See Fig. 3 and 4 in the paper by
Tanaka-Yamawaki & Tokuoka (2006) for details.

6.17 Therefore,weconducted four additional experiments (m = 1, 3, 4, 5), togetherwith theexistingone (m = 2), to
examine the impact of di�erentm. Each experiment ran 100 times toobtain the averagedperformance,which is
reported in Figure 5. The performance with random and small-world networks implies that whenm = 1, both
price index and request-satisfied ratio are less than those in other four cases, but the Gini index is greater2.
In other words, we have successfully reproduced the phenomenon observed by Tanaka-Yamawaki & Tokuoka
(2006). Hence, our general findings are corroborated by previous studies.

Figure 5: The averaged performance under di�erent model settings of game traders’ memory steps (m =
1, 2, 3, 4, 5; default value is 2).

6.18 The second approach is to compare with deductedmodels. Our model consists of three types of agents: noisy,
herd, and game traders/miners, denoted by N, H, and G, respectively. We consider three cases. (1) Case N.
Suppose that if ourmodel only contains noisy agents, then themodel performance can be viewed as a random
walk because their decisions are made based on equal probabilities. (2) Case N+H. Based on Case N, if we add
herd agents who buy coinswhen price grows and sell coinswhen price drops, then these agents should enlarge
the change of themodel performance, because their behavior and systemperformance form a reinforcing loop
which compound change in one direction with even more change. Therefore, we expect that the performance
of this case should be very di�erent with Case N. (3) Case N+H+G. Game traders buy coins while others are
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selling and sell coins while others are buying. Using the language of system dynamics, game traders introduce
a balancing loopwhich resists further increases in a given direction. Therefore, we expect that the performance
of this case should be very di�erent with Case N+H, and should be close to Case N.

6.19 Based on above analysis, we conducted two additional experiments (Case N, Case N+H), together with the ex-
isting one (Case N+H+G), to examine the impact of di�erent agent types. Note that in all these experiments, the
number of total agents is always 900 for fair competition, and the ratio of traders and miners is always 2 to 1
for the same reason. Each experiment ran 100 times to obtain the averaged performance, which is reported in
Figure 6. It can be observed that almost all performance changes can be described by v-shaped or inverted v-
shaped curves. In other words, we have successfully reproduced the expected phenomenon: the performance
of Case N+H+G should be very di�erent with Case N+H, and should be similar to Case N. Hence, our general
findings are corroborated by deductedmodels.

Figure 6: The averaged performance with di�erent model settings of agent types. In the tick labels on the x
axis, the words N, H, G stands for the noisy, herd, game traders, respectively.

Conclusion

7.1 In this paper, we tried to understandhowdi�erent consensus protocols and trade network topologies a�ect the
performance of a blockchain system, which has not been studied in the literature yet. To simulate a coin-inside
blockchain system, we proposed an agent-basedmodel consisting ofmultiple trader agents, miner agents, and
one system agent. Trader agents can be divided into three groups: noisy traders who make random decision
on buying/selling/holding coins; herd traders whose decisions are influenced by the fluctuation of coin price
index; game traders who buy coins while others are selling and sell coins while others are buying. The miner
agents are special traders because some of themwill be selected by the system agent to create blocks and get
a certain number of coins as reward. The rule ofminer selection is determined by the consensus protocols, and

JASSS, 23(3) 2, 2020 http://jasss.soc.surrey.ac.uk/23/3/2.html Doi: 10.18564/jasss.4289



weproposed reasonable assumptions about the relationship between consensus protocol andminer selection
probability. The change of coin price index is mainly a�ected by the total supply and demand of coins in the
system, but not all supply and demand requests will be satisfied due to the absence of central counter party.
Therefore, agents can only tradewith their neighbors in the trade network, resulting in low request satisfaction
ratio which is also impacted by the trade network topology.

7.2 We first conducted nine experiments in which PoW, PoS, DPoS consensus protocols and random, small-world,
scale-free trade networks are implemented. Experimental results show that both consensus protocol and trade
network topology can impact the performance of blockchain system. PoS and DPoS are generally better than
PoW in terms of increasing trade e�iciency and equalizing wealth. Besides, scale-free trade network is not fa-
vorable because its trade e�iciency is quite low, which moderates the price fluctuation and wealth inequality.
An additional study on node degree distribution proves the findings observed from previous experiments, and
also reveals that connectivity inequality determines wealth inequality.

7.3 Based on the above results, we suggest the following two managerial insights to blockchain practitioners. (1)
It is very important to design an appropriate consensus protocol for a blockchain system. The PoW consensus
protocol is not recommended as its trade e�iciency is low even it consumes enormous energy for computation.
Moreover, PoW leads tohigherwealth inequalitywhichwill harm thedecentralizationof blockchain systems. (2)
It is crucial to identify the trade network topology as it significantly a�ects the trade e�iciency of a blockchain
system. The scale-free network topology should not be preferred due to its high connectivity inequality. Hence,
the blockchain systemdesigner or operator should attempt to increase the connectivity among participants by,
e.g., incentivizing apathetic or newly-joined participants to link with others.

7.4 We also suggest several future directions to researchers. First, some model settings and value assignment of
some parameters can be validated based on empirical data if available. We consider to develop online and/or
o�linequestionnaires fordata collectionandstatistical analysis. Second, theagent’s behavior canbe improved.
For example, the miners’ behaviors are relatively simple because in reality they may need to make investment
decisions, consider acting dishonestly, etc. Third, current model can be extended to investigate the impact
of other factors on the performance of blockchain system, or be applied to a specific area such as blockchain-
based gamedesign. For example, it could be interesting to develop a better consensus protocolwhich allocates
newly-created coins to miners adaptively for achieving some predefined objectives. This requires an in-depth
investigation of the impact of parameterWt in Table 1. Finally, to test the robustness of our simulation results
against the simulation horizon, we reran all the experiments with 10,000 time steps3. Most of important results
discussed above still held inmost of time, except that DPoS in scale-free networks becamehighly uncertain due
to the connection inequality. This suggests that it is very important for agent-based modelers to study longer
(perhaps unrealistically longer) time frames, so that the robustness of simulation results can be confirmed (He
et al. 2019b).
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