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Abstract: Network scientists have proposed that infectious diseases involving person-to-person transmission
could be e�ectively halted by interventions targeting a minority of highly connected individuals. Could this
strategy be e�ective in combating a virus partly transmitted in close-range contact, as many believe SARS-
CoV-2 to be? E�ectiveness critically depends on high between-person variability in the number of close-range
contacts. We analyzed population survey data showing that the distribution of close-range contacts across in-
dividuals is indeed characterized by a small proportion of individuals reporting very high frequency contacts.
Strikingly, we found that the average duration of contact is mostly invariant in the number of contacts, rein-
forcing the criticality of hubs. We simulated a population embedded in a network with empirically observed
contact frequencies. Simulations showed that targeting hubs robustly improves containment.

Keywords: Agent-BasedComputationalModels, ComplexSocialNetworks, VirusDi�usion, ImmunizationStrate-
gies, Epidemiological Models

Introduction

1.1 Most policy measures that are currently used or considered to contain the novel coronavirus SARS-CoV-2 are
aimedatbroadgroupsof citizens (children, elderly, contactprofessions)or categoriesofmeetingplaces (schools,
restaurants, airports) (Zhang et al. 2020). As such they leave large chunks of the workforce idling or operating
below capacity for extensive periods (Meidan et al. 2020). Suchmassmeasures are widely viewed as necessary
but are costly. They have been shown to have a negative impact on national economic growth for several coun-
tries (Pichler et al. 2020, pp. 17–20) through both forced industrial inactivity and consumer behavior change
(see Goolsbee & Syverson 2020).

1.2 At the same time, a fair amount of evidence now suggests that the spread of many person-to-person viruses is
driven by a small fraction of individuals, sometimes referred to as “super-spreaders”, who are responsible for
the vast majority of secondary infections (James et al. 2007, Figure 1; Stein 2011; Wong et al. 2015; Sun et al.
2014. Many infected people appear to a�ect no one else. SARS-CoV-2 follows the same pattern. Estimates of
the over-dispersion parameter K — which, unlike population-level estimates of the basic reproductive num-
ber,R0, quantifies heterogeneity across individuals in their capacity to generate secondary cases (Lloyd-Smith
et al. 2005), consistently suggest that between 10% and 20% of cases are responsible for between 80% and
90% of secondary infections (Endo et al. 2020; Bi et al. 2020; Adam et al. 2020; Miller et al. 2020). Individuals
generating an unusually high number of secondary infections are thought to have played a pivotal role in SARS-
CoV-2 outbreak inmany countries (for an overview, see Kay 2020; for a case study, see Hamner et al. 2020. This
suggests that if one could identify and protect super-spreaders, the virus may be controlled through focused
interventions at lower overall cost.

1.3 The sources of high dispersion in individuals’ capacity to generate secondary infections are not well-known.
Some emphasize individual-level heterogeneity in infectiousness, such as di�erences in viral load, length of
infection, and asymptomatic infection (Woolhouse et al. 1997; Galvani & May 2005; Cho et al. 2016). Others
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relate superspreading to specific contextual settings in which infectious individuals infect many others at once
— so-called “superspreading events” (James et al. 2007; Hodcro� 2020). One way this may happen is that the
buildings in which events take place facilitate airborne transmission by dispersing small droplets from any one
source to many targets (Morawska & Milton 2020).

1.4 Here we consider a third possibility, namely that the phenomenon of superspreading in SARS-CoV-2 has a
network-structural basis. Some individuals may have jobs, living conditions, or social behavior that generate
many more close-range contacts than others. Their status as “hubs” in the network of close-range contacts
could render them disproportionately instrumental in viral propagation, as they are both more likely to con-
tract the virus, and once they have it, pass it on to more others. In some cases, these high levels of contact de-
rive from specific roles that these individuals play in an event, e.g., when a waitress or priest transmits a virus
through serial dyadic contact. Without consideration of network structure, we may be inclined to blame the
event and label it a super-spreader event post hoc. Yet, an appreciation of the network structure of close-range
interactions within these events would suggest a targeted policy protecting high-contact individuals, where
undi�erentiated event-level policies would impose high costs on large groups (Manzo 2020).

1.5 Theoretical studies have shown that when networks are characterized by high interpersonal variability in the
number of contacts and thus the existence of hubs, epidemics may occur at a much lower per-contact trans-
mission probability (Barrat et al. 2008, ch. 9). Under these circumstances, targeting hubs with transmission-
reducing interventions (e.g., protective measures, behavioral restrictions, testing and quarantining if positive,
treatment, and eventually vaccination) may e�ectively control viral spread in the population at large (Dezső &
Barabási 2002; Pastor-Satorras & Vespignani 2002).

1.6 The feasibilityof thisapproachcriticallydependson theactual interpersonal variability in transmission-relevant
contact. Early mathematical models of hub-targeting (Dezső & Barabási 2002; Pastor-Satorras & Vespignani
2002; Cohen et al. 2003) as well as recent applications of this approach to SARS-CoV-2 (Herrmann & Schwartz
2020a) assume a scale-free spreading network, while empirical networks o�en deviate from this assumption
(Jones & Handcock 2003; Clauset et al. 2009; Stumpf & Porter 2012; Broido & Clauset 2019). Nevertheless,
degree-targeting may still be an e�ective strategy in the fight against SARS-CoV-2, if close-range contact are
highly skewed, with themajority of close-range contacts in society involving a small minority of individuals, as
has been found for online contacts (Barabási & Albert 1999; Adamic &Huberman 2002; Vázquez et al. 2002) and
sexual contacts (Liljeros et al. 2001; Trewick et al. 2013; Little et al. 2014).

1.7 The approach to network intervention through preferential targeting of hubs has been elaborated over the
years, both with respect on how to measure hubs (see Kitsak et al. 2010; Montes et al. 2020) and how to reach
them (see Rosenblatt et al. 2020) and it has also recently been applied to SARS-CoV-2 (Herrmann & Schwartz
2020a). However, this literature overwhelmingly relies on observed or simulated networks that are of question-
able relevance for the di�usion of a virus such as SARS-CoV-2 for which direct close-range contacts aid droplet
transmission (Mittal et al. 2020). Studies based on short-range Bluetooth data, showing high interpersonal vari-
ability in the volumeof face-to-face interactions (Mones et al. 2018; Sapiezynski et al. 2019) are promisingbut for
now, they only concern social encounters within small populations in single and specific social settings (such
as primary schools, hospitals, academic meetings or university) (see Cencetti et al. 2020).

1.8 The objective of this paper is to assess the e�ectiveness of hub targeting versus undi�erentiated interventions
for controlling SARS-CoV-2 spread in networks with empirically calibrated frequencies of close-range contact.
For this reason, we draw on nationally representative datasets containing information on close-range contacts
in variousmeeting locations and the duration of each contact. Studies have shown that the spreading capacity
of seeding hubs may be reduced when networks exhibit high clustering (see, in particular, Montes et al. 2020,
Figure 3, panel 3). As a result, we also aim to assess whether the e�ectiveness of hub targeting vis-à-vis un-
di�erentiated intervention on networks with empirically-calibrated degree is stable across di�erent network
features for which lack of appropriate data impedes calibration.

1.9 The paper is organized as follows: From the survey data we derive degree distributions for close-range contact
on a country scale (Section 2). We then impose this empirical degree distribution on a synthetic social net-
work with a tunable level of clustering (Sections 3.2-3.12). In this network, we introduce a virus with the main
empirical features of SARS-CoV-2, and by an agent-based implementation of a SEIR model, we allow the virus
to spread through the network under various transmission conditions (Sections 3.13-3.17). We have designed
various ways of reaching the best-connected nodes (Sections 3.18-3.21), and calculate how the trajectory of the
epidemic varies under these interventions (Section 4. Fromour simulationmodel, we have derived the hypoth-
esis that interventions—suchas vaccinations,medical testing, quarantining-if-positive, protections inhigh-risk
professions, and informational campaigns—would bemore e�ective when targeting hubs rather than random
individuals (Section 5). We conclude by discussing implications and limitations of the study (Section 6).
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Data Analysis

2.1 We draw on data from COMES-F, a survey conducted in 2012. In the survey a representative sample of about
two thousand French residents report their close-range contacts (Bèraud et al. 2015). The COMES-F survey data
have several features that make it attractive for our current purpose. First, compared with sensor-based digital
data, representative survey data allow a comprehensive picture of contacts across social settings in the target
population, thus generating a representative degree distribution. Second, among the major general popula-
tion contact surveys conducted in Europe during the last decades (for a detailed comparative overview, see
Hoang et al. 2019, pp. 730–733), COMES-F is the most recent, with the largest representative sample, based on
paper diary, allowed respondents to report up to 40 contacts in their contact diaries, and, for each self-reported
contact, recorded location, duration, and frequency. In addition, specific care was given to collect high-quality
contact information for respondents aged 0-15. Finally, a recently conducted survey in six countries that we
analyze in the Appendix A does not use the more thorough contact diary method, instead asking respondents
for an estimate of the number of contacts (Belot et al. 2020).

2.2 Contact survey data are routinely employed by epidemiologists to build social contact matrices, i.e., average
contacts between age groups by places like school, public transportation, or home (Prem et al. 2017). COMES-F
have been frequently exploited in this way within compartmental models of SARS-CoV-2 spread in France (see,
for instance, Di Domenico et al.; Roux et al. 2020; Salje et al. 2020a; Walker et al. 2020. In contrast to prior use
of the data, we rely on the entire cross-individual heterogeneity of the observed distribution of close-range
contacts. We implement this distribution in a social network model of disease propagation (Section 3), so that
we can evaluate the e�ectiveness of interventions targeting high-contact individuals (Section 4).

2.3 TheCOMES-F surveywas conducted in Franceduring the first half of 2012. An initial sample of 24,250wasdrawn
from the French population excluding overseas territories through random-digit dialing of landline andmobile
numbers. Using quotas for age, gender, days of the week and school holidays, 3,977 subjects who accepted to
participate, were sent a contact diary to complete. 2,033 (51%) contact diaries were returned (participants’ age
and household size were used as sampling weights to maintain representativeness). In these diaries, partici-
pants were asked to keep track of all short-range contacts over the course of two full days, and report on sex
and age of these contacts, meeting context, and contact duration. Respondents were explicitly instructed to
consider as a short-range contact someone they talked to at less than two meters, possibly including physical
contact. To relieve the reporting burden, respondents were asked to record in the contact diary no more than
40 close-range contacts. For respondents aged less than 15, an adult member of the household completed the
diary.

2.4 Specific questions involved respondents currently in employment. In particular, they were askedwhether they
regarded their occupation as especially exposed to short-range contacts. This turned out to concern 257 re-
spondents. These respondents had to indicate the average number of persons they estimated to meet each
day because of their job. Should this number be higher than 20, those specific respondents were asked to enu-
merate only non-professional contacts when filling in the contact diary.

2.5 Throughout the paper we will refer to diary-based contacts and job-related extra contacts respectively to dif-
ferentiate the two types of measurement processes. This is an important distinction. It draws attention to one
limitation of contact-diary based data collection. For the vast majority of respondents, contact diaries only
allow accurate estimates of the total volume of close-range contacts, but could not precisely distinguish the
specific type of each of these contacts (family members, friends, co-workers, clients, unknown persons and so
on). In this respect, COMES-F is not unlike other epidemiological diary-based contact surveyswhere onlywhere
a contact occurs is recorded, but not the precise nature of the contact (see, for instance, Mossong et al. 2008;
Danon et al. 2013. Following previous analyses of COMES-F data Bèraud et al. 2015, we investigated separately
diary-based contacts and job-related extra contacts and explain later how we combined them to calibrate our
simulations.

Contact volume and duration

2.6 Contact distributions are shown in Figure 1. Through the contact diaries, the 2,033 individuals reported a total
of 19,728 per-day close-range contacts (le� panel). The median number of contacts was 8 whereas the average
was approximately 9.5. Respondents reporting a number of close-range contacts greater than twice (n =175)
or even three times (n =36) the mean were not rare. The distributional character of the right skew is captured
by the distribution of close-range contacts above 19 not significantly deviating from the 95% confidence level
from a power law with a scale parameter 5.1 (n =175)1. Variance and skew were more pronounced among
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respondents who declared extra-job related contacts (n = 257) (Figure 1’s right panel). Overall, they reported
14,971 additional contacts. For those contacts the median was 30 whereas the average was approximately 58.
The tail of thedistribution inFigure 1above 17didnot significantlydi�er fromapower lawwithascaleparameter
2.5 (n =190).

2.7 The central tendencies of both distributionswere consistent with those found in other diary-based contact sur-
veys (see Hoang et al. 2019, pp. 727–728). In both cases, averages were clearly driven by a small fraction of
individuals reporting high numbers of short-range contact. The feature of high distributional skew is visible in
recent smaller-scale contact surveys conducted in China (Zhang et al. 2019, 2020). More particularly, the power
law scale parameter estimates were similar to those found for the UK Social Contact Study (Danon et al. 2012,
2013). In Appendix A we show that this variability persisted withinmajor demographic categories. Here, we de-
scribe rather the relationship between the volume of contacts and their duration. As we treated high-contact
individuals as leverage for e�ective intervention in viral di�usion dynamics, it is important to examine this re-
lationship: the superspreading potential of hubs could be reduced if contacts were on average much shorter.

2.8 From a social network perspective, one could expect a negative correlation. As time and cognitive resources
needed to sustain independent social relationships are limited (see, for instance, Dunbar 2016), individualswith
many contacts may on average spend less time per contact. If this were the case, then hubs may expose and
be exposed to more people, although per contact could face less risk, reducing the criticality of hubs in the
contagion.

2.9 Face-to-face, close-range contacts may partially escape this logic, however. Let us consider, for instance, a
dance instructorwhospends tenhoursaday inaclosed roomgivingprivate lessons to tendi�erent small groups
of four dancers during one hour. Such a respondentwould typically declare to experience 40 contacts with skin
touch per day for one hour and would probably add to this some contacts at home for more than one hour a
day. Thus, this person would combine high contact frequency with high average contact duration. Large-scale
surveys of social encounters indeed documented that these situations are frequent. It is common for people to
be involved in di�erent types of physically-closed social interactions — e.g., in family, friendship groups, class-
rooms, dance clubs, choir rehearsals, stadium visits and manual team labor–, sequentially or simultaneously,
at di�erent time of the day, sometimes with more than one person at a time (see, in particular, Danon et al.
2012, Figure 1a and Figure S2). When face-to-face interactions are at stake, individuals combine contact time
across multiple and possibly simultaneous social interactions rather than experiencing them as independent
andmutually exclusive events (likewhenoneneeds time and energy to build durable friendship or professional
connections).

2.10 In the contact diaries, respondents additionally reported its approximate duration for each contact. Figure 2
shows twoscatter-plotswithon they-axis the totaldurationof contact summedacrossall respondents’ contacts
(le� panel), and the average duration of contact (right panel) by the number of reported contacts on the x-axis.
For eachplot, we showed themedian y value for each x value anda LOESS curve. If time and cognitive resources
were limited for social encounters as they seem to be formore durable social relationships, onewould observe
a linewith zero slope in the le�panel anda sharply declining curve inversely proportional to x in the right panel.

2.11 Strikingly, the actual empirical relationships were very di�erent. In the le� plot, we find a monotonically in-
creasing relationship with a slope that remains similar in magnitude over the observed interval between 0 and
40, a pattern that matches previous studies in the UK (see Danon et al. 2012, Figure S3c; Danon et al. 2013, Fig-
ure 2). Correspondingly, in Figure 2’s right plot we found little relationship between the number of close-range
contacts and their average duration, with perhaps a slight decline in average contact length at high numbers of
per-person contact. These results reinforce the criticality of hubs in spreading processes. The negative impact
of higher numbers of contacts is not proportionally counteracted by the brevity of contact. For this reason, in
our simulations, the dyadic transmission probability does not depend on the total number of contacts that an
agent has.

2.12 Unfortunately, COMES-F does not contain information on contact duration for respondents’ self-reported es-
timates of job-related extra contacts. As a consequence, we were unable to test the relationship between fre-
quency and duration for the fraction of respondents reporting very high frequencies of contact (Figure 1’s right
plot). For this reason, we adopted a conservative approach and based the calibration of the synthetic network
underlying ourmain analysis on diary-based contacts only (see Figure 1’s le� plot). In the Appendix C, however,
we re-ran all analyses under a combination of diary-based contacts and job-related extra contacts in such away
that a fixed transmission probability assumption is still defensible. Results were consistent and robust across
these di�erent specifications.
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Figure 1: Le�: Fraction of cases (y-axis) reporting a given number of close-range contacts (averaged over the two
days) (x-axis) (n =2,033); Right: Fraction of cases (y-axis) reporting a given number of daily job-related contacts
(x-axis) among respondents regarding their occupation as especially exposed to social contacts (n =257).

Model

3.1 Using COMES-F survey data we built an agent-based computational model in which the degree distribution
of the synthetic network through which the virus di�uses is calibrated on the survey contact data (for other
work using empirical network data in agent-based di�usion models, see Smith & Burrow 2018; Manzo et al.
2018. Our aimwas to study themacroscopic consequences of cross-individual variability in close-range contact
frequencies empirically observed at a country-level and assess whether this variability can be exploited for
e�ective intervention in the ongoing epidemic. As such, we simulated a population the size of the COMES-F
sample fromwhich we eliminated four respondents who reported no close-range contacts.

Network construction and features

3.2 We connected 2,029 agents, each representing one respondent, according to two social network models. The
first, which we will refer to as the “degree-calibrated” (DC) network, is the focus of our simulation. It is built
to match the actual contact distribution and, at the same time, to tune network clustering, i.e., the propensity
for two neighbors of a node to also be neighbors of one another. The second, which we will refer to as the
“Erdős-Rényi” (ER) network, constitutes a benchmark to compare the dynamics and e�ects of interventions.

3.3 In the DC networkmodel, agents were first given a degree (number of network ties) precisely equal to the num-
ber of close contacts per day reported by each respondent in the contact diary (see Figure 1’s le� plot). Then, to
connect agents to one another, we adapted the configuration model, an algorithm that was proposed to gen-
erate random networks with arbitrary degree distributions (e.g. Jackson 2008, pp. 83–85). To avoid duplicate
links and self-links while ensuring an exactmatch between each virtual agent and an empirical respondent, we
considered source agents in descending order of the to-be-generated degree rather than in random order, and
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Figure 2: Le� panel: Respondents’ total daily contact duration (inminutes) (y-axis) as a function of daily # close-
range contacts (x-axis). Right panel: Respondents’ average contact duration (in minutes) (y-axis) as a function
of daily # close-range contacts (x-axis). Points are jittered to avoid overlap.N =2029. Red dashed line: Median
values of y-axis conditional on x-axis. Blue solid line: Local non-parametric regression curve (smoothing alpha
parameter=0.5; polynomial degree= 2) (fittedwith R loess function). Total daily contact duration is computed
as the sum (over all contacts) of the time the respondentdeclaredhaving spent in each contact. Average contact
duration is computed as total daily contact duration divided by daily # close-range contacts. Contact duration
was recorded as a 5-category variable (1 = < 5’; 2 = 5’-15’; 3 = 15’-60’; 4 = 1h-4h; 5 = > 4h): we consider the
centroid of the interval (i.e. 2.5’, 7.5’, 22.5’, 120’, 240’, respectively) to build the variables reported on the y-axis.
Nota bene: Total daily duration may exceed 24 hours because many contacts happen simultaneously.

then randomly picked available destination agents. Each time a connection was made, the degree of the two
newly connected agents naturally increased by one. As soon as an agent reached the to-be-generated degree, it
was excluded from the search algorithm. We found this procedure to always converge, achieving the intended
empirical degree distribution.

3.4 However, the configuration model is known to be able to generate only a limited degree of clustering, which
is constrained within this model by the imposed degree distribution and network size (Newman 2003, p. 202).
Clustering is a crucial network feature that is known to attenuate the spreading capacity of high-degree nodes
(see for instance, Molina & Stone 2012). Recently, with particular reference to the COVID-19 crisis, Block et al.
(2020) have presented simulation results showing that increasing local clustering of actors’ ego-networks helps
to mitigate the epidemic (see, in particular, Box 2).

3.5 Thus, in order to assess the robustness of targeting hubs under various levels of clustering, we modified our
generative network algorithm in a simple way. In particular, as soon as a given node reached the required de-
gree, before excluding it from the search algorithm, we went through all its neighbors and connected each of
the ego’s neighbor pairs with probability p .

3.6 Our second network model is motivated by the fact that in most epidemiological models it is still common to
assume random mixing according to which social contacts are assumed to happen at random within certain
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categories (Tolles & Luong 2020). From a network perspective, this amounts to postulating a random network
where contact probabilities across individuals have little variability and the expecteddegree of each node is the
average degree (Newman2002; Barthélemy et al. 2005). We therefore also studied an Erdős–Rényi (ER) random
graph with the average degree observed in the survey (again, we only considered diary-based contacts), as a
benchmark distribution. This random network is characterized by low variability in contact across agents and
low clustering.

3.7 Table 1 shows network statistics computed over 100 realizations of the two networks. By construction, the DC
network reproduces the features of the actual degree distribution. In particular, the mean was higher than the
median, which suggests right-skewness. By contrast, the degree distribution of the ER network had essentially
an equalmean andmedian. Thedispersion of the degree also strongly di�eredbetween the twonetworks, with
the DC network exhibiting greater variation in the nodal number of links than in the ER network in the order of
a doubling of the standard deviation (This di�erence was much larger when additional professional contacts
are considered, see Appendix C).

Average
degree

Median
degree

Stdev de-
gree

Clustering
coef

Deg-clust
corr

Av path
length

Diameter

Degree-Calibrated (DC) networks

p = 0 9.72 (0.00) 8 (0.00) 6.56 (0.00) 0.01 (0.00) -0.06
(0.01)

3.47 (0.00) 6 (0.00)

p = 0.5 9.72 (0.00) 8 (0.00) 6.56 (0.00) 0.43 (0.00) -0.62
(0.01)

4.38 (0.03) 7.45 (0.50)

p = 1 9.72 (0.00) 8 (0.00) 6.56 (0.00) 0.57 (0.01) -0.56
(0.01)

5.52 (0.09) 10.10
(0.59)

Erdős-Rényi (ER) network

9.65 (0.50) 9.72 (0.10) 3.11 (0.10) 0.00 (0.00) 0.00 (0.03) 3.60 (0.01) 6.06 (0.24)

Table 1: Topological features of the simulated contact networks (as a function of the clustering probability p
for the DC network). Mean values across 100 network realizations (standard deviation in parentheses). Cluster-
ing coef = clustering coe�icient; Deg-clust corr = Pearson correlation coe�icient between nodes’ degree and
their clustering coe�icient; Av path length= Average of the shortest path lengths; Diameter=Maximum of the
shortest path lengths.

3.8 For the DC network, Table 1 also shows that how we modified the configuration model e�iciently generated
increasing levels of clustering as the clustering probability p increased. As expected, when p = 0, meaning
that we did not force ego’s neighbors to close triads, the DC network exhibited a very low level of clustering,
essentially comparable to the ER network. By contrast, when p = 1, meaning that we forced the maximum
number of links among a focal agent’s neighbors, the level of clustering increased to 0.57, the maximum level
we could reach given the structural constraints imposed by the actual degree distribution and the size of our
synthetic population.

3.9 As COMES-F’s contact-diaries did not contain information on possible close-range contacts among a respon-
dent’s contacts, we were not able to empirically calibrate the clustering coe�icient of the DC network. To the
best of our knowledge, only Danon et al. (2012, 2013) in the UK designed contact-diaries to collect information
fromwhich clustering of close-range social encounters could be estimated. Their data showedan average value
around 0.46, with a considerable range of variation from approximately 0.07 to 0.7 depending on age category,
meeting place, and distance from home (see, in particular, Danon et al. 2012, Figure 2b and Figure 2c; Danon
et al. 2013, Figure 3 and Figure 5). These estimations rely on complex rescaling procedures that may overesti-
mate (up to a factor of 1.8) the true level of clustering (see, on this point, Danon et al. 2013: SI, § 5.3). For this
reason, we opted to study our model over the range of possible clustering levels generated by our algorithm.
This range includes the 0.46 estimate.

3.10 The DC network was characterized by a negative correlation between the nodal degree and clustering, a corre-
lation that becomes stronger as the overall level of clustering increases. This means that the higher the degree
of a node the lower the fraction of ties among its neighbors. Thus, high-contact nodes spanned across the net-
work more than they clustered together. This pattern was found on real-world close-range contact networks
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in the UK (see Danon et al. 2012, Figure 2a). As discussed by Barabási (2014, pp. 232–237), this negative corre-
lation between nodal degree and clustering is the statistical signature of the presence of community structure
within the network, a topological feature thatmakes hub-centered interventions especially e�ective: attacking
the hubs means interrupting (or slowing down) communication among the modules (p. 236). By contrast, the
correlation between nodal degree and clustering in the ER network was virtually nil.

3.11 Finally, when p = 0, meaning zero probability of closing triads among a node’s neighbors, in the DC network
average path length and diameter were comparable to those of an Erdős–Rényi network with the same size
and degree, consistent with that usually observed in pure scale-freemodels (see Albert & Barabási 2002, p. 74).
Highly connected individuals were e�ective in bringing many parts of the network together. As we increased
the clustering, the DC network’s average path length and diameter increase, too, but remained low, achieving
the combination of high clustering and reachability characteristic of small-world topologies (Watts & Strogatz
1998).

3.12 To sumup, theDCnetworkdisplayed theactual long-taileddistributionof close-range contacts observed in rep-
resentative data, while incorporating important topological features among which clustering and short path
length that previous studies have shown to be consequential for the spread of disease. Our goal was to as-
sess whether our proposed mitigation strategy of targeting hubs robustly increased epidemic control in these
degree-calibrated networks2.

Agent-based SEIRmodel

3.13 Wemodelled disease propagation through the Degree-Calibrated (DC) and Erdős-Rényi (ER) networks by build-
ing a stochastic agent-based implementation of a SEIR model (Martcheva 2015). The SEIR model is a type of
compartmental model that has been previously applied to the COVID-19 outbreak (Brethouwer et al. 2020;
Kucharski et al. 2020; Li et al. 2020;Premetal. 2020). Inparticular,we followed recent empirical parametrization
(see Salje et al. 2020a) to determine how agents unidirectionally move from being (S)usceptible, to (E)xposed,
(I)nfectious, and eventually (R)ecovered. Each iteration corresponds to one day. The time it takes for an agent
to move from one state to the next was calibrated accordingly.

3.14 Upon infection, agents first enteredE where they stayed four days; during this period, they were not infectious
(for this value, see Salje et al. 2020a, p. 10). They then moved to I where they become infectious and could
contaminate other agents over the course of four days (for this value, see Salje et al. 2020a, p. 10). Infected
agents move to R with probability following a normal distribution with average 0.993 (and possible range at
the agent-level between 0.990 and 0.996) (for the average value, see again Salje et al. 2020b) provided they
have spent a number of days in I at least equal to a given recovery time. The recovery time followed a Poisson
distribution centered on 2 weeks (with possible range at the agent-level between 1 and 6 weeks) (for these
values, see empirical estimates in World Health Organization 2020, p. 14).

3.15 We combined this basic compartment structure with our network topologies so that agents who an infectious
agent could infectweredeterminedby thenetworkof close-range contacts (seeBarrat et al. 2008, ch. 9). During
each day, an infectious agent could only transmit the disease to its direct contacts. The dyadic, meaning agent-
to-agent, transmission probability r was assumed to be normally distributed with mean equal to 0.03, 0.05 or
0.07, and standard-deviation equal to 0.023.

3.16 To the best of our knowledge, currently there is no data that allows us to estimate the transmission probability
at the dyadic level. For this reason, we followed a common procedure that simulates the model under di�er-
ent values of the likelihood of infection in order to assess whether the intervention of interest is robust across
epidemics of di�erent sizes (see, for instance, Block et al. 2020). In our model, the values of 0.03, 0.05 and
0.07 were chosen because they were able to trigger, on the DC network, epidemics where approximately 20%,
60%and 80%of agents were ever infected, thus allowing us to assess the e�ect of hub-targeted versus random
interventions under very di�erent scenarios4.

3.17 All simulations started with five (randomly chosen) initially exposed infected agents. This is the lowest number
of seeds that prevents excessive variability across simulation trials in our model population5.

Interventions

3.18 We followed prior studies by considering targeted interventions that o�er a set of agent protection against
the virus (Pastor-Satorras & Vespignani 2002; Herrmann & Schwartz 2020b): agents present in the Suscepti-
ble, Exposed, or Infectious compartment were moved to the Recovered compartment. The intervention thus
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prevented future infection of the targeted individuals, if susceptible, or prevented further spread from these
targeted agents to other agents, if already infected. The intervention could represent any combination of mea-
sures, such as a vaccine against Covid-19, medical testing and quarantining-if-positive, protections in high-risk
professions and targeted informational campaigns (Banerjee et al. 2020). We assumed a government with a
fixed daily (medical / technological / financial / ethical) capacity to intervene on b individuals. This was imple-
mented as follows: On day 1 (iteration 1), b agents are selected from among all agents that are either in S, E, or I
andmoved to R, on day 2 (iteration 2) b additional agents are selectedwho are currently in S, E, or I, andmoved
to R, and so on. We studied four budgets for each intervention: b = 1, 3, 5, and 10.

3.19 We considered threemethods for selecting agents for intervention. The firstmethod, “NO-TARGET”, simply ran-
domly samples b agents for intervention each day and is intended as a benchmark againstwhich to contrast the
other twomethods. This method corresponds to what Pastor-Satorras & Vespignani (2002) refer to as “uniform
intervention.”

3.20 Thesecondmethod, “CONTACT-TARGET”, follows the strategydescribed inCohen&Havlin (2010),wherebyeach
day b randomagents are sampledwho each select one randomcontact (without replacement) for intervention.
Because of the friendship paradox (Feld 1991), these targets have above-average expected degree (Christakis
& Fowler 2010). This is so because high-degree nodes are by definition overrepresented among other nodes’
contacts (Feld 1991). The CONTACT-TARGET strategy is implementable in practice as a government could in fact
randomly sample from the known population and have sampled individuals suggest their contacts. This was
implementedas follows: Onday 1, b randomagents are sampled fromamongall agents. For each samplednode
a random network neighbor is sampled. The intervention is targeted at these b random neighbors. On day 2,
again b random nodes are sampled. For each sampled node a random network neighbor is sampled who had
not previously been intervened on. The intervention is targeted at these b random neighbors, and so on6.

3.21 The third method, “HUB-TARGET”, assumes that agents’ numbers of contacts were perfectly observed. During
each iteration, nodes are targeted in strictly decreasing order of their network degree, startingwith the b largest
hubs. This was implemented as follows: On day 1, the b nodes with the b highest degrees are selected and
immunized; on day 2, the b nodes with degree rank b+ 1 through 2b are targeted, and so on.

Results

4.1 Figure 3 shows the number of concurrently infected individuals over time for the four simulated networkswhen
no interventions are taken. Results for the ER network are represented with dashed black curves and the three
DC networks with low, medium and high clustering are shown as solid curves in respectively black, blue and
red. Shadedareas represent variability in the inner 90%of simulated runs, that is, betweenpercentiles 5 and95.
Panels A, B, and C show results for various dyadic transmission probabilities r, respectively 0.03, 0.05, and 0.07.
Peaks were naturally higher at higher transmission probabilities, with vertical axes rescaled to accommodate
these base di�erences across panels. In panel A peaks are not easily identified due to minimal spread.

4.2 A comparison between the ER and the DC network with virtually no clustering (Cc = 0.01) showed that greater
variability in degree generates higher peaks (for low dyadic transmission probabilities), and earlier and higher
peaks (formiddle and high dyadic transmission probabilities). This was consistentwith theoretical results from
formal models showing that in networks with high degree variance viral spread is faster, whatever the trans-
mission probability is (Barthélemy et al. 2005). These results illustrate the impact of hubs: Highly connected
individuals were more likely connected to the seeds and their neighbors. Once infected, they exposed others
early on, thus catalyzing viral di�usion. In the ER network, by contrast, therewere no hubs to accelerate spread.

4.3 The epidemic size measured as the total number of ever infected agents is not easily seen in Figure 3. Table 2
shows theseestimatesalongwith95% intervals. TheDCnetworkwithout clusteringproduceda larger epidemic
than the ER network at low and medium dyadic transmission probabilities. At a high transmission probability,
the ER network rather produced a larger epidemic. This pattern can be understood as follows: At high dyadic
probabilities anyone is nearly guaranteed to eventually become infected except those with few ties. In DC net-
works, there are many more agents with fewer ties than in an ER network. By contrast, at low transmission
probabilities most agents are likely to escape the pandemic except hubs. In DC networks there are more hubs
than in ER networks.

4.4 A comparison between the three DC networks in each panel of Figure 3 shows that epidemics are monotoni-
cally slower in networks with greater clustering. This is consistent with theoretical results from formal models
showing that in networkswith high degree variance increasing clustering attenuate hubs capacity to accelerate
viral spread (Eguíluz & Klemm 2002; Serrano & Marián 2006). The mechanism is straight-forward: In networks
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with high levels of clustering, sources of infection aremore likely to expose the same target rather than distinct
targets, reducing overall exposure (see Molina & Stone 2012, Figure 3).

Figure 3: Number of infected agents (y-axis) by days (x-axis) (median of 100 replications) as a function of in-
creasing values of the dyadic transmission probability r and clustering (see Legend). Lower and upper bounds
of the shaded areas correspond to the 5th percentiles and 95th percentiles of the 100 replications. n = 2,029
agents. Solid line: Degree-calibrated (DC) networks; dashed line: Erdős–Rényi (ER) network with the same av-
erage degree.

r = 0.03 r = 0.05 r = 0.07

peak
height

time Epidemic
size

peak
height

time Epidemic
size

peak
height

time Epidemic
size

DC (Cc = 0.01) 52.5
[0; 96]

81 427.5
[13.9;
546.3]

436.5
[307.75;
501.1]

54 1241.5
[1181;
1312.05]

783.5
[687.7;
836.15]

43 1587
[1560;
1628.05]

DC (Cc = 0.43) 15.5
[0;
60.10]

68 151
[7.95;
439.1]

317
[218.1;
373.3]

63 1173.5
[1108.85;
1248]

619.5
[410.55;
684.45]

48 1547.51
[509.95;
1586]

DC (Cc = 0.57) 13 [2;
26.15]

19 46.5
[7.95;
158.65]

140
[46.45;
210]

79 996.5
[822.6;
1117.55]

401.5
[286;
474.15]

63 1510
[1414.75
1566]

ER 13
[1.95;
30.05]

24 102
[8.95;
313.6]

322
[208.65;
376.35]

68 1210
[1136.9;
1288.15]

704.5
[584.05;
766.05]

48 1661.5
[1619.95
1713.05]

Table 2: Peak height (maximum # concurrently infected agents), time (in days), and epidemic size (# ever in-
fected agents) on the Degree-calibrated (DC) networks with increasing clustering (Cc), and Erdős–Rényi (ER)
network with the same average degree (rows) under low, middle and high dyadic transmission probability r
(column). Shown are median, 5% and 95% percentiles across 100 iterations.

4.5 Figure 4 shows the impact of the three interventionmethods on viral di�usion in the DC network with low clus-
tering, assuming an intermediate dyadic transmission probability. Peak reductions and timing are reported in
Table 3. Spread under intervention regimes is displayed as dashed curves in Figure 4. Solid curves represent
the no-intervention scenario, in contrast. Panel A shows the results for the NO-TARGET procedure, whereby
each day b randomly selected susceptible, exposed or infectious agents were intervened on. The NO-TARGET
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procedure’s maximally achievable impact, using the most generous budget considered, b = 10, corresponding
to about 10% of the population being treated during the first 20 days, leaves the peak at 40% (Table 3, 174 /
436.5) of what it would have been without any intervention. Also, the peak occurs on about the same day.

4.6 Panels B show results for the CONTACT-TARGET procedure, which assumes that no global information on con-
nectivity is available. Lacking this information, it attempts to find high-degree nodes by drawing a randomsam-
ple of agents with unknown degree and selecting a random neighbor of each sampled agent for intervention.
The figure shows this procedure ismore e�ective than the NO-TARGET intervention. At b = 5 CONTACT-TARGET
interventions produces an impact comparable to a NO-TARGET intervention regime with b = 10 daily interven-
tions. At b = 10, the CONTACT-TARGET intervention achieves a reduction down to only 14% of the peak in the
no-intervention scenario (Figure 4, 62 / 436.5). The peak is reached nine days earlier, a�er 45 days (CONTACT-
TARGET) instead of 54 days (NO-TARGET).

4.7 The CONTACT-TARGET method would be more e�ective if randomly chosen agents would be able to select a
randomneighbor for intervention among relatively high degrees at a higher chance than network structure per
se allows. Survey data suggest that targeting of certain professionsmay help e�ectively to identify high-degree
agents (seeAppendix A). Toevaluate themaximally achievable impact of anydegree-based intervention, panels
C of Figure 4 show the impact of the HUB-TARGET policy, whereby each day the b previously untargeted agents
with highest degreewere targeted. A budget of 3 agents per day (b = 3) reduced the peak to 30% (Figure 2, 131.5
/ 436.5). Thepeakoccurred at the same timeaswithout the intervention. This reduction in peakdaily infections
achieved with b = 3 exceeded what NO-TARGET intervention achieved with ten agents per day (b = 10). With
ten agents the pandemic was e�ectively prevented.

4.8 In sum, these results suggest that insights from formal models on abstract networks concerning the e�ective-
ness of degree-targeting extend to networks with degree distributions that concord with contact survey data.
And, by recalculating the Figure 4 and Table 3 for the Erdős–Rényi (ER) with the same average degree as the
empirical degree distribution but lower degree variance (see Table 1 above), it can be proven that it is precisely
the skewness in the empirical distribution of close-range contact that makes hub targetingmore e�ective than
random targeting (see respectively Appendix B, Figure 10 and Figure 5).

Degree-calibrated (DC) network no intervention: Peak height= 436.5 [307.75; 501.1]; Time= 54
b = 1 b = 3 b = 5 b = 10

peak
height

time peak
height

time peak
height

time peak
height

time

NO-
TARGET

394
[306.5;
462.1]

55 341.5
[144.55;
407.35]

55 295
[196.45;
362]

52 174
[45.8;
226.3]

52-53

CONTACT-
TARGET

382.5
[222.85;
447.65]

54 262.5
[131.95;
338.00]

54-57 184
[84.5;
255.15]

54 62
[11.85;
112.2]

45

HUB-
TARGET

298.5
[152.
364.2;
182]

56 131.5
[15.6;
192.95]

53 52.5
[3.95;
112.45]

44 16 [3.95;
35.05]

23-32

Table 3: Peak height (maximum # concurrently infected agents) and time (in days) under three interventions
(rows) and four budgets (column) on the Degree-calibrated (DC) network. Dyadic transmission probability r =
0.05 & Local clustering (Cc = 0.01). Shown are median, 5% and 95% percentiles across 100 iterations.

4.9 Figures 5 and 6 explore the robustness of this result under increasing levels of clustering in the DC networks.
Panels A, B, and C again represent results for the three intervention methods separately, again assuming an
intermediate dyadic transmission probability (r = 0.05). We consistently found a substantial improvement
in virus-spread control of the contact- and hub-targeting methods over the random targeting method. In the
Appendix B, we further explored the robustness of our results under di�erent assumptions on transmission
probabilities and clustering (see in particular, Figure 11-16). Results were qualitatively unchanged.
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Figure 4: Number of infected agents (y-axis) by days (x-axis) (median of 100 replications) under three di�erent
interventions (rows) targeting 1, 3, 5, or 10 agents per day (columns). A –NO-TARGET intervention; B – CONTACT-
TARGET intervention. C – HUB-TARGET intervention. Lower and upper bounds of the shaded areas correspond
to the 5th percentiles and 95th percentiles of the 100 replications. Solid line: Empirical-degree (ED) network;
dashed line: interventions. Dyadic transmission probability r = 0.05 & Local clustering (Cc = 0.01). n = 2,029
agents.

Discussion

5.1 In the absence of a vaccine, countries worldwide seek to contain viral spread through a combination of social
distancing, protective measures, informational campaigns, testing, and contact tracing (Sustained Suppres-
sion, Nature Biomedical Engineering 2020). Yet there are clear limits on medical, technological, and financial
resources and on the ability to durably restrict individual mobility, raising the question of how to prioritize.
Our results suggest that all these interventions will generally be more e�icient when targeted at individuals
suspected or known to have close-range contact with many others. Once an e�ective vaccine has been devel-
oped, it may remain available in small quantities only for some time and/or face skepticism by large fractions
of the population (Peretti-Watel & the COCONEL Group 2002). Based on our simulation results, we can expect
vaccination to reduce the spread to a greater degree when high-contact individuals are given the first vaccines.

5.2 How could public policy e�ectively try and identify high-contact individuals? We propose two possible meth-
ods. First, the approachwe systematically studied in our simulations is agnostic ofwho thehigh-degree individ-
uals are and targets randomacquaintances of random individuals, who statistically have high expected degree.
This method was found to be e�ective in detecting past flu outbreaks (Christakis & Fowler 2010), and robust
againstmissing network data (Rosenblatt et al. 2020). In our simulations, thismethodwas reasonably e�ective
yet at the same timewas conservative in assuming no knowledge of degree or use thereof. If individuals did not
nominate random contacts but rather those they knew to have had many other contacts, the di�erence that
targeted intervention could make would be greater.

5.3 The second method we suggest exploits the covariation that seems to exist between individuals’ occupation
and the volume of their daily close-range contacts. Previous large-scale surveys on face-to-face encounters
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Figure 5: Number of infected agents (y-axis) by days (x-axis) (median of 100 replications) under three di�erent
interventions (rows) targeting 1, 3, 5, or 10 agents per day (columns). A –NO-TARGET intervention; B – CONTACT-
TARGET intervention. C – HUB-TARGET intervention. Lower and upper bounds of the shaded areas correspond
to the 5th percentiles and 95th percentiles of the 100 replications. Solid line: Degree-calibrated (DC) network;
dashed line: interventions. Dyadic transmission probability r = 0.05& Local clustering (Cc = 0.43). n = 2,029
agents.

have documented that some professions (like teachers, service workers or health care workers) are especially
exposed to close-range contacts (seeDanonet al. 2013, Figure 4). We replicate this result in a surveyon six di�er-
ent countries: Some professions involve ten times as many close-range contacts than others, with elementary
school teachers, cashiers, order clerks, retail salespersons, and administrators topping the list (see Appendix A,
Table 4).

5.4 The correlation between profession and contact frequency could be exploited in two di�erent ways. One may
want to directly target workers in professions characterized by high frequencies of contact. This approach
would have the advantage of making it possible to set interventions on the basis of category-based institu-
tional lines, thus avoiding potential privacy and discrimination issues associated with targeting individuals.
For instance, the occupational categories used in the international comparative survey we exploited follow a
common international standard used by the US Bureau of Labor Statistics. Preferential protective legislation
could be set on its basis. On the other hand, however, this approach ignores the variability inworkers’ exposure
to social contacts that also occurs within a given occupational category (see Appendix A, Figure 8). Undi�eren-
tiated category-based interventions, by protecting individuals within the category who are below the average
exposure, waste resources. Anotherway to exploit the covariationbetween individuals’ occupation and the vol-
ume of their daily close-range contacts would thus be to inject this information within themethod of targeting
random acquaintances of random individuals. According to this hybrid approach, randomly sampled individ-
uals may be asked to preferentially report random social contacts within a given list of highly socially exposed
professions. These contacts would then have a higher expected degree, rendering the methodmore e�ective.

5.5 One may expect this approach to especially benefit low-income workers. Quasi-experimental evidence sug-
gests that the substantial income gradient in the impact of the pandemic on mortality is strongly mediated by
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Figure 6: Number of infected agents (y-axis) by days (x-axis) (median of 100 replications) under three di�erent
interventions (rows) targeting 1, 3, 5, or 10 agents per day (columns). A –NO-TARGET intervention; B – CONTACT-
TARGET intervention. C – HUB-TARGET intervention. Lower and upper bounds of the shaded areas correspond
to the 5th percentiles and 95th percentiles of the 100 replications. Solid line: Degree-calibrated (DC) network;
dashed line: interventions. Dyadic transmission probability r = 0.05 & Local clustering (Cc = 0.57). n = 2,029
agents.

low-incomeworkers being trapped in low-paid jobswith high exposure to social contacts (Brandily et al. 2020).
A hybrid strategy that combines occupational exposure with random acquaintances of random individuals to
identify high-contact individuals to be protected/tested preferentially may thus be highly e�ective in reducing
the overall death toll associated with SARS-CoV-2.

5.6 Finally, let us emphasize that targeting hubs could also help other mitigation strategies at a lower cost. It
has been proposed that the limitation of mobility networks can diminish the reachability of contact networks,
through reducing the contact network’s diameter, which in turn could slow down virus propagation (see, for in-
stance, Brethouwer et al. 2020; Chinazzi et al. 2020). Our study suggests that this same result canbeachievedby
targeting hubs rather than haltingmovements of large fractions of the population, if hub connectionsmake up
a large share of bridge ties (Barabási 2014, p. 64). This phenomenon can be found back in the degree-calibrated
networks that we generated. Increasing the standard deviation of the degree distribution (from approximately
7 to approximately 19) through the inclusion of high-degree individuals leads to a reduction of the network
average path length from 3.47, 4.38 or 5.52 to 2.83, 3.29 or 3.60, depending on the level of built-in clustering
(compare Tables 1 and 6). And our results show that, with all else equal, networks with more and larger hubs,
thus lower averagepath length, systematically lead to faster and larger epidemics (compare for instance, curves
in Figure 3 to curves in Figure 17). Thus, given the deep link between the notion of hubs and the small world
nature of networks (Albert et al. 2000), our proposed viral mitigation strategy e�ectively operates through a
world-enlargement mechanism.
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Conclusion

6.1 In this paper our goal was to assess the e�ectiveness of preferentially targeting hubs versus undi�erentiated
interventions for controlling SARS-CoV-2 spread. With this aim in mind, we moved away from the standard
compartmentalmodels that rely on randommixing assumptions toward anetwork-basedmodeling framework
that can accommodate person-to-person di�erences in both infection risk and ability to infect others stemming
from di�erential connectedness. Unlike past studies, we simulated virtual epidemics on networks with empir-
ically calibrated frequencies of close-range contact. This framework allowed us to model rather than average
out the high variability of close-contact frequencies across individuals observed in contact survey data. Results
of simulations calibrated with empirical close-range contact distributions exhibiting right skew show large im-
provements in epidemic containment when shi�ing from general to targeted interventions. The relative e�ec-
tiveness of preferentially targeting hubs proved highly robust across changes in degree skewness, clustering,
and infection probability, as well as across epidemics of various sizes.

6.2 Our study has several limitations. First, the recommendation of prioritization of hubs in interventions is based
on an assessment of e�ects on overall containment. There may be reasons to prioritize di�erently, e.g. pro-
tecting those in themedical profession dealing with SARS-CoV-2 as tomaintainmaximum capacity to treat. Al-
ternatively, the protection of highly vulnerable subpopulations may reduce the overall death toll. The present
paper does not speak to these alternative considerations asmedical capacity anddeath rates are notmodelled.

6.3 Second, our model is silent on the specific content of the actions to be performed on each finally selected in-
dividual. We only provide a method to maximize the e�iciency of that selection. In the absence of a vaccine,
moving from the model to the real-world world, an intervention could involve a combination of: (a) testing
and quarantining-if-positive, (b) additional provision andmandatory protective equipment such as facemasks
and transparent physical barriers, (c) closer monitoring and tracking withmobile devices, and (d) targeted and
contextualized informational messages stressing the importance of certain acts of social distancing and use of
protectivemeasures. Targetedmessages canbe relatively inexpensive as they are performedat a distance (Mar-
cus 2020) and evidence suggests they have strong health-behavioral e�ects (Noar et al. 2007), including recent
field-experimental evidence to this e�ect for SARS-CoV-2 (Banerjee et al. 2020).

6.4 Third, our simulationmodels variedonlyheterogeneity in thenumberof close-rangecontactsacross individuals
and levels of clustering. By doing so, we may have overlooked more global features of close-range contact
networks that drive viral propagation, e.g., fragmentation and community structure. Such topological factors
could moderate the impact of hubs. For example, when hubs span di�erent communities they may accelerate
disease spread more than when contributing many ties to an already tightly knit community. The ego-centric
surveydatawedrewupon,while providing representativemeasures of degreeheterogeneity, couldnot provide
such globalmeasures, which require population level data. A promising source of data is smartphones, as used
in previous small-scale studies (Mones et al. 2018; Sapiezynski et al. 2019; Cencetti et al. 2020). Future studies
may be able to draw on large-scale data from smartphone apps recently rolled out to monitor and prevent the
spread of SARS-CoV-2.

6.5 Finally, a factor that could limit the super’spreader status of hubs and the e�ectiveness of hub targeting is con-
tact time, namely if contact time were inversely proportional to the number of contacts. In this case hubs’
shorter average per-tie duration of contactmay be associatedwith lower risks of contracting and spreading the
coronavirus (provided the probability of transmission is negatively correlated with the contact duration). Our
contact diary data revealed that individualswithmany close-range contacts on average spenda similar amount
of time per contact as those with few close-range contacts. The evidence suggests that the augmented risk as-
sociated with greater contact numbers are not o�set by shorter durations. While these findings reinforce the
critical role hubsmay play in disease propagation, lack of data on contact duration for individuals with (much)
higher contact volume than those we could observe prevent us from identifying the point above which a nega-
tive correlation between contact volume and average contact duration appears. While theoretical studies that
make the probability of transmission inversely contingent on a node’s degree do not univocally find that this
negative correlation attenuates the importance of hubs (Olinky & Stone 2004), in order to settle this question,
we need better data on the relationship between transmission probability, contact duration and contact fre-
quency.

Model Documentation

All statistical analysesof individual-level datawereperformedwithR language (release 3.6.3) or StataSE 14. Net-
work statistics are partly computedwith the R’s igraph packages (version 1.2.5) and partly with NetLogo’s “stat”
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and “nw” extensions. The agent-based model is written and simulated in NetLogo (release 6.0.3). COMES-F
survey can be downloaded at: https://figshare.com/articles/Data_file_for_Comes_F/1466917; de-
tailed documentation on the dataset, the full text of the questionnaire and the paper contact diary canbe found
in Bèraud et al. (2015) supplementary information. Belot et al. (2020)’s survey that we analyze in the Appendix
can be downloaded at https://osf.io/gku48/. All .nlogo and .nls files containing the simulation model’s
codeareaccessibleathttps://www.comses.net/codebases/25d1ac60-7a5b-4331-a499-6163607241d2/
releases/1.1.0/. The model folder also contains the specific portion of French survey data needed to cali-
brate the network as a separate .txt file. All simulations can exactly be replicated throughout the list of random-
generator-seeds displayed in the code. Please read the “Read.me” file for more details.

Notes

1The power law is fitted using the R implementation (in package igraph) of themaximum likelihoodmethod
developed by Clauset et al. (2009).

2All networks we study are fully connected, meaning that there is at least one path connecting each pair of
agents. In less than 1% of the network realizations of our algorithm are any nodes disconnected, o�en only 1 or
2. When this is the case, we exclude these nodes, following common practice in the study of viral di�usion on
networks (e.g., Montes et al. 2020). Note that disconnected regions are empirically implausible in face-to-face
encounter networks of open, unquarantined societies.

3Rather than limiting transmission over the short period of time where infectiousness seems to be high-
est, an alternative specification would consist in using a reversed-U shape (discrete or continuous) probability
function over a larger infectious period. Herrmann & Schwartz (2020a, Appendix), for instance, on the basis of
epidemiological data concerning 94 Chinese patients, span dyadic transmission probabilities over a period of
14 days on a probability interval starting at 0.01, peaking at 0.3 (for days 5, 6, and 7), and progressively going
back to 0.01. On a purely simulated network, and assuming perfect knowledge of the degree distribution, the
authors target nodes with the highest degree, and show the e�ectiveness of this strategy to mitigate the virus
spread. Thus, a modeling choice that requires making assumptions on a much larger number of values than
ours leads to results that, as to the role of hubs, are in line with our own results.

4In terms of basic reproductiveR0, if one computes this quantity for a network with heterogeneous degree
(see, in particular, Olinky & Stone 2004, Equation 1), the chosen values of the dyadic transmission probability
correspond, for the DC network (with no clustering), to virus spread characterized byR0 respectively equal to
approximately 1.52, 2.53, and 3.55, which allow to cover a wide range ofR0 (orRt) values observed in di�erent
contexts, and/or at di�erent time, in the current COVID-19 crisis (for France, see for instance, Salje et al. 2020b;
Roux et al. 2020; in a comparative perspective, see Flaxman et al. 2020.

5In simulations on larger networks, which take much longer to run, in which we implemented the same
degree distribution and used the same number of seeds (smaller fraction), we find that peaks naturally occur
later, while the interventions we present next show qualitatively the same relative e�ects (results are available
upon request).

6Theprocedure is implemented in suchaway that: (a) if a randomly selectedagent hasnoneighborwhohad
notbeen intervenedonbefore, anewrandomly selectedagent is sampledas longas thecondition ismet; (b) the
required number of agents to be intervened on is constantly adjusted as a function of the available population.

Appendix A: Variations of close-range contact heterogeneity by gender,
age, and profession

We documented high variability in the number of close-range contacts across COMES-F’s respondents (see Fig-
ure 1). Here we showed that this variability persisted within major demographic categories. Figure 7’s upper
panel shows the distribution of per day self-reported close-range contacts by respondent’s gender. Past analy-
ses of COMES-Fdata found thatwomen (mainly adultwomen) tend tohaveahigher averagenumberof contacts
than men (see Bèraud et al. 2015, 6 and Table 1). Figure 7 shows that behind this average di�erence, there ex-
ists a large degree of variation within genders. Women and men have a nearly identical distribution of contact
frequencies.

JASSS, 23(4) 10, 2020 http://jasss.soc.surrey.ac.uk/23/4/10.html Doi: 10.18564/jasss.4435

https://figshare.com/articles/Data_file_for_Comes_F/1466917
https://osf.io/gku48/
https://www.comses.net/codebases/25d1ac60-7a5b-4331-a499-6163607241d2/releases/1.1.0/
https://www.comses.net/codebases/25d1ac60-7a5b-4331-a499-6163607241d2/releases/1.1.0/


Figure 7’s bottom panel shows the distribution of (diary-based) close-range contacts per day by respondent’s
age. Age is the most recurrent variable used in epidemiological models for representing socially structured
social interactions. Age assortativity (anddissortativity at home) is found to beoneof themost robust empirical
regularities in epidemiological social contact surveys, as also found in multivariate analyses of the COMES-F
data (see Bèraud et al. 2015, pp. 7–8). Thismotivates the use of average contacts per (more or less disaggregate)
age-groups in age-structured compartment models (see, for some recent examples, (Di Domenico et al., Roux
et al. 2020, Salje et al. 2020a, pp. 3–4; in a comparative perspective, see Walker et al. 2020). Net of the main
e�ects of age on the likelihood of havingmore social contacts (which is indeed found in these data, see Bèraud
et al. 2015, Table 1), Figure 7’s bottom panel again shows high variability within age-groups. Median numbers
of contacts vary little by age and the interquartile ranges of the various age groups mostly overlap.

Focusing analysis on adult respondents in employment, we found a similar pattern for broad occupational
groups (see Figure 8). Among both diary-based contacts (top panel) and extra job-related contacts declared
by (bottom panel), occupational groups vary little in themedian number of close-range contacts and again the
interquartile ranges overlap. To the extent that there is any systematic variability, farmers seem to have some-
what smaller contact networks, while high-contact individuals seem especially concentrated among high (e.g.,
elementary school teachers, teaching assistants) and low routinenon-manualworkers (e.g., bank tellers, tellers
in public administration) and service class (e.g., university professors, politicians, journalists or doctors). Most
variation across individuals in the number of self-reported close-range contacts clearly occurs within rather
than between occupational groups.

Figure 7: Distribution of self-reported per day close-range contacts (x-axis) by gender (top panel; F [1136], M
[897]) and age groups (bottom panel; ≤ 3 [240], 4-6 [169], 7-10 [196], 11-20 [276], 21-30 [155], 31-40 [109], 41-50
[135], 51-60 [195], 61-70 [357],> 70 [201]) (y-axis).

While these data suggest that social contacts within occupations are much more dispersed than one could ex-
pect under a distribution symmetrically centered around the mean, COMES-F does not provide a detailed list
of jobs. The professional categories in the COMES-F data were too coarse to evaluate the e�ectiveness of a
method for targeting hubs on the basis of employment status. We therefore exploited a recent survey that has
a somewhat less thoroughmeasurement of close-range contact (Belot et al. 2020) but fine-grainedprofessional
categories.

Belot et al. (2020)’s survey was conducted in the third week of April, 2020 in themidst of the Covid-19 epidemic
in six countries: China, South Korea, Japan, Italy, the UK and four states in the US: California, Florida, New York,
andTexas. The sample consistedof roughly 1,000 individuals fromeachcountry for a total of 6,082 respondents.
Data was collected using market research companies Lucid and dataSpring, using gender and income quota.
With regard to close-range contact, instead of being asked to keep a two-day-long diary, respondents were
asked: “On a typical working day (before the outbreak of Covid-19), with how many people would you have
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Figure 8: Top: Distributions of daily close-range contacts among employed respondents (n = 436) by occu-
pational category (y-axis); Bottom (logarithmic scale with labels corresponding to values on the original linear
scale): Distribution of daily job-related contacts among respondents regarding their occupation as especially
exposed to close-range contact (n = 257) by occupation category (y-axis). Occupational categories (n) in paren-
thesis, top panel first): F = farmers (nTOP = 14), (nBOTTOM = 2), PB = petty bourgeoisie (cra�smen and
shopkeepers) and entrepreneurs (nTOP = 26), (nBOTTOM = 18), SC= Service class (managers, high-skilled
administrators, intellectual, scientific and liberal professions) (nTOP = 123, nBOTTOM = 91), HNM=High rou-
tine non-manual worker (nTOP = 47), (nBOTTOM = 41), LNM=Low routine non-manual workers (nTOP =
183), (nBOTTOM = 93), MW=manual workers (nTOP = 43), (nBOTTOM = 12).

close social contact (at less than one meter distance) and how long would you interact with them? (indicate
approximate numbers - leave blank if the answer is zero)”. Respondents’ professions were classified in terms of
the O-Net classification used by the US Bureau of Labor Statistics.

The distribution of close contact frequency in the Belot et al. (2020) data is displayed in Figure 9. The distri-
bution is severely right-skewed, as we also observed for the French survey data. This provides confidence that
the existence of hubs is not a measurement artifact but a robust feature of contact networks: Using di�erent
methods for measuring contact the same distributional characteristic is obtained.

Figure 9: Fraction of cases (y-axis) reporting a given number of close-range contacts (x-axis) in the Belot et al.
(2020) data (n = 4,103). Le�: Linear scale. Right: Logarithmic scale.
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Table 4 shows the mean and median number of close-range contacts by profession, in descending order of
mean contact frequency, combining short- and long-duration contacts, excluding zero answers andprofessions
with 15 or fewer cases. Table 4 has face validity, topped by professions that clearly involve close contact with
many individuals — elementary school teachers, cashiers — and at the very bottom individuals who mostly
work fromhome—computer programmers. Someprofessions have anorder ofmagnitude greatermean close-
range contact than others. The spread is substantial, especially when considering the ambiguity in the possible
interpretation of the phrase “social contact” used in the questionnaire, translated into di�erent languages, and
the di�icult task of estimating such numbers without use of a contact diary, which may produce noise that
suppresses measured occupational di�erences.

Thus, given the systematic covariation that seems to exist between the fraction of high-contact individuals and
specific occupation, when searching for hubs, targeting selected professions may be a reasonably e�ective
strategy for finding hubs in contact networks.

Profession Mean # contacts Median # contacts N

Elementary School Teacher 120 50 17
Cashier 76 40 20
Order Clerks 70 34 34
Teacher Assistants 67 40 18
Retail Salespersons 62 17 29
Administrative Services Managers 59 16 47
Childcare Workers 49 30 19
Bill and Account Collectors 45 19 21
Sales Managers 45 17 20
Computer and Information Systems Managers 34 14 33
Financial Analysts 34 19 25
Customer Service Reps 31 18 49
Audio and Video Equipment Technicians 31 19 27
Construction Managers 30 10 33
Construction Laborers 28 12 24
Architectural Dra�ers 25 11 16
File Clerks 24 12 38
Civil Engineers 23 16 53
Data Entry Keyers 22 16 17
Credit Checkers 22 14 16
Ophthalmic Laboratory Technicians 21 14 18
Computer Network Support Specialists 19 12 28
Financial Managers, Branch or Department 17 7 25
Financial Examiners 17 6 20
Computer Programmers 15 9 16

Table 4: Close contacts by profession in Belot et al. (2020) data.

Appendix B: Results for the Erdős–Rényi (ER) network and for theDegree-
calibrated (DC) networks under various transmission probabilities

Figure 4 and Table 3 show large di�erences in the e�ectiveness of interventions that do and do not target high-
contact individuals for intervention. Here, we explored how instrumental the skewness in the empirical distri-
bution of close-range contact was for the e�ectiveness of hub targeting. We did so by recalculating the Figure
4 and Table 3 results for the Erdős–Rényi (ER) network with the same average degree as the empirical degree
distribution (see Table 1), respectively Figure 10 and Table 5.

A comparison of panels A between Figures 10 and 4 shows that NO-TARGET interventions were less e�ective
in DC networks with high degree skew than in ER networks with low degree variance. This suggests that mod-
els that did not account for the empirically observed inhomogeneity of network degree may overestimate the
expected impact of interventions. Comparing panels B and C across figures we found that HUB-TARGET and
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Figure 10: Number of infected agents (y-axis) by days (x-axis) (median of 100 replications) under three di�erent
interventions (rows) targeting 1, 3, 5, or 10 agents per day (columns). A –NO-TARGET intervention; B – CONTACT-
TARGET intervention. C – HUB-TARGET intervention. Lower and upper bounds of the shaded areas correspond
to the 5th percentiles and 95th percentiles of the 100 replications. Solid line: Erdős–Rényi (ER) network; dashed
line: interventions. Dyadic transmission probability r = 0.05 & Local clustering (Cc = 0.01). n = 2,029 agents.

Erdős–Rényi (ER) network no intervention: Peak height= 322 [208.65; 376.35] Time= 68
b = 1 b = 3 b = 5 b = 10

peak
height

time peak
height

time peak
height

time peak
height

time

NO-
TARGET

281.5
[141.6;
340.25]

66 200
[58.75;
264.40]

69 160.5
[60;
214.05]

67 71.5
[3.95;
150.15]

52

CONTACT-
TARGET

281
[178.55;
338.15]

68 208
[73.9;
271.05]

65 145
[51.95;
204]

65 51.5
[10.85;
98.25]

50

HUB-
TARGET

229
[95.85 ;
302.20]

66 114.5
[33.9;
175.35]

70 56.5
[14.95;
118.009]

56 22 [3;
43.35]

38

Table 5: Peak height (maximum # concurrently infected agents) and time (in days) under three interventions
(rows) and four budgets (column) on the Erdős–Rényi (ER) network. Dyadic transmission probability r = 0.05 &
Local clustering (Cc = 0.01). Shown are median, 5% and 95% percentiles across 100 iterations.

CONTACT-TARGET interventions were much more e�ective in the DC network than in ER networks, where the
to-be-immunized agents had lower network degree.
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We next checked the stability of the results shown in Figure 4 and Table 3 about the e�ectiveness of interven-
tions that did and did not target high-contact individuals for intervention on the DC network when we de-
creased/increased the infectiousness of the disease. To this aim, below, we recalculated Figures 4-6 under
low and high dyadic transmission probabilities r, in both cases over the entire range of clustering levels we
built in our DC contact networks. Results were qualitatively unchanged. The relative di�erences across target-
ing methods were attenuated for small-size epidemics triggered by low dyadic transmission probabilities (see
Figures 11-113) whereas they are enhanced for larger epidemics associated with high dyadic transmission prob-
abilities (Figures 14-16). However, the e�ectiveness of the contact- and hub-targetingmethods inmitigating the
epidemic relatively to the random targetingmethodwas still observed across all combinations of transmission
probability and clustering levels.

Figure 11: Number of infected agents (y-axis) by days (x-axis) (median of 100 replications) under three di�er-
ent interventions (rows) targeting 1, 3, 5, or 10 agents per day (columns). A – NO-TARGET intervention; B –
CONTACT-TARGET intervention. C – HUB-TARGET intervention. Lower and upper bounds of the shaded areas
correspond to the 5thpercentiles and95thpercentiles of the 100 replications. Solid line: Degree-Calibrated (DC)
network; dashed line: interventions. Dyadic transmission probability r = 0.03 & Local clustering (Cc = 0.01).
n = 2,029agents.
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Figure 12: Number of infected agents (y-axis) by days (x-axis) (median of 100 replications) under three di�erent
interventions (rows) targeting 1, 3, 5, or 10 agents per day (columns). A –NO-TARGET intervention; B – CONTACT-
TARGET intervention. C – HUB-TARGET intervention. Lower and upper bounds of the shaded areas correspond
to the 5th percentiles and 95th percentiles of the 100 replications. Solid line: Degree-Calibrated (DC) network;
dashed line: interventions. Dyadic transmission probability r = 0.03 & Local clustering (Cc = 0.43). n = 2,029
agents.
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Figure 13: Number of infected agents (y-axis) by days (x-axis) (median of 100 replications) under three di�erent
interventions (rows) targeting 1, 3, 5, or 10 agents per day (columns). A –NO-TARGET intervention; B – CONTACT-
TARGET intervention. C – HUB-TARGET intervention. Lower and upper bounds of the shaded areas correspond
to the 5th percentiles and 95th percentiles of the 100 replications. Solid line: Degree-Calibrated (DC) network;
dashed line: interventions. Dyadic transmission probability r = 0.03 & Local clustering (Cc = 0.57). n = 2,029
agents.

JASSS, 23(4) 10, 2020 http://jasss.soc.surrey.ac.uk/23/4/10.html Doi: 10.18564/jasss.4435



Figure 14: Number of infected agents (y-axis) by days (x-axis) (median of 100 replications) under three di�erent
interventions (rows) targeting 1, 3, 5, or 10 agents per day (columns). A –NO-TARGET intervention; B – CONTACT-
TARGET intervention. C – HUB-TARGET intervention. Lower and upper bounds of the shaded areas correspond
to the 5th percentiles and 95th percentiles of the 100 replications. Solid line: Degree-Calibrated (DC) network;
dashed line: interventions. Dyadic transmission probability r = 0.07 & Local clustering (Cc = 0.01). n = 2,029
agents.
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Figure 15: Number of infected agents (y-axis) by days (x-axis) (median of 100 replications) under three di�erent
interventions (rows) targeting 1, 3, 5, or 10 agents per day (columns). A –NO-TARGET intervention; B – CONTACT-
TARGET intervention. C – HUB-TARGET intervention. Lower and upper bounds of the shaded areas correspond
to the 5th percentiles and 95th percentiles of the 100 replications. Solid line: Degree-Calibrated (DC) network;
dashed line: interventions. Dyadic transmission probability r = 0.07 & Local clustering (Cc = 0.43). n = 2,029
agents.
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Figure 16: Number of infected agents (y-axis) by days (x-axis) (median of 100 replications) under three di�erent
interventions (rows) targeting 1, 3, 5, or 10 agents per day (columns). A –NO-TARGET intervention; B – CONTACT-
TARGET intervention. C – HUB-TARGET intervention. Lower and upper bounds of the shaded areas correspond
to the 5th percentiles and 95th percentiles of the 100 replications. Solid line: Degree-Calibrated (DC) network;
dashed line: interventions. Dyadic transmission probability r = 0.07 & Local clustering (Cc = 0.57). n = 2,029
agents.

Appendix C: Results for the Degree-Calibrated (DC) network using addi-
tional professional contact data

Here, we reported on the results obtained by calibrating the synthetic network through ameasure of daily close
contact for each respondent that combines diary-based contacts (Figure 1’s le� plot) and job-related extra con-
tacts (Figure 1’s right plot). In particular, for respondents in employment who self-reported job-related extra
contacts (n = 259), these contacts were summed up to the number of contacts recorded through the diary.
However, we limited the portion of job-related extra contacts to be added in such a way that the total number
of contacts is never higher than 134. Existing contact survey data suggests that the monotonic increase in the
relationship between the number of close-range contacts and the total amount of time of these contacts that
we described in Figure 2 (le� plot) started to decrease above 100 contacts (see Danon et al. 2012, Figure S3c;
Danon et al. 2013, Figure 2. This suggests that the relationship between the total number of contacts and the
average contact length may start to become negative above this threshold. We choose the specific value of
134 to be consistent with previous studies of COMES-F data, where supplementary professional contacts were
censored at 134 (see Bèraud et al. 2015, pp. 5, 9). As a by-product, this choice prevented a few nodes (like the
twowith 500 or the three with 999 job-related contacts) from having contacts with a substantial fraction of our
simulated population of∼ 2k agents, thus reducing the risk of artificially overestimating the impact of hubs.
Table 6 shows network statistics computed over 100 realizations of the DC and ER networks. Compared to the
networks including only diary-based contacts (see Table 1), apart fromahigher average degree, it is noteworthy
the larger standard-deviation (approximately 19 versus approximately 7) of the DCnetwork, which reflected the
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larger portion of high-contact respondents that are now in the network. If one considers the right-tail of the
degree distribution of this network (which again is well approximated by a power law with a scale parameter
2.54 for respondents with close-range contact above 17), this tail now contained 445 nodes (compared to 175
nodes for the power-law-like right-tail of the network including only diary-based contacts). Compared to the
diary-based contact network, such a ticker right-tail translated into a lower average path length (even when
built-in clustering increases), which clearly shows that the larger, and more numerous, the hubs the stronger
their capacity to create bridges across otherwise distant parts of the network (on the connection between hubs
and small-world behavior, see Albert et al. 2000).

DEL Average
degree

Median
degree

Stdev de-
gree

Clustering
coef

Deg-clust
corr

Av path
length

Diameter

Empirical-degree (ED) networks

p = 0 14.87
(0.00)

9.00 (0.00) 19.58
(0.00)

0.04 (0.00) -0.15 (0.01) 2.83 (0.00) 4.8 (0.40)

p = 0.5 14.72
(0.04)

9.00 (0.00) 19.19
(0.04)

0.42 (0.01) -0.50
(0.00)

3.29 (0.02) 5.01 (0.01)

p = 1 14.77
(0.04)

9.00 (0.00) 19.38
(0.12)

0.50 (0.01) -0.44
(0.01)

3.60 (0.08) 6 (0.62)

Erdős-Rényi (ER) network

ER 14.86
(0.14)

14.89
(0.31)

3.86 (0.14) 0.01 (0.01) -0.00
(0.03)

3.09 (0.01) 5 (0.00)

Table 6: Topological features of the simulated contact networks (as a function of the local tie probability p,
for the Degree-Calibrated (DC) network). Mean values across 100 network realizations (standard deviation in
parentheses). Clustering coef= clustering coe�icient; Deg-clust corr=Pearson correlation coe�icient between
nodes’ degree and their clustering coe�icient; Av path length= Average of the shortest path lengths; Diameter
=Maximum of the shortest path lengths.

We re-ran all the analyses on the extended DC networks and the ER network with the same average degree.
Results are reported below. Figure 17 reproduces Figure 3 in the main text; Figures 18-20 (dyadic transmission
probability r = 0.05), 21-23 (dyadic transmission probability r = 0.03), and 24-26 (dyadic transmission proba-
bility r = 0.07) respectively reproduces Figures 4-6 in themain text and Figures 11-13 and 14-16 Appendix B. We
do not comment in detail on these figures because results are in line with ourmain analysis. As to the e�ects of
degree skewness and clustering on epidemic’s size and paste where no intervention is in place, (Figure 17), we
found the samepatterns as in the network including only diary-based contact. Furthermore, as to the e�ective-
ness of the contact- and hub-targeting methods in mitigating the epidemic relatively to the random targeting
method, the relative gradient between these strategies is still observed across all combinations of transmission
probability (r) and clustering levels. The superiority of targeting hubs only appeared more clearly because of
the larger size and fraction, of high-contact nodes.
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Figure 17: Number of infected agents (y-axis) by days (x-axis) (median of 100 replications) as a function of in-
creasing values of the dyadic transmission probability r and clustering (see Legend). Lower and upper bounds
of the shaded areas correspond to the 5th percentiles and 95th percentiles of the 100 replications. n = 2,029
agents. Solid line: Degree-Calibrated (DC) networks; dashed line: Erdős–Rényi (ER) network with the same av-
erage degree.
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Figure 18: Number of infected agents (y-axis) by days (x-axis) (median of 100 replications) under three di�erent
interventions (rows) targeting 1, 3, 5, or 10 agents per day (columns). A –NO-TARGET intervention; B – CONTACT-
TARGET intervention. C – HUB-TARGET intervention. Lower and upper bounds of the shaded areas correspond
to the 5th percentiles and 95th percentiles of the 100 replications. Solid line: Degree-Calibrated (DC) network;
dashed line: interventions. Dyadic transmissionprobability (r =0.05) & Local clustering (Cc =0.04). n = 2,029
agents.
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Figure 19: Number of infected agents (y-axis) by days (x-axis) (median of 100 replications) under three di�erent
interventions (rows) targeting 1, 3, 5, or 10 agents per day (columns). A –NO-TARGET intervention; B – CONTACT-
TARGET intervention. C – HUB-TARGET intervention. Lower and upper bounds of the shaded areas correspond
to the 5th percentiles and 95th percentiles of the 100 replications. Solid line: Degree-Calibrated (DC) network;
dashed line: interventions. Dyadic transmissionprobability (r =0.05) & Local clustering (Cc =0.42). n = 2,029
agents.
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Figure 20: Number of infected agents (y-axis) by days (x-axis) (median of 100 replications) under three di�erent
interventions (rows) targeting 1, 3, 5, or 10 agents per day (columns). A –NO-TARGET intervention; B – CONTACT-
TARGET intervention. C – HUB-TARGET intervention. Lower and upper bounds of the shaded areas correspond
to the 5th percentiles and 95th percentiles of the 100 replications. Solid line: Degree-Calibrated (DC) network;
dashed line: interventions. Dyadic transmissionprobability (r =0.05) & Local clustering (Cc =0.50). n = 2,029
agents.
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Figure 21: Number of infected agents (y-axis) by days (x-axis) (median of 100 replications) under three di�erent
interventions (rows) targeting 1, 3, 5, or 10 agents per day (columns). A –NO-TARGET intervention; B – CONTACT-
TARGET intervention. C – HUB-TARGET intervention. Lower and upper bounds of the shaded areas correspond
to the 5th percentiles and 95th percentiles of the 100 replications. Solid line: Degree-Calibrated (DC) network;
dashed line: interventions. Dyadic transmissionprobability (r =0.03) & Local clustering (Cc =0.04). n = 2,029
agents.
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Figure 22: Number of infected agents (y-axis) by days (x-axis) (median of 100 replications) under three di�erent
interventions (rows) targeting 1, 3, 5, or 10 agents per day (columns). A –NO-TARGET intervention; B – CONTACT-
TARGET intervention. C – HUB-TARGET intervention. Lower and upper bounds of the shaded areas correspond
to the 5th percentiles and 95th percentiles of the 100 replications. Solid line: Degree-Calibrated (DC) network;
dashed line: interventions. Dyadic transmission probability (r =0.03) & Local clustering (Cc =0.42). n = 2,029
agents.
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Figure 23: Number of infected agents (y-axis) by days (x-axis) (median of 100 replications) under three di�erent
interventions (rows) targeting 1, 3, 5, or 10 agents per day (columns). A –NO-TARGET intervention; B – CONTACT-
TARGET intervention. C – HUB-TARGET intervention. Lower and upper bounds of the shaded areas correspond
to the 5th percentiles and 95th percentiles of the 100 replications. Solid line: Degree-Calibrated (DC) network;
dashed line: interventions. Dyadic transmissionprobability (r =0.03) & Local clustering (Cc =0.50). n = 2,029
agents.
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Figure 24: Number of infected agents (y-axis) by days (x-axis) (median of 100 replications) under three di�erent
interventions (rows) targeting 1, 3, 5, or 10 agents per day (columns). A –NO-TARGET intervention; B – CONTACT-
TARGET intervention. C – HUB-TARGET intervention. Lower and upper bounds of the shaded areas correspond
to the 5th percentiles and 95th percentiles of the 100 replications. Solid line: Degree-Calibrated (DC) network;
dashed line: interventions. Dyadic transmissionprobability (r =0.07) & Local clustering (Cc =0.04). n = 2,029
agents.
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Figure 25: Number of infected agents (y-axis) by days (x-axis) (median of 100 replications) under three di�erent
interventions (rows) targeting 1, 3, 5, or 10 agents per day (columns). A –NO-TARGET intervention; B – CONTACT-
TARGET intervention. C – HUB-TARGET intervention. Lower and upper bounds of the shaded areas correspond
to the 5th percentiles and 95th percentiles of the 100 replications. Solid line: Degree-Calibrated (DC) network;
dashed line: interventions. Dyadic transmission probability (r =0.07) & Local clustering (Cc =0.42). n = 2,029
agents.

JASSS, 23(4) 10, 2020 http://jasss.soc.surrey.ac.uk/23/4/10.html Doi: 10.18564/jasss.4435



Figure 26: Number of infected agents (y-axis) by days (x-axis) (median of 100 replications) under three di�erent
interventions (rows) targeting 1, 3, 5, or 10 agents per day (columns). A –NO-TARGET intervention; B – CONTACT-
TARGET intervention. C – HUB-TARGET intervention. Lower and upper bounds of the shaded areas correspond
to the 5th percentiles and 95th percentiles of the 100 replications. Solid line: Degree-Calibrated (DC) network;
dashed line: interventions. Dyadic transmissionprobability (r =0.07) & Local clustering (Cc =0.50). n = 2,029
agents.
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