
Reflexivity in a Di�usion of InnovationsModel
Carlos Córdoba1 and César García-Díaz2

1Departement of Industrial Engineering, Universidad de los Andes, Carrera 1 Este # 19 A - 40, 111711 Bogotá,
Colombia
2 Department of Business Administration, School of Economics and Business, Pontificia Universidad Javeri-
ana, Carrera. 7 # 40B – 36, 110231 Bogotá, Colombia
Correspondence should be addressed to ce.garciad@javeriana.edu.co

Journal of Artificial Societies and Social Simulation 23(3) 9, 2020
Doi: 10.18564/jasss.4255 Url: http://jasss.soc.surrey.ac.uk/23/3/9.html

Received: 23-08-2018 Accepted: 06-05-2020 Published: 30-06-2020

Abstract: Reflexive phenomena are usually understood in the social sciences as processes that a�ect them-
selves recursively. This stems from themutual altering relationshipbetweenparticipants and the social process
they belong to: participants can change the course of the process with their actions and a new state during the
evolution of the process can lead to a change in its participants’ behavior. This article proposes an agent-based
model of di�usion of innovations in a social network to study reflexivity. In thismodel, agents decide to adopt a
new product according to a utility function that depends on two kinds of social influences. First, there is a local
influenceexertedonanagentbyher closest neighbors that havealreadyadopted, andalsobyherself if she feels
the product suits her personal needs. Second, there is a global influencewhich leads agents to adoptwhen they
become aware of emerging trends happening in the system. For this, we endowagentswith a reflexive capacity
that allows them to recognize a trend, even if they can not perceive a significant change in their neighborhood.
Results reveal the appearance of slowdown periods along the adoption rate curve, in contrast with the classic
stylized bell-shaped behavior. Results also show that network structure plays an important role in the e�ect of
reflexivity: while some structures (e.g., scale-free networks) may amplify it, others (e.g., small-world structure)
weaken such an e�ect. The contribution of this work lies in the inclusion of evolving cognitive distinctions as
agents decide product adoption in di�usion processes.
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Introduction

1.1 Although models in Statistical Physics have inspired many interesting analogous developments in the social
sciences (cf. Castellano et al. 2009), the emergence of collective properties in social systems can be originated
through very di�erent mechanisms from those observed in natural systems (Goldspink & Kay 2007). In partic-
ular, humans can perceive environmental patterns, and adjust their mental models and actions according to
such perceptions (Castelfranchi 1998). This implies that those who compose social systems are both observers
and activate participants of the phenomena they are part of. Such a reciprocal and important relationship be-
tween human beings and social phenomena has been roughly termed “reflexivity” in the literature, with many
di�erent facets and contexts (cf. Sandri 2009). Nonetheless, current modeling e�orts are still far from incorpo-
rating reflexive behavior and from investigatingwhether or not such inclusionwould lead to important insights
with respect to simpler models.

1.2 The present work attempts to put aside the vagueness around the idea of “reflexive behavior”. Following the
works of Gilbert (2002) and Boero et al. (2008), we propose an agent-basedmodel (ABM) that incorporates one
of the possible instances of agent reflexivity. Specifically, we endow agents with the ability to recognize an
emergent pattern in a di�usion of innovations model, and explore its e�ect in the generated curves of adop-
tion rate. We find that reflexivity segments the market into groups that adopt at di�erent rates, which explains
the observed appearance of slowdowns in the adoption curves of some consumer products. Slowdowns cor-
respond to a sudden decline in adoption followed by a new takeo�, if they occur in the increasing portion of
the curve, i.e. before it reaches the global maximum; or to an abrupt growth in the number of adopters, if they
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appear in the decreasing portion. We also find that, for certain network topologies the e�ect of reflexivity in the
emergence of these slowdowns is stronger than for others.

1.3 The next sections discuss the importance of including reflexivity in the study of complex social systems, review
previous works on the topic, justify the study of reflexivity in processes of innovations di�usion, present the
model and results, and compare our work with other models that deal with similar concepts in computational
social science and the modern literature of di�usion of innovations.

Reflexivity and the Complexity of Social Systems

2.1 Physicist andNobel PrizewinnerMurrayGell-Mannonce said “Imagine howdi�icult physicswould be if electrons
could think”. In this sentence Gell-Mann seems to highlight, on the one hand, that the complexity of social
systems is not only a consequence of the amount of human beings that compose them and their interactions.
It appears to be qualitatively di�erent from the complexity observed in physical systems (cf. Goldspink & Kay
2007), whichmakes their study quite more di�icult. On the other hand, Gell-Mann points to themain source of
this di�erence: the cognitive faculties that separate human beings not only from the physical world, but also
from other species on Earth.

2.2 Specifically, symbolic thinking allows humans to create an abstract representation of the world around them
(Castelfranchi 1998; Gardenfors 2006, p. 143). Through that representation, they are able to distinguish promi-
nent features of the social processes they belong to (Goldspink & Kay 2007). This “metadata” is then incorpo-
rated into their decision strategies (cf. Goldspink 2014, p. 58), with apossible—andendogenous—modification
in behavior (Castelfranchi 1998, p. 29).

2.3 This implies that social systems present amutual altering relationship between the systemand its participants:
participants can change the course of the system with their actions, and a new state during the evolution of
the system can lead to a change in its participants’ behavior (cf. Beinhocker 2013). The term “reflexivity” is
commonly used in the social sciences to describe this kind of phenomena, i.e. processes that a�ect themselves
recursively (Sandri 2009, p. 2). Figure 1 shows an schematic illustration of this kind of processes.

2.4 It is important to note that there are two feedback e�ects involved in reflexivity (cf. Davis 2013), depending on
the starting point in Figure’s 1 schema:

1. Fromsocialphenomena to individuals: Humanbeingsareconstantlygathering informationabout changes
in the social phenomena around them. This has the potential to alter people’s abstract representation—
or mental model — of those phenomena, manifested in new ideas, perceptions or expectations about
them.

2. From individuals to social phenomena: People can act based on their new ideas or expectations, which
has the potential to alter the social phenomena that produced them in the first place.

2.5 According to this, the members of social systems take part on two di�erent but interrelated activities: obser-
vation and participation (Umpleby 2010). This is contrary to physical — but not biological (Beinhocker 2013) —
systems, whose elements are unable to change the evolution of the system by willfully deciding on a di�erent
course of action.

Figure 1: Depiction of a reflexive process
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2.6 To better appreciate the kind of complexity introduced by reflexivity in social systems, we interpret below the
development of a well known historical period as a reflexive phenomenon. The ideas of the Enlightenment —
democracy, equality and freedomof thought, among others (Israel 2009, p. vii) — promoted by several philoso-
phers during the 18th century, made people reevaluate their current system of beliefs or ideology (cf. Sandri
2009, p. 40). In turn, that renewed awareness led to profound changes in society, finishing with the French
Revolution (Israel 2009)1. Nonetheless, the altering e�ect between individuals and social phenomena did not
stop there: the social order that appeared a�erwards was the source of new ideas and social changes, among
them a strong surge of nationalism across Europe during the 19th century (Dann & Dinwiddy 1988).

Reflexivity in Computational Social Science

3.1 A general survey of the social sciences shows that reflexivity has been an important concern for researchers in
sociology (Giddens 1984; Bryant 2002), anthropology (Bourdieu & Wacquant 1992), philosophy (Gorton 2006),
economics (Soros 2013; Sandri 2009; Filimonov & Sornette 2012) and organizational theory (Argyris & Schon
1978). However, this topic has been studied mostly from a philosophical or descriptive point of view; exper-
imental (cf. Sandri 2009) and theoretical (cf. Filimonov & Sornette 2012) works about reflexivity are still very
scarce. This is probably due to the fact that the traditional approach to build scientific theories, which consists
in creating objective or observer-free descriptions of reality, can not be applied to the study of reflexivity: its
self-referential character does not allow to separate observers from the systembeing observed (Umpleby 2010,
2007).

3.2 However, some authors (Van Bavel & Grow 2017; Squazzoni 2008) consider that agent-based modeling — one
of themost widely usedmethodologies in computational social science— is better suited for this task, because
it allows to represent micro-level features and macro-level properties of social systems at the same time. Pio-
neering work on reflexivity in this area was done by Arthur (1994), in his now classical analysis of “El Farol bar”
problem; and Arthur et al. (1997) in their research on asset pricing in an artificial stock market. Arthur and col-
leagues studied how agents’ expectations about a global pattern adapt to continuous fluctuations on it; and
how those fluctuations reflect the current state of agents’ expectations. Unfortunately, their work does not in-
clude interactions among agents. Something most current research in this area considers very important is on
understanding how global patterns emerge from the combined e�ect of those interactions (cf. Epstein & Axtell
1996).

3.3 A�er that, only a handful of authors — described in detail below — have studied reflexivity by introducing and
analyzing the following feedback e�ects between emergent structures and agents’ rules of behavior: (i) down-
ward causation, which corresponds to the influence a range of values of the emergent variables have on agents’
behavior (Boero et al. 2008); (ii) second-order emergence, which is the e�ect of agents on emergent patterns
when they are endowed with the cognitive ability to recognize those patterns during the evolution of the sys-
tem (Gilbert 2002; Squazzoni 2008); and (iii) tag categorization, which is also the e�ect of agents onmacro-level
properties, but when they are allowed to organize in groups endogenously, according to tags that represent
qualities such as ethnicity or gender (Gilbert 2002; Boero et al. 2008).

3.4 First, Gilbert (2002) created several extensions of the Schelling residential segregation model (Schelling 1971)
that separately incorporate all the e�ects mentioned above. Unfortunately, he was unable to find a di�erent
outcome — i.e. other than segregation — from the original model for all of them. Then, Boero et al. (2004)
studied how the attitudes and actions of firms that belong to industrial districts are a�ected by their social con-
text. Their main result is that firms that paymore attention to their context have better economic performance
and learning skills a�er drastic technological andmarket changes. However, the intricateness of their model —
which comprises a large number of traits and behaviors for agents — makes it hard to examine the impact of
reflexivity on its outcome.

3.5 Finally, Boero et al. (2008) created an abstractmodel to show the di�erences inmacro-level outcomes obtained
when rules of behavior are defined in terms of local interactions alone, versus rules that also incorporate reflex-
ivity through downward causation and tag categorization. Themost interesting result of this work is that reflex-
ivity is the only mechanism that allows agents to find a stationary global solution to the coordination problem
posed in the model. Unfortunately, their ABM is not related to a specific social process, hence their remarks
about reflexivity cannot be easily interpreted in connection to real social systems.
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The Case for Reflexivity in Di�usion of Innovations

4.1 As shown in the previous section, reflexivity has received severalmentions in computational social science; yet,
its inclusion andexplorationof its implications onABMsare still exceptional. To expand this study,wepropose a
newABMwhose agents are able to detect an emergent pattern and change their behavior accordingly. We focus
on one of themost studied social processes: di�usion of innovations (cf. Rogers 1983; Kiesling et al. 2012; Watts
& Gilbert 2014). We hope our work and results show other researchers the fruitfulness of taking into account
reflexivity into their models, contrary to the mixed results of previous studies.

4.2 Our decision is based on three major arguments. First, innovation di�usion processes have both a rich vari-
ety of models and empirical data that we can compare our model to (cf. Watts & Gilbert 2014). Second, several
processes of innovation di�usion have not been completely understood yet. We will focus in one of them: the
appearance of slowdown periods of adoption during the evolution of the system (cf. Chandrasekaran & Tellis
2018). We consider slowdowns can occur either in the increasing or decreasing portions of the adoption rate
curve, i.e. before or a�er the curve reaches the global maximum. In the increasing portion, they are character-
ized by a sudden decline in adoption followed by a new takeo�. In the decreasing portion, they correspond to
an abrupt growth in the number of adopters.

4.3 Figure 2 shows the number of sales vs. time for di�erent consumer products in Europe, compared to the curve
for the number of adopters obtained from the Bass model (Bass 1969) — one of canonical models in the field2.
As can be seen, in some cases there is a significant slowdown a�er the initial takeo� that can not be explained
by the Bass model, which predicts that adopters increase steadily until a peak is reached, then fall to zero as
the number of remaining non-adopters becomes scarce.

4.4 And third, we consider reflexivity o�ers a novel mechanism to analyze how fluctuations in the global number
of adopters — or global network externalities, as this variable is known in the literature (Kiesling et al. 2012) —
a�ect the di�usion process. Our reasoning is the following: for some consumer products (e.g. mobile phones
(Doganoglu & Grzybowski 2007)), the relationship between global externalities and consumers involves an ob-
servation/participation cycle similar to theonedepicted in Figure 1. This hasbeendescribed in literature as “the
bandwagon e�ect” (Rohlfs 2003): the more adopters there are in the system, the more the rest of consumers
is aware of a widespread adoption pattern around them; and that awareness makes consumers’ decision to
participate in the adoption trendmore compelling, to not be le� out of it.

4.5 At this point it is worth mentioning two important things in connection with previous works on this topic.
First, there are several models that deal separately with reflexivity (Etzion 2013), the appearance of slowdowns
(Golder & Tellis 2004; Goldenberg et al. 2002) and global externalities (Goldenberg et al. 2010) in the case of
di�usion of innovations. However, to the best of our knowledge, there is no previous work that have found a
relationship between these three concepts, as we purport to show in the next sections.

4.6 Andsecond, slowdowns inadoptioncanbecausedby internalorexternal factors to thesystem(Chandrasekaran
& Tellis 2011). External factors include economic recessions andmajor technological changes (Chandrasekaran
& Tellis 2011). Internal factors result from consumer interactions and they may include a di�erence in the rate
of adoption between two sub-populations (Goldenberg et al. 2002); consumers’ heterogeneity in amarket with
two competing products (Cadavid & Cardona 2014); and cascades of adoption generated by information con-
sumers derive from the behavior of previous adopters (Golder & Tellis 2004; Geroski 2000). Following most of
themarketing literature on di�usion of innovations, we decided to include onlymarketing as an external factor
in our work. Among the internal factors, we focused on markets with a single population and a single product
to see if slowdowns can also appear in these simpler situations. Finally, we included a similarmechanism to in-
formational cascades (i.e. reflexivity), but in our case agents can take into account the decisions of all previous
adopters to form their own, instead of the decisions of a small number of initial adopters (Bikhchandani et al.
1998) or those of their neighbors (Watts & Gilbert 2014, chap. 3).

The Model

5.1 In this sectionwe present an agent-basedmodel to study the e�ects of reflexivity in theway innovations spread
in a social network. Specifically, we propose to endow agents with a lightweight cognitivemechanism to allow
them to recognize an emergent adoption pattern in the system and change their behavior according to that
awareness. Our purpose is to study the e�ects created by the inclusion of reflexivity in the system. We must
note that our model is a modified and extended version of a model previously developed by Delre et al. (2007)
(our additions to their model will be made clear below).

JASSS, 23(3) 9, 2020 http://jasss.soc.surrey.ac.uk/23/3/9.html Doi: 10.18564/jasss.4255



(a) (b)

Figure 2: Number of adopters in di�usion of innovations phenomena. (a) Real data, as reported in Chan-
drasekaran & Tellis (2018). (b) Prediction by the Bass model (Bass 1969).

5.2 At the beginning, agents are placed in the nodes of di�erent kinds of social networks — scale-free, small world
and random ones — and a small proportion δ of the them is specified as adopters of a new product introduced
in the system. Then, at each time step, a non-adopter decides to adopt this product if she comes into contact
with another adopter, and either her personal utility is greater than a certain minimal utility or she has been
persuaded to adopt because of marketing. IfDi is the decision of agent i to become an adopter, then

Di =

{
1, Ui ≥ Ui,min or λ > si

0, otherwise
(1)

whereUi is her current utility,Ui,min herminimal utility, si her susceptibility tomarketing andλ a constant that
quantifies the amount of e�ort that goes into marketing. Ui,min and si are drawn from a uniform distribution
U (0, 1), with the first value being assigned to agent i before the simulation starts and the second one every
time i is about to take her decision.

5.3 Weconsider thatUi dependson twokindsof social influences. Firstwehavea local influence,whichdetermines
how useful it is for an agent to adopt given two factors: the rate of adoption of her closest neighbors and her
individual preference3. If we call the utility derived from this influence asULi, we have that

ULi = β · xi + (1− β) · yi (2)

xi =

{
1, Ai ≥ hi
0, otherwise

(3)

yi =

{
1, pi ≤ q
0, otherwise

(4)

where β is called the coe�icient of social influence, and it weights the importance of an agent’s peers on her
decision; Ai is the fraction of adopters among her closest neighbors4; hi is the minimal fraction of adopters
among thoseneighborsnecessary toarise thedesire toadopt; pi is her individualpreference, and q is thequality
of the product she wants to adopt. Both hi and pi vary uniformly between 0 and 1, and they are set at the
beginning of the the simulation for each agent. Whereas β and q are global parameters of the model that take
values between 0 and 1.

5.4 It is important to mention that the original model of Delre et al. (2007) goes up to this point. In other words, it
describes di�usion of innovations as a process driven only by local influence, through Equations 2, 3 and 4. The
rest of this section corresponds to our additions to that model.

5.5 Besides local influence, ourmodel also incorporates a global influence, which leads agents to adopt when they
notice the appearance of a sizable portion of adopters in the population, even if they can not perceive a signifi-
cant change in their surroundings. The simplestmeasure of the current amount of adoption in the system is the
percentage of adopters. However, that does not take into account that agents are placed in a social network. In
other words, the percentage disregards the structure of social relations that arise among adopters during the
di�usion process, which depends on the underlying network topology. To overcome this limitation, wedecided
to use instead the average size of connected components in the subgraph of adopters. These components —
called components of adopters from now on, for simplicity — correspond to subgraphs composed entirely of
adopters and in which any two of them are connected by a path.
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5.6 As this average size becomes bigger, themore useful it should be for an agent to join the trend and become one
more of the crowd. Therefore, we define global utility in our model as

UG =
C

N
(5)

C =

nc∑
j=1

(nj
N

)
nj , nj > 1 (6)

where C is the (weighted) average size of components of adopters (cf. Fleiss et al. 2003, p. 441),N is the total
number of agents, nc is the number of components at time t, and nj is the number of adopters in component
j5. We do not take into account components of size one in Equation 6 because we assume that agents do not
acknowledge single individuals as categories of adopters (or non-adopters); that is, a focal agent begins to re-
alize the existence of categories when groups of two or more connected adopters (or non-adopters) appear in
the system. These categories of individuals do not necessarily need to be linked to the focal agent. As can be
seen in Figure 3, C has the nice property of taking di�erent values for di�erent network configurations, even
though the total number of adopters be the same in them.

(a) (b)

Figure 3: Average size of components of adopters C for two di�erent network configurations with the same
number of adopters (adopters are highlighted in green). (a) With 20 agents in total and two components of
adopters of sizes four and seven, we haveC = 42+72

20 = 3.25 (see Equation 6). (b) With a single component of
size eleven, we haveC = 112

20 = 6.05 (i.e. almost twice the one for the previous configuration).

5.7 When C is small, global utility also is, hence it should not play a part in agents’ decisions. However, as C in-
creases and gets closer to a certain critical mass, its e�ect should be felt more strongly and start influencing
agents accordingly. To model this, we endow agents with a reflexive capacity to allow them to recognize that
that criticalmass has been reachedor it is close to be reached. Only a�er becoming aware of that fact andbeing
exposed to it for a certain amount of time, an agent canmake use ofUG as part of her decision strategy.

5.8 Specifically, we assign agents at the beginning of the simulation a reflexivity indexαi ∼ U (0, 1), to account for
heterogeneity in their reflexive abilities. During each time step, we compare this index to an emergence factor
E, that increases in value (from 0 to 1) as the global utility approaches the critical mass. We define this factor
through the following logistic equation

E (UG) =
1

1 + e−φ(UG−Mc)
(7)

HereMc is called thecriticalmassandcorresponds to the fractionofadopters inconnectedcomponentsneeded
for agents to regard that an emergent adoption pattern has appeared in the system. φ, on the other hand, con-
trols how sharp the transition is from not detecting that the system has reachedMc to actually doing it. Both
Mc and φ are global parameters, withMc limited to have values between 0 and 1. We consider an agent be-
comes aware of the appearance ofMc when the conditionE (UG) > αi is reached. Figure 4 displays a plot of
Equation 7 and its relationship to αi.
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Figure 4: Plot of the emergence factorE as a function of the global utility (see Equation 7), along with agent’s i
reflexivity indexαi and the criticalmass of adopters in componentsMc. As an example, the figure showsa value
of αi = 0.2, above which the emergence factorE(UG) will be taken into account by the agent in her decision
to adopt. The dashed gray line corresponds to the first value ofUG for whichE > 1× 10−5. We have arbitrarily
decided that this value ofUG sets the instant fromwhich agents canmakeuse of global utility in their decisions.
Wehave called such an instant the reflexivity activation timeand its importancewill be clear onSections 6.1 and
6.3.

5.9 Finally, agents in our model do not start using the knowledge gained through reflexivity immediately a�er be-
coming aware of a global pattern. Instead, we record the amount of time that has passed since each agent
detectedMc. Only when that time is higher than a personal delay threshold, they can use global utility for their
decisions. We obtained this idea from generalized models of contagion (Dodds & Watts 2005, 2004). In these
models agents receive one dose of the contagious entity (e.g. a disease or rumor) per time step, and an agent
becomes infected when the amount of doses surpasses a threshold. In our case, we use this concept to model
that agents need to be exposed to the perception of an emergent adoption trend for a certain period before
it can have an e�ect on them. This seeks to capture the fact that people’s responses occur at di�erent time
scales because there are several psychological factors (e.g. feelings and willingness to act) that influence their
decision process (Sornette 2006).

5.10 Given Equations 2, 5 and 7, we define personal utilityUi as

Ui =

{
ULi + UG − ULi · UG, E (UG) > αi and ta > di

ULi, otherwise
(8)

where ta is the time elapsed since agent i realizes the appearance ofMc and di is her delay threshold before
including that awareness in her utility. As can be seen, Equation 8 reflects that when agents detect emergence
due to their reflexive capacity and enough time has passed to be influenced by that information, their utility
depends on the disjunction of ULi and UG6. In other words, at that point they decide to adopt according to
theirmost preponderant utility, which can be either local or global. Before that, agents’ decisions are governed
by local factors only.

Results

6.1 This sectionpresents the results obtainedby runningdi�erent simulations of themodel introduced in theprevi-
ous section,with the theparameters shown inTable 1 (unless specifiedotherwise). To generate eachplot shown
below we took the average over 2000 di�erent initial conditions and network realizations of our model7. This
was done in order to ensure that our results are independent of the randomness present in the placement of
the initial seed of adopters, the network topology and agents’ individual properties (such as their minimal util-
ity and reflexivity index). We also consider this was necessary to get very smooth curves in order to clearly
distinguish between the di�erent e�ects introduced by reflexivity in the system (see Figure 9 below).
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Parameter Variable Value

Initial proportion of adopters δ 0.003
Coe�icient of social influence β —
Product quality q —
Total number of consumers N 1,000
Sharpness of emergence awareness φ 30
Critical mass of adopters Mc 0.5
Marketing e�ort λ 0.03

Table 1: Parameters to run the model of Section 5. The values for β and q are not listed because they are varied
in most of the simulations presented below.

Without time delays

6.2 We begin with a version of the model that does not include the time delays di, i.e. di = 0. Our purpose is to
examine the generated di�usion curves for noticeable changes in the system when reflexivity is introduced on
it. Figure 5 shows the results for a scale-free network generated by the Barabási-Albert model with a new node
connected to fourpreviousones. However, this isnot theonlykindofnetworkwestudy in this section. Belowwe
also present results for Erdős-Renyi and small-world networks to analyze if the network topology has an impact
on the appearance of slowdowns. Our aim here is to illustrate how reflexivity might be a�ected by the network
topology, without necessarily referring to a real-world network. Thus, we follow a common practice in other
theoretical ABMs on di�usion of innovations (cf. Delre et al. 2007; Sáenz-Royo et al. 2015; Yavaş & Yücel 2014),
that study how the results of their respective models are a�ected by di�erent standard theoretical topologies.

6.3 As can be seen in Figure 5, di�usion curves were obtained for three di�erent values of the coe�icient of social
influence β and the product quality q, while maintaining all other values in Table 1 constant. A�er running
the model with an assorted combination of parameters, we noticed that those have the highest impact in the
di�usion process. On the one hand, the initial proportion of adopters δ and the marketing e�ort λ a�ect the
speed of di�usion without altering the results shown in Figure 5. On the other hand, the influence of critical
mass of adoptersMc and the sharpness of emergence awareness φ are discussed separately in Section 6.11.

6.4 Themost interesting fact to highlight fromFigure 5 is that, in some cases, the presence of reflexivity generates a
slowdown in adoption, i.e. a fall followed by a takeo� a�erwards (cf. Chandrasekaran & Tellis 2018). Moreover,
the resemblance between these data and those of real di�usion processes — displayed in Figure 2(a) — is evi-
dent. This is a consequence of including reflexivity in the model because it moves agents that are not ready to
adopt by local influence alone, to do it due to factors beyond their immediate vicinity.

6.5 This fact is alsoquite remarkable because itmeanswe foundan instancewhere agents endowedwith the ability
to recognize amacro-level feature of the systemcreate a newkindof emergence, i.e. a second-order emergence
(see Section 3). Without reflexivity, local interactions produce the familiar bell-shaped curve of adoption at the
macro-level, displayed in Figure 2(b). However, the addition of reflexivity causes a di�erent pattern to emerge,
which clearly deviates from the previous one: the system displays two uneven peaks in adoption instead of a
single one.

6.6 We would also like to mention two other results that can be concluded from Figure 5. First, we found di�usion
spreads faster when agents are reflexive. This is attested by the fact that all curves that include reflexivity touch
the x-axis before the oneswithout reflexivity, meaning that the system runs out of agents to adoptmore quickly
in the first case than in the second. This is to be expected because through reflexivity agents find it more useful
to become adopters, thanks to the addition of global utility to their decision strategy. And second, the time of
the second takeo� in adoption is preceded by the reflexivity activation time (see Figure 4), represented by the
dotted vertical line shown in all plots of Figure 5, and whichmarks the first moment agents start making use of
global utility thanks to their reflexive capacity. This o�ers another confirmation that our model is working as
expected.

6.7 When adopters are divided among those moved by marketing, local utility only and local or global utilities, as
shown in Figure 6, it canbe appreciated that they constitute distinct groups in the populationbecause eachone
adoptsatdi�erent timesand indi�erentproportions. Marketingand local utility adoptersdrivedi�usionmostly
at the beginning and represent a smaller amount of the population overall, whereas the bulk of consumers
adopts thanks to global utility, a�er they become aware that an adoption trend was set by the previous group.

6.8 Goldenberg et al. (2002) postulate that this phenomenon, i.e. the presence of subgroups adopting at di�erent
rates — in their case two of them, called early andmain markets — is one of the causes for slowdowns in di�u-
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Figure 5: Number of adopters vs. time for di�erent values of the coe�icient of social influence β and product
quality q, with no time delays in agents’ decisions. The dotted line corresponds to the reflexivity activation time
(see Figure 4) and all curves were obtained for a Barabási-Albert network with a new node connected to four
previous ones.

sionof innovationsprocesses. According to their reasoning, a temporarydecline in the total rateof adoptioncan
be created when di�usion moves from the early to the main market, if there is a significant di�erence in adop-
tion rates among the two groups. To support this claim, Goldenberg et al. (2002) created a cellular automata
model based on this assumption and able to display slowdowns. In their model each consumer is classified
at the start as belonging to either the early or main market, and adoption depends on the rate of communica-
tion within and among these groups. As can be concluded from Figure 6, our model o�ers additional support
for Goldenberg et al. (2002) hypothesis, but from a conceptually di�erent standpoint. Specifically, there is no
artificial distinction between early and main consumers in our model; instead, these categories are generated
endogenously during the evolution. Besides, our model does not impose di�erent communication strategies
between agents, i.e. the influence of each agent on the others is exactly the same.

Figure 6: Number of adopters vs. time discriminated by their criteria to adopt for the data plotted in Figure 5(a).
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With time delays

6.9 In this sectionwe turn our attention to the case of having timedelays in agents’ inclusionof global utility in their
decision to adopt, a�er detecting a macro-level pattern in the system. At time t = 0, each agent is assigned a
delay threshold di (see Equation 8) drawn randomly from the following discrete distribution

f(d) =


0.1, d = 5

0.5, d = 12

0.4, d = 30

(9)

Equation 9 implies that 10%of thepopulationhas towait 5 simulation cycles beforemakinguseof global utility,
50%waits 12 cycles and the remaining 40%waits 30 cycles. These values were selected according to themean
time taken for the di�usion process to reach the entire population without reflexivity for di�erent values of β
and q, using the parameter values shown in Table 1.

6.10 The results are shown in Figure 7. As can be seen, the inclusion of delays causes a very interesting e�ect: the
appearance of multiple slowdowns along the evolution. A similar phenomena has been observed in the adop-
tion rate curves that span several technological generations of the same product (e.g. DRAM chips (Bass & Bass
2001) or music cassettes (Guseo & Guidolin 2015)). However, our model shows that these slowdowns can be
caused not only by exogenous changes to the system (i.e. a change in technology), but also endogenously by
the way di�usion takes place on it.

Parameters that control reflexivity

6.11 Here we inspect the parameters that control reflexivity to assess their impact on di�usion. We only consider
variations in the critical mass of adoptersMc because the results for the sharpness of emergence awareness φ
are very similar. As shown in Figure 8(a), which uses the same time delay distribution f(d) of previous sections,
the main e�ect induced by alteringMc is a modification of the reflexivity activation time: the higher the value
ofMc, the longer it takes for reflexivity to enter into the picture.

6.12 This is not a surprising result, given the way our model was defined in Section 5. However, Figures 8(b) and (c)
show amore interesting one. In Figure 8(b) we modified f(d) so that the delay with highest probability be five
time steps instead of twelve. This change makes an slowdown appear forMc = 0.6, and to vanish the one the
system displays forMc = 0.5 in Figure 8(a). We think this occurs because forMc = 0.6 the delay with highest
probability is longer than the elapsed time between the reflexivity activation time and the peak of adoption
without reflexivity, whereas forMc = 0.4 andMc = 0.5 that delay is shorter. Figure 8(c) o�ers an additional
confirmation of this assertion. In this case 50% of the agents wait 15 time steps before using reflexivity tomake
their decisions, which is long enough to pass the peak of adoption and generate a slowdown forMc = 0.4, as
well as for all other values.

6.13 These results imply that the presence of slowdowns depends on a subtle interplay between the time delay dis-
tribution, the reflexivity activation time, and the time at which occurs the peak of adoption without reflexivity.
In essence, a considerable amount of the population (e.g. 50%) needs to first use reflexivity a�er the peak of
adoption to create a slowdown period. Else, reflexivity only makes di�usion spread faster.

The βq space and di�erent network structures

6.14 Our last analysis is concerned with an exhaustive exploration of the parameter space composed by the coe�i-
cient of social influence β and product quality q, to understand if there are specific conditions that favor the
appearance of slowdown periods. For that we varied β and q from 0 to 1, in steps of 0.1, and registered if the
obtained di�usion curve displays one out of three observed cases: one ormore slowdowns, no slowdown, and
a “bending region”. We call “bending region” to a region where the curve changes direction without a drop
and surge in adoption. Figure 9 shows typical realizations of these cases. To widen the results, we decided to
use several types of networks: a scale-free network with with a new node connected to two existing ones, a
small-world network generated by the Watts-Strogatz model with an average of four neighbors per node and
randomness of 0.1, and an Erdős-Renyi network with a connection probability of 0.004. In all cases, the param-
eters of Table 1 are maintained constant and f(d) is the same distribution used in Section 6.arabic@̧subsec.

6.15 Figure 10 displays the obtained results. As can be seen, the Erdős-Renyi topology is themost favorable to slow-
downs, followed closely by the scale-free one. In contrast, small-world networks displaymuch less slowdowns
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(a) For all curves q = 0.3

(b) For all curves β = 0.6

Figure 7: Number of adopters vs. time for di�erent values of the coe�icient of social influence β and product
quality q, with time delays in agents’ decisions. The dotted line corresponds to the reflexivity activation time
(see Figure 4) and all curves were obtained for a Barabási-Albert network with a new node connected to four
previous ones.

and bending regions. Previous work by Sáenz-Royo et al. (2015) found that di�usion in Erdős-Renyi and scale-
free networks is very similar — in their case with respect to the probability of adoption by the whole popula-
tion and the time for that to happen — and that Erdős-Renyi networks show a slightly higher probability of full
adoption than scale-free ones. They also found that this behavior can be clearly di�erentiated from the one in
completely regular networks. In our case, the results shown in Figure 10 are in linewith Sáenz-Royo et al. (2015)
findings. That is because the presence of slowdowns in Erdős-Renyi and scale-free networks follows a similar
pattern, and that pattern is very di�erent from the behavior on small-world networks, whose structure is closer
to a regular one for small values of randomness (as it is our case).

6.16 Another important finding that canbeconcluded fromFigure 10 is that slowdownsarenot guaranteed toappear
under all circumstances. Their presence is highly contingent, depending not only on the network topology but
also in thewaydi�usion takesplaceon that topology. That is determinedbyamultitudeof factors: the values of
β and q, for local influence; and thoseofMc,φand f(d), for global influence. This could explainwhy slowdowns
are only observed on somemarkets and periods of time (Chandrasekaran & Tellis 2018), instead of in all social
systems where an innovation is being adopted.

Discussion

7.1 The purpose of this section is to compare the model introduced in this paper with previous ABMs that include
reflexivity andmodels that deal with the e�ect of the total number of adopters in a consumer’s decision, known
as global network externalities (Peres et al. 2010) (see Section 4 for the relationship between them and reflex-
ivity).

7.2 On the one hand, as described in Section 3, very few ABMs have been proposed to study reflexivity and its
e�ect in social systems, despite its acknowledged importance. Compared to them, (i) our model allows to turn
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Figure 8: Number of adopters vs. time for di�erent time delay distributions in agents’ decisions. All curveswere
obtained for a small-world network generated by the Watts-Strogatz model with an average of four neighbors
per node, β = 0.3 and q = 0.6.

Figure 9: Examples of di�usion curves with respect to the presence of slowdown periods: (a) One ormore slow-
downs; (b) a “bending region”, i.e a regionwhere the curve changes directionwithout a drop and surge in adop-
tion; and (c) no slowdowns. These cases cover all observed curves in our simulations. In all these examples we
used a small-world network generatedby theWatts-Strogatzmodelwith an averageof four neighbors per node,
randomness of 0.1, product quality of q = 0.6 and all other parameters with the same values shown in Table 1.

reflexivityonando�,which leads toabetterunderstandingof its impact (in contrast toBoeroetal. 2004); and (ii)
itwasdesignedbycarefully considering the featuresof a real social process,whichmakes it easier to interpret its
results in connection to empirical data (in contrast to Boero et al. (2008)). Although including reflexive behavior
in ABMs is a challenging endeavor, we hope thesemodeling choices can give better methodological insights to
other researches on how to address it.

7.3 On the other hand, there are also very fewmodels that analyze global externalities in innovation di�usion pro-
cesses (Kiesling et al. 2012). However, some authors (Peres et al. 2010) consider they are very important to
understand adoption in markets such as mobile phones (Doganoglu & Grzybowski 2007) and other consumer
electronics (Stremersch et al. 2007), where it becomes more profitable to adopt a new product as the number
of its users increases (Rohlfs 2003).

7.4 The most discussed model on this topic was proposed by Goldenberg et al. (2010) (cf. Kiesling et al. 2012, p.
27). These authors created a cellular automata where agents decide to adopt with a probability that depends
onmarketing and the local amount of adopters present. However, adoption only takes place when (i) an agent
receives news about the innovation through word-of-mouth; and (ii) the total percentage of adopters in the
system is greater than a personal threshold. The main finding of Goldenberg et al. (2010) is that network exter-
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Figure 10: Presence of slowdown regions in the di�usion curves obtained when varying β and q from 0 to 1, in
steps of 0.1, for three di�erent types of networks.

nalities cause a “chilling” e�ect, i.e. a prolonged delay in adoption, followed by a sudden surge.

7.5 As Goldenberg et al. (2010), we also consider that network e�ects should not be triggered by any number of
adopters. Instead, global externalities shouldonlyplay apart in agents’ decisionsonceapersonal thresholdhas
been reached. Goldenberg et al. (2010) base their assumption in the collective action literature (cf. Granovetter
1978), whereas we consider it an e�ect of the reflexive capacity of agents.

7.6 Nevertheless, there are important di�erences between the two models. First, in our model adoption can take
placebefore global externalities start influencinga consumer, thanks to local utility andmarketing. Weconsider
this better describes the early phase of di�usion, during which consumers are more driven to adopt due to
personal reasons than collective ones (see Sections 6.2-6.8).

7.7 Second, global externalities inGoldenbergetal. (2010) establishaconstraintonwhenadoptioncanstart,whereas
in ourmodel they correspond to a factor (given by the global utilityUG) that increases the utility to adopt. Rust
(2010) and Stremersch et al. (2010) heavily criticized that the main result presented in Goldenberg et al. (2010),
i.e. the “chilling” e�ect of externalities, is built into themodel itself. They argued that, since agents are required
tomeet an extra condition before being able to adopt, it is expected that di�usion be slower with than without
externalities. Our results show the opposite e�ect, i.e. di�usion encompass the entire population in less time
with than without reflexivity (see Sections 6.2-6.8). When agents are endowedwith the capacity to be aware of
a global adoption pattern and to include that knowledge in their decisions, they feel more inclined to do it, re-
gardless of what is happening in their surroundings. Therefore, agents that would not become adopters under
normal circumstances— i.e. without reflexivity— , are now compelled to do it, and thatmakes di�usion spread
faster.

7.8 Another ABM that considers the role of global externalities in di�usion of innovations is the one of Etzion (2013).
In this model agents need to become aware of an emergent pattern before they can adopt. A�er doing that,
their decision is based on a utility function that depends on the current number of adopters in the system,
which is very similar to our model. Although Etzion (2013) model is very interesting (e.g. it can deal with the
limited and full di�usion cases and agents are able to drop their current adoption and re-adopt again) it has
two main di�erences with our work: agents do not interact among themselves and they are not connected
through a social network. Both limitations prevent to analyze how the influence of agents’ decisions on one
another a�ects the way di�usion takes place in the system.

Summary and Concluding Remarks

8.1 In this paper we have explored the implications of including reflexive behavior in one of themost studied social
process: di�usion of innovations. Using a previous agent-based model as starting point (Delre et al. 2007), we
added to it a global utility that depends on the total number of adopters and a reflexive capacity to agents that
allows them to recognize an emergent adoption pattern, even if they can not perceive a significant change in
their surroundings. With this, an agent decides to adopt if she finds thedi�usingproduct useful according to the
most preponderant of two utilities: a local one, that depends on the number of adopters among her neighbors
and her personal preference; and the global utility described above, which is included in her decision only a�er
she becomes aware of the widespread trend. This section summarizes the main results of our work.
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8.2 First, we consider our ABM is a good representation of a reflexive process because it captures the mutual alter-
ing relationship between a social system and its participants, as depicted in Figure 1. The e�ect of the system
on agents is the following: the states the system reaches through its evolution— represented by the total num-
ber of adopters — change the agents’ perception of what is happening in their environment, when they detect
an emergent trend at a particular state. Then, this awareness leads agents to a course of action they would
have not taken before, if global utility turns them into adopters. Finally, if enough agents modify their behav-
ior accordingly, there appears their e�ect on the system: the emergence of a di�erent, second-order pattern,
characterized by slowdowns along the adoption rate curve.

8.3 Second, we found reflexivity partitions agents in sub-populations that adopt at di�erent rates, according to
(i) the criteria they use (marketing, local utility only, and local or global utilities), and (ii) the amount of time
they need to be exposed to the awareness of an emergent trend before they can use that information. The
presence of such sub-populations has been proposed before (Goldenberg et al. 2002) as one of the causes for
the observed appearance of slowdowns in the adoption of several consumer products (see Figure 2). However,
previous studies only assume that presencewithout explainingwhy the population is segmented in such away.

8.4 Third, a novel finding shown by our model and — to be the best of our knowledge — not reported before, is
the existence of a link between global network externalities (i.e. the e�ect of the total number of adopters in a
consumer’s decision) and slowdown periods of adoption. Until now, it was assumed that global externalities
couldonly increase (Rust 2010) or decrease (Goldenberg et al. 2010) the speedof di�usion. In contrast, we found
that global externalities can generate slowdowns under the appropriate conditions.

8.5 And fourth, we have shown that the inclusion of reflexivity is not enough to create slowdowns. Their appear-
ance is a contingent phenomenon, i.e. it depends on the conjunction of other factors as well: (i) The network
topology; (ii) the first moment any agent is capable of detecting an emergent pattern in the system, called by
us the reflexivity activation time; and (iii) the distribution of time delays before agents can use global utility in
their decisions.

8.6 For future work is le� the use of more realistic network topologies (cf. Cointet & Roth 2007) and empirical data
to calibrate our model parameters and compare its results with real innovation di�usion processes.

Model Documentation

The model has been built in Python. In the Appendix, we reported the pseudo-code algorithm used to simu-
late the model. The code is available on the CoMSES computational model library at this link: https://www.
comses.net/codebases/d4055760-2e55-4399-a81d-8f1f7ea6ae3c/releases/1.0.0/.
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Notes

1As the the latest scholarship on the Enlightenment clearly establishes it: “[T]he rise ... of ... Enlightenment
... is notmerely relevant to the advent of the French Revolution ... but arguablymuch themost important factor
in any proper understanding of how and why the Revolution developed as it did” (Israel 2009, p. 223-224).

2The Gompertz model — another important model in marketing (cf. Michalakelis et al. 2008) — displays a
similar behavior.

3This term accounts for the fact that an agent can decide that the product suits her personal needs even if
their friends have not adopted it yet.

4If a node has no neighbors, this value is zero.
5Note that UG can only take values between 0 and 1 due to the way it is defined. This will be important in

the definition of personal utility below.
6SinceULi andUG vary between 0 and 1, the first part of Equation 8 corresponds to a disjunction in proba-

bility theory.
7Although not clearly visible, all curves also include one standard deviation at each point around them.
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Appendix: Pseudo-code of themodel studied in this paper

This section presents the algorithm we developed to simulate the model introduced in Section 5. It is written
in pseudo-code and divided in two parts: Algorithm 1 describes how we initialize the social network where the
innovation di�usion process takes place; and Algorithm 2 describes how this process evolves in the network.

Algorithm 1 Pseudo-code for the model introduced in Section 5 — Part I: Initialization
Inputs:
N : Total number of consumers
Ne: Number of neighbors per consumer
r: Network randomness
f(d): Time delay distribution
δ: Initial fraction of adopters

1: G← GENERATE-GRAPH(N,Ne, r) . G can be Erdős-Renyi, small-world or scale-free
2: . This function uses the parameters it receives if applicable
3: Set agents’ attributes
4: for node in G do
5: node.adopter ← 0 . 0 is non-adopter, 1 is adopter
6: node.h← U (0, 1) . Adopters threshold among neighbors
7: node.p← U (0, 1) . Product preference
8: node.U ← 0 . Current utility
9: node.Umin ← U (0, 1) .Minimal utility
10: node.α← U (0, 1) . Reflexivity index
11: node.ta ← 0 . Time elapsed since initial awareness
12: node.d← f(d) . Time delay until usingUG. See Equation 9
13: end for
14: Set initial seed
15: for node in G do
16: if U (0, 1) < δ then
17: node.adopter ← 1
18: end if
19: end for
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Algorithm 2 Pseudo-code for the model introduced in Section 5 — Part II: Evolution
Inputs:
tmax: Maximum time to run the simulation
φ: Sharpness of emergence awareness
Mc: Critical mass of adopters
q: Product quality
β: Coe�icient of social influence
λ: Marketing e�ort
Rx: True if reflexivity is turned on, false otherwise

20: for t← 1, tmax do
21: if Rx then
22: Compute global utility
23: UG ← C/N . See Equation 5
24: E (UG)← 1/

(
1 + e−φ(UG−Mc)

)
. See Equation 7

25: end if
26: for node in G with [node.adopter = 0] do
27: Compute local utility
28: n← NUMBER-OF-NEIGHBORS(node)
29: a← NUMBER-OF-ADOPTERS-AMONG-NEIGHBORS(node)
30: if a > 0 then
31: if a/n ≥ node.h then . See Equation 3
32: x← 1
33: else
34: x← 0
35: end if
36: if node.p ≤ q then . See Equation 4
37: y ← 1
38: else
39: y ← 0
40: end if
41: UL ← β · x+ (1− β) · y . See Equation 2
42: else
43: UL ← 0
44: end if
45: Compute personal utility
46: if Rx and E (UG) > node.α then . See Equation 8
47: node.ta ← node.ta + 1
48: if node.ta > node.d then
49: node.U ← UL + UG − UL · UG
50: else
51: node.U ← UL
52: end if
53: else
54: node.U ← UL
55: end if
56: end for
57: Adoption
58: for node in G with [node.adopter = 0] do . See Equation 1
59: a← NUMBER-OF-ADOPTERS-AMONG-NEIGHBORS(node)
60: if node.U ≥ node.Umin then . Adoption by utility
61: node.adopter ← 1
62: else if a > 0 then . Adoption by marketing
63: s← U (0, 1)
64: if λ > s then
65: node.adopter ← 1
66: end if
67: end if
68: end for
69: end for
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