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Abstract: The housing sector is an important part of every community. It directly a�ects people, constitutes
a major share of the building market, and shapes the community. Meanwhile, the increase of developments
in hazard-prone areas along with the intensification of extreme events has amplified the potential for disaster-
induced losses. Consequently, housing recovery is of vital importance to theoverall restorationof a community.
In this relation, recoverymodels canhelpwith devising data-drivenpolicies that canbetter identify pre-disaster
mitigation needs and post-disaster recovery priorities by predicting the possible outcomes of di�erent plans.
Although several recovery models have been proposed, there are still gaps in the understanding of how deci-
sionsmadeby individuals anddi�erent entities interact to output the recovery. Additionally, integrating spatial
aspects of recovery is a missing key in many models. The current research proposes a spatial model for sim-
ulation and prediction of homeowners’ recovery decisions through incorporating recovery drivers that could
capture interactions of individual, communal, and organizational decisions. RecovUS is a spatial agent-based
model forwhich all the input data canbeobtained frompublicly available data sources. Themodel is presented
using thedata on the recovery of Staten Island, NewYork a�erHurricane Sandy in 2012. The results confirm that
the combinationof internal, interactive, andexternal driversof recoverya�ecthouseholds’ decisionsandshape
the progress of recovery.
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Introduction

1.1 Population growth in hazard-prone areas together with the increase in severity of extreme events (Bergholt
& Lujala 2012; Guha-Sapir et al. 2016; Pravettoni 2009; Smith 2012) has raised the potential for disaster losses
(Cutter et al. 2008; Schwartz 2006). Accordingly, a better understanding of the recovery process is necessary.
Recovery process is a continuum of interdependent and mostly concurrent activities during pre-disaster pre-
paredness and post-disaster short-term, intermediate, and long-term recovery. Among the components of this
continuum, early-decided policies have a significant e�ect on the progress of recovery (FEMA 2011). In rela-
tion, analysis andmodeling capabilities could help with capturing the dynamics of recovery and underpinning
recovery plans.

1.2 Within a community recovery, housing restoration is of vital importance. Housing is a primary element of peo-
ples’ lives, which influences their well-being by providing a safe and secure place and creating a positive sense
of self-worth and empowerment (Bratt 2002). Furthermore, residential structures constitute the major share
of building stock in the United States (Comerio 1998). In 2017, the number of U.S. houses was about 137million
units (USBC 2018), and their associated mortgage balance was reported at 9 trillion U.S. dollars in the second
quarter of 2018 (FRBNY 2018). Additionally, the residential sector plays a significant role in shaping the built
environment. Neighborhood characteristics such as availability of transportation systems, schools, employ-
ment opportunities, commercial establishments, recreational centers, etc. are influenced by households’ pref-
erences and demands. These factorsmake housing amajor sector of the U.S. financial and social infrastructure
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(Comerio 1998). Consequently, housing reestablishment influences overall recovery of a community through a
ripple e�ect (Nejat & Damnjanovic 2012; Peacock et al. 2007). Housing recovery is driven by many parameters
and requires a collective endeavor to study. This makes it one of the most complex and least-studied topics in
disaster recovery research (Drabek 2012; Ganapati & Ganapati 2008; Peacock et al. 2007; Rubin 2009).

1.3 Recovery models aim to abstract and simulate the real world by including factors that a�ect the phenomenon
of recovery. Miles & Chang (2006, 2011), for example, applied stochastic simulation to simulate the recovery
dynamics of households and businesses in the context of neighborhood and community conditions. Nejat &
Damnjanovic (2012) developed an agent-basedmodel using game theory to predict reconstruction decisions of
households based on the status of their neighbors and future value of their own reconstruction (Nejat & Damn-
janovic 2012). Miles (2017) developed a discrete event disaster recovery simulation framework (DESaster) that
simulates owner, renter, and landlord households as the entities, recovery needs as the events, and human
and financial resources as the resources. DESaster is capable of modeling households’ eligibility for financial
assistance, sequential orparallel events, andstochasticity in theevents’ durations (Miles 2017). Haer et al. (2016)
developed anagent-basedmodel to examine the e�ectiveness of di�erent flood risk communication strategies,
as well as their circulation capabilities through social networks of households modeled as the agents. Filatova
et al. (2011) used an agent-basedmodel to research the e�ect of residents’ perceptions of flood risk on the value
and development of coastal land in areas without flood-protection infrastructure. Magliocca et al. (2011) devel-
oped a coupled housing and land markets (CHALMS) agent-based model to simulate housing development in
farmlands. The model includes three types of agents: housing consumer, farmer, and developer. Farmers de-
cide whether to sell their lands by comparing the returns from farming to the expected price of their lands. The
price of land is estimated based on the market supply-demand relationship. The housing density is decided
by the developer based on the profitability of di�erent housing types and consumers’ income, preferences for
the house and lot size, and transportation costs (Magliocca et al. 2011). Magliocca & Walls (2018) adapted the
CHALMS model to study land development in coastal areas. The model includes three types of agents: con-
sumers, landowners, and developers. The model captures the interactions of agents to simulate market- and
landscape-level outcomes and examine how the attractiveness of coastal amenities and the high risk of dam-
age from storms collide to bring in the consumers’ buying decisions and their adaptive behaviors (Magliocca
& Walls 2018). de Koning & Filatova (2020) developed an agent-based model to simulate relocation behavior
of households residing in high-risk flood-prone areas. The model contains sellers and buyers as agents with
heterogeneous risk perception and incomewhose interactions in the presence of repetitive floods produce the
outmigration decisions (de Koning & Filatova 2020).

1.4 Households’ recovery decisions, however, are impacted by many parameters that their complete inclusion in
a single model is infeasible. There are still gaps in the full understanding of post-disaster recovery and of how
individual, communal, andorganizational decisions interact to result in theoverall recovery. Furthermore, inte-
grating spatial aspects of recovery is an essential but under-researched concern. Therefore, the objective of the
current research is to examine the impact of financial resources onhomeowners’ recovery decisions and to cap-
ture the role of post-disaster functionality of infrastructure, the recovery of neighbors, and the functionality of
community assets in the recovery of households with heterogeneous preferences. For this purpose, RecovUS,
an agent-based model of recovery, was developed. Mitigation/recovery decision-makers can utilize RecovUS
to prioritize and underpin recovery policies based on distinct household characteristics to ensure an enhanced
community recovery program as proactive and data-informed recovery plans can majorly impact the overall
recovery of a community (Hirayama 2000; Ingram et al. 2006).

1.5 This study focuses on owner-occupied single-family detached homes. The rationale behind this selection was
the prevalence of this type of housing in the United States’ residential sector. Moreover, other housing types
have di�erent and more complicated recovery behaviors, stemming from their sophisticated ownership pat-
terns, which require a di�erent research methodology (Zhang & Peacock 2009). This study directly involves
insurance companies andpublic agencies providing housing financial assistance and indirectly engages the lat-
ter via restoration of infrastructure and community assets. Additionally, the model includes spatial aspects of
recovery by capturing the e�ect of recovery of neighbors and neighborhood community assets on households’
recovery decisions. Although this scope is not a representation of the total residential sector, it addresses a
major share. Additionally, it provides a framework to examine emergent recovery behaviors in the presence of
recovery drivers and uncertainties.

1.6 In the following sections, the related literature is outlined first. Then, the methodology of the research is pre-
sented, and the process of collection and generation of data is described. Next, the model outcomes are pre-
sented and discussed. Finally, the research limitations and contributions are summarized and future lines of
study are proposed.

JASSS, 23(4) 13, 2020 http://jasss.soc.surrey.ac.uk/23/4/13.html Doi: 10.18564/jasss.4445



Literature Review

Drivers of recovery

2.1 The parameters that a�ect housing recovery can be classified into three general categories concerning their re-
lationshipwith households, including internal, interactive, and external drivers (Moradi 2020a). Internal drivers
are the factors directly related to households, such as household attributes and level of damage caused by a
disaster. Di�erent socioeconomic conditions di�erentiate the resilience of households (Burton 2015; Moradi
et al. 2019) and contribute to the emergence of dissimilar patterns of recovery. Economic status, for example,
a�ects households’ post-disaster recovery. Individuals with greater financial power may apply disaster miti-
gation more o�en and consequently be less impacted (Hunter 2005), while lower incomes are more likely to
experience a slower recovery (Peacock et al. 2014). Level of educational attainment has also been reported
to positively influence restoration (Burton 2015). Further, racial disparity was found as the major cause of the
lengthy process of recovery a�er Hurricane Andrew (Zhang & Peacock 2009) and Hurricane Katrina (Bullard &
Wright 2009). Age (Henderson et al. 2010; Sanders et al. 2004), gender (Nejat et al. 2018), marital status (Nejat &
Ghosh2016), andhousehold size (Nejat et al. 2020; Sadri et al. 2018) are other attributes that cana�ect recovery.
Another important driver is the damage severity. The e�ect of the damage can last for several years a�er a dis-
aster (Hamideh et al. 2018; Peacock et al. 2014). A higher relocation ratio has been reported for more-impacted
residents (Mayer et al. 2020; McNeil et al. 2015; Myers et al. 2008). Additionally, among households who stay,
restoration could take longer for those whose properties have sustainedmore damage (Sadri et al. 2018).

2.2 Interactive drivers are developed through the interaction of individuals with their community. Social capital,
place attachment, and recovery of neighbors are among these drivers. Several studies have demonstrated the
role of social capital in post-disaster recovery (Aldrich 2011; Burton 2015; Sadri et al. 2018), as it facilitates the
achievement of common goals through mutual communications (Jamali & Nejat 2016) and provides informal
resources for recovery (Airriess et al. 2008; Aldrich 2010). Place attachment also a�ects households’ recovery
decisions. Residents are connected to their place of living via the resources as well as the sense of identity
o�eredby theneighborhood (Jamali &Nejat 2016). Senseofplacehasbeen reportedasakeyplayer indecisions
of households against relocation (Binder et al. 2015; McNeil et al. 2015). Additionally, households’ recovery
decisions are influenced by their neighbors. Recovery of neighbors relays a positive message on restoration
of the neighborhood and encourages other residents to repair/reconstruct (Nejat & Damnjanovic 2012; Rust &
Killinger 2006).

2.3 External drivers are provided by di�erent public, private, and non-profit organizations. Examples include finan-
cial resources and restoration of infrastructure and community assets. Financial aids provided through insur-
ance policies, disaster loans, and public funds enhance the progress of restoration (Nejat & Ghosh 2016). Distri-
bution of these resources a�ects the pattern of recovery such that regionswith less assistancemay experience a
higher rate of relocation (Kamel & Loukaitou-Sideris 2004). Further, infrastructure and community assets, such
as transportation systems, commercial features, schools, and healthcare facilities, provide services vital to the
residents and which address their regular and recovery-specific needs (Aghababaei et al. 2020; Comerio 2014;
Ronan & Johnston 2005; Xiao et al. 2018). Additionally, post-disaster functionality of infrastructure and com-
munity assets influences households’ perception of their neighborhood reestablishment and can impact their
decisions in favor of or against repair/reconstruction (Dehghani & Shafieezadeh 2019; Moradi 2020b; Nazarnia
et al. 2020).

Perceived neighborhood

2.4 People di�er in how they delineate their neighborhood even though they may live in geographic proximity
(Coulton et al. 2001). Consequently, features they expect from their neighborhood, as well as its boundaries,
may be dissimilar (Nejat 2018; Nejat et al. 2019). Recognizing these preferences and integrating them into the
modeling can provide amore realistic picture of the residents’ needs and priorities (Moradi et al. 2019). Various
factors a�ect theperceptionof a neighborhood, such as residents’ sociodemographic attributes, neighborhood
characteristics, and physical elements. Individuals with a longer duration of residence and higher income, ed-
ucation, and engagement in neighborhood activities may perceive a larger neighborhood (Coulton et al. 2013).
Racial similarities can also cause adjacent areas to be included in or excluded from an individual’s perceived
neighborhood (Campbell et al. 2009; Krysan 2002). Further, residents may perceive a smaller neighborhood
in high-density and mixed-used areas (Coulton et al. 2013) and a smaller neighborhood in suburban regions
(Haney & Knowles 1978). Physical elements such as streets, parks, and rivers can also a�ect perceived neigh-
borhood boundaries (Campbell et al. 2009).
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2.5 Nejat et al. (2019) developed an index, Anchors of Social Network Awareness index (ASNA-i), to classify house-
holds based on the perception of their neighborhood. The index considers three classes of households: in-
dex 1, or infrastructure-aware class, is characterized by its preference for transportation and geographical fea-
tures; index 2, or social-networks-aware class, opts for friends and families and neighborhoods; and index 3,
or community-assets-aware class, prefers community assets and public services and safety. The classification
is estimated by a latent class regression model that uses the logarithm of the population density of a county
of residence, household income, and householder educational attainment and race as covariates (Nejat et al.
2019). Perceived neighborhood areas and their relationships with ASNA indexes have also been investigated by
Nejat (2018) and Moradi et al. (2020).

Research Methodology

3.1 RecovUS was developed at the household level to simulate post-disaster recovery decisions of households re-
siding in their own single-family houses. Each household is represented in the model by an agent located on
the polygon centroid of its home. A household agent possesses particular attributes, including characteristics
of the householder (e.g., income and ASNA index) as well as information on the house in which it resides (e.g.,
pre- and post-disaster value and square footage). Based on its specific characteristics, each agent senses the
environment and/or other agents, evaluates the conditions, and decides for its recovery. Recovery choices are
repair/reconstruction of the damaged house, waiting without repair/reconstruction, or selling the house (and
relocating).

3.2 RecovUS is founded on the assumption that housing recovery is a function of households’ financial conditions
and community recovery. It assumes that a household wouldmeet the prerequisites of repair/reconstruction if
1) it has enough financial resources, and 2) its community has recovered adequately (Figure 1).

Figure 1: RecovUS fundamental assumption.

3.3 A household’s financial conditions are evaluated by two categories of variables: costs and resources (Figure
2). Costs include repair or reconstruction costs and rent of another property when the primary house is unin-
habitable. Resources comprise the money required to cover the costs of repair/reconstruction and to pay the
rent (if necessary). The repair/reconstruction resources include settlement from the National Flood Insurance
(NFI), Housing Assistance provided by the Federal Emergency Management Agency (FEMA-HA), disaster loan
o�ered by the Small Business Administration (SBA loan), a share of household liquid assets, and Community
Development Block Grant Disaster Recovery (CDBG-DR) fund provided by the Department of Housing and Ur-
ban Development (HUD). Furthermore, household income determines the amount of rent the inhabitants can
a�ord.

3.4 Community conditions are assessed for each household based on the restoration of specific anchors (Figure
3). ASNA indexes (Nejat et al. 2019) are estimated to identify the category of anchors important to the recovery
decision of each household. Accordingly, households are indexed into three classes for each of which recovery
of infrastructure, neighbors, or community assets matters most. Furthermore, among similar anchors, those
anchors are important to a household that are located in its perceived neighborhood area (Moradi et al. 2020;
Nejat 2018).

3.5 Figure 4 shows the steps of evaluating the recovery criteria and predicting the households’ decisions. In each
time step, the program implements the following procedure:

1. The algorithm starts with reimbursing financial aid to the eligible households that have been damaged
by the disaster. These aids include NFI settlements, FEMA-HA, SBA loans, a share of liquid assets that
households spend on recovery, and CDBG-DR assistance. The resources are reimbursed in sequence in
order not to duplicate each other.

2. Next, the model compares each households’ available financial resources to the damage cost. If the fi-
nancial criterion is not satisfied (i.e., the available financial resources are not enough to cover the re-
pair/reconstruction costs), the program evaluates the habitability of the house. If it is habitable, the
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Figure 2: Household financial conditions.

Figure 3: Community recovery.

household is expected towait with a probability of r1%, but it also has the alternative of selling the prop-
erty with a probability of (100-r1)%. If the house is uninhabitable, two additional conditions are evalu-
ated. If the household can a�ord to pay for the rent of another property and a vacant rental unit is also
available, the optionswould bewaiting or selling (like the previous case), but if either is notmet, the only
option would be selling the house.

3. If the financial criterion is satisfied, the community criterion is evaluated. Based on the ASNA index of
a household, restoration of infrastructure, neighbors, or community assets is compared to its desirable
threshold (adq_infr, adq_nbr, and adq_cas, respectively). If the perceived community has adequately re-
covered, the household is expected to decide in favor of repair/reconstruction with a probability of r2%,
though it would also have the alternative of selling with a probability of (100-r2)%. However, if commu-
nity recovery is inadequate, the model proceeds like the situation in which financial resources were not
enough (no. 2 above). In other words, habitability, rent a�ordability, and vacancy are checked, and the
household decides to wait or sell the house.

4. If a house is sold, the buyer would decide to repair/reconstruct the house with a probability of r0%, or
wait (or sell again) with a probability of (100-r0)%.

3.6 The thresholds r0, r1, r2,adq_infr,adq_nbr, andadq_casaremodelparameters and their valuesaredetermined
bycalibration. Themodel algorithm isdiscussed indetail inAppendix, using theOverview,Designconcepts, and
Details (ODD) protocol (Grimm et al. 2006, 2020).

3.7 Figure 5 illustrates the linkage of drivers of recovery to the model. Internal drivers relate to both financial and
community conditions. Education level, race, and income connect to community conditions by identifying the
anchor-based index of a household and its perceived neighborhood area. Physical damage is tiedwith financial
conditionsdue to its associationwith repair/reconstructioncosts. Also, the level ofdamagedetermineswhether
a home is habitable or the household needs to rent another residence. Furthermore, household income is re-
lated to financial conditions by estimating the amount of resources available for repair/reconstruction and the
ability topay for rent. Interactivedriversare coupledwithcommunity conditions through the influenceofneigh-
bors’ recovery on recovery decisions of the index-2 households. Finally, external drivers relate to both financial
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Figure 4: RecovUS algorithm.

and community conditions. The linkage to the former is via the provision of housing financial assistance, and to
the latter through the e�ect of recovery of infrastructure and community assets on recovery decisions of index-1
and index-3 households.

Figure 5: Linkage of recovery drivers to the research.

Data

4.1 Recovery of Staten Island, New York a�er Hurricane Sandy was selected as the case study to provide the input
data. Sandywas a hurricane/post-tropical cyclone that hit the eastern coast of the United States onOctober 29,
2012. It was one of the largest Atlantic tropical storms that extended into a territory with a diameter of 1,000
miles and a�ected 24 States. The highest storm surge was recorded nine feet along the shoreline in Manhattan
and Staten Island. Sandy resulted in at least 147 deaths, caused loss of power in 8.5 million houses and $65
billion in damage, and damaged or destroyed 650,000 houses and hundreds of thousands of businesses (GAO
2015; HRD 2019; NOAA & NWS 2013).

4.2 The inputdata for themodel is classified into twogeneral categoriesofnon-disaster-relatedanddisaster-related
data. Thenon-disaster-relateddata includes information thatdoesnot changebasedonaspecificdisaster, such
as household income, educational attainment, race, and housing characteristics. The disaster-related data, on
the other hand, includes information that di�ers based on the hypothesized disaster case, such as damage to
houses, housing financial assistance, and damage and restoration of infrastructure and community assets. The
input data consists of:

1. Housing attributes, including Staten Island single-family detached homes, their spatial location, level of
damage caused by Hurricane Sandy, and restoration status a�er two years.

2. Household attributes, including household income and ASNA index.
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3. Financial resources, including distribution of NFI, FEMA-HA, SBA loan, CDBG-DR, and liquid assets.

4. Households’ financial ability to pay rent.

5. Damage to infrastructure and community assets and their restoration progress.

4.3 While this section provides a brief description of the data, a more detailed explanation is provided inAppendix
(section Input data). The first category of data is housing attributes. This information was extracted from the
NewYorkCity tax assessmentdata (NYC2019a). Cleaning thedata to includeonly single-family detachedhomes
of Staten Island resulted in 74,604 houses. Improvement market values for each house in each year was calcu-
lated by subtracting the land market value from the total market value. The improvement value estimates the
worth of additions to the land, mainly due to the structure. The improvement values were discounted back to
a common time (August 2011) using monthly Consumer Price Indexes (CPIs) for housing in New York, Newark,
and Jersey City (BLS 2019) to have the same basis for comparison. The discounted improvementmarket (DIMP)
values were used to estimate the damage to the properties. If the DIMP value of a house showed a decrease in
the first post-Sandy year compared to the pre-Sandy year, the housewas assumed damaged and the amount of
damage was estimated as the di�erence between the pre- and post-sandy DIMP values. Additionally, once the
DIMP value in the subsequent years reached or exceeded the pre-Sandy DIMP value, the house was assumed to
have been completely restored to its pre-disaster condition. The data were joined to the shapefile of the lots’
polygons (NYC 2019b) using ArcGIS Desktop 10.3.1 (ESRI 2015) to provide the input file for RecovUS (Figure 6).
More information is presented in theAppendix (section Input data: Housing attributes).

Figure 6: 74,604 single-family detached houses inputted to the program.

4.4 Household income and the householder ASNA index are of the other inputs. Household income is applied to
estimate households’ liquid assets and renting power and to control the eligibility criteria to receive financial
assistance. Additionally, household income togetherwith thepopulationdensity of county of residence, house-
holder educational attainment, and householder race is used to estimate ASNA indexes based on the latent
class regressionmodel proposed by Nejat et al. (2019), the details of which are provided in the Appendix. While
population density is simply calculated, data on the other three covariates are not generally available at the
household level. In the current research, this data was synthetically generated by Iterative Proportional Fit-
ting (IPF) of the 2013 census data on household income, educational attainment, and race (USBC 2013a,b,c), as
explained in the Appendix. To reduce RecovUS runtime, ASNA indexes were estimated in advance from the co-
variates andwere joinedwith the household income to the lots’ shapefile using ArcGIS. Please see theAppendix
(section Input data: Household attributes) for more explanation.

4.5 Another category of input is the data on financial resources including NFI, FEMA-HA, SBA loan, CDBG-DR, and
liquid assets. The National Flood Insurance Program (NFIP) paid 32,360 losses (totaling $8.80 billion) in the 16
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states impactedbyHurricaneSandy (III 2019a,b). In theabsenceof higher-resolutiondata, 80%of thehouses lo-
catedwithin areas at high risk of flooding (FEMA 2019a; Shawnee County 2019) were assumed to be reimbursed
by the NFIP. Additionally, zip-code level data on reimbursement of FEMA-HA and SBA loan were obtained from
FEMA (2019b) and SBA (2014), respectively. Additionally, zip-code-level data on the distribution of CDBG-DR
funds to single-family houses was obtained from NYC (2019c). Furthermore, the 2013 census data on house-
holds’wealth (USBC2014)wasused toestimatehouseholds’ networthbasedon their income. Householdswere
assumed to consider a share of their net worth (1-20%) as the liquid assets assigned for repair/reconstruction
costs. Please see theAppendix (section Input data: Financial resources) for more detail. The financial ability
of households to pay rent is another input data. Household financial power regarding rent was assumed to
be a fraction of the household income (up to 40%). Additionally, the amount of rent was estimated using the
HUD’s Fair Market Rent (FMR) for Staten Island (HUD 2019). Comparison of a household financial power to the
amount of rent determined whether a household could a�ord to pay the rent. More explanation is provided in
theAppendix (section Input data: Rent).

4.6 The last group of input is the data on damage and restoration of infrastructure and community assets. This data
was estimated fromqualitative reports. A report published by the City of New York (NYC 2013) describes the im-
portant transportation infrastructure and community assets. For example, it mentions that a “transportation
asset on the East and South Shores is the SIR, a 14-mile commuter rail line operated by the Metropolitan Trans-
portation Authority (MTA). . .”. The report then explains what happened in Sandy: “Major damage also occurred
at the SIR’s operations and maintenance facilities, limiting service in the days a�er the storm (ultimately, full
service was only restored in mid-December)” (NYC 2013). The authors used these descriptions to subjectively
estimate the infrastructure damage every three months a�er the disaster. For example, it was assumed that
the SIR was 80% unfunctional immediately a�er the hurricane (“Major damage”) and was completely restored
within the first three months (“full service . . . in mid-December”). The estimated damage was also checked for
consistencywith other reports (Kaufman & Shaby 2013), where possible. Since the items in the report werema-
jor infrastructures that a�ected most residents, the average damage to the infrastructure system (rather than
individual infrastructures) was calculated and fed into the model. Damage to the community assets was esti-
mated for 135 community assets using a similar approach and joined to their shapefile (NYC 2019b). RecovUS
evaluates recovery of community assets based on the geographic location of the assets since they were as-
sumed to mostly serve the local residents. More information is provided in theAppendix (section Input data:
Infrastructure and community assets).

Results and Discussion

Model calibration

5.1 Six thresholds in themodel a�ect households’ decisions: adq_infr, adq_nbr, adq_cas, r0, r1, and r2. The values
of these variables are obtained by calibrating the model. The objective of calibration (also called training in
the field of machine learning) is to optimize the parameters such that the model would have the least (train-
ing) error value (i.e., the overall model predictionswould have the least di�erencewith empirical data). Herein,
the model predictions are recovery decisions of households (repair/reconstruct or not) at the end of the 24th
month and the empirical data include the recovery status of houses estimated from tax assessment data as
described previously. The model was run using the facilities of Texas Tech High-Performance Computing Cen-
ter (HPCC 2019). Calibration started on a broader range of values for the parameters and a smaller number of
repetitions and continued with narrowing the range of values and increasing the number of repetitions (Table
1). The reason for this configuration was to evaluate the predictions of the model on a wide range of values
and accommodate the HPCC runtime limitations. The predictions from each set of values were averaged on
the number of repetitions to obtain the average number of repairs/reconstructions. Then, the prediction error,
called the training error, was calculated by comparing the average number of repairs/reconstructions predicted
by the model with the number of repairs/reconstructions from the empirical data. Table 2 presents the set of
values that yielded the minimum average training error (averaged over 1,000 repetitions). The small error of
-0.21% indicates a good fit to the data.

5.2 The value of 95% obtained for r1 through calibration implies the probability of waiting (against selling) for a
household whose recovery criteria have not been met yet is 95%. Similarly, the value of 95% for r2 means the
probability of repair/reconstruction for a household with satisfied recovery criteria is 95%. The calibrated val-
ues indicate that the behavior predicted by the model corresponds to its fundamental hypotheses, meaning
that once both criteria are met, households mostly decide to repair/reconstruct (r2 = 95%). Conversely, when
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Setting adq_infr adq_nbr adq_cas r0 r1 r2 Repetitions

1 55:5:100 55:5:100 55:5:100 55:5:95 55:5:95 55:5:95 1
2 0:5:100 0:5:100 0:5:100 30:5:70 95 95 10
3 0:10:100 0:10:100 0:10:100 35 95 95 10
4 50 30:5:100 50 35 95 95 100
5 50 40 50 35 95 95 1000

Table 1: Settings of the model parameters for calibration

Dataset adq_infr adq_nbr adq_cas r0 r1 r2 Training error (%)

All 50 40 50 35 95 95 -0.213

Table 2: Selected values for the model parameters

either criterion is not satisfied, repair/reconstructiondoes not progressmuch (r1 =95%). These results are also
consistent with the pattern reported in the literature. According to Peacock et al. (2014), for instance, higher in-
comes among households impacted byHurricane Andrew inMiami-Dade repaired/reconstructedmore quickly.
Kamel & Loukaitou-Sideris (2004) studied the recovery of Los Angeles following theNorthridge earthquake and
reported a lower recovery in neighborhoods underfunded by federal assistance programs. Similarly, Nejat &
Ghosh (2016) suggested that availability of financial resources a�ecteddecisions of Staten Island residents, who
had been impacted by Hurricane Sandy, in favor of repair/reconstruction. Additionally, recovery of neighbors,
infrastructure, and community assets has been reported to positively influence housing reconstruction (Burton
2015; Comerio 2014; Rust & Killinger 2006).

5.3 The value of 35% for r0 entails that the probability of buyer repair/reconstruction is about half the probability of
waiting. The empirical data also supported this value. The tax assessment data (NYC 2019a) includes the names
of properties’ owners in each fiscal year. The analysis of the data revealed that about 67% of the damaged
properties whose owners had changed a�er Sandy (sold the property) had not yet recovered until the second
year (equivalent to r0 = 33.12%). A similar ratio has also been reported for the recovery of auctioned houses in
Long Island (Polsky 2019).

5.4 Furthermore, the analysis showed low sensitivity of themodel to changes in adq_infr and adq_cas. The reason
for the former is the rapid recovery of infrastructurewithin the first fewmonths. Thus, nomatterwhat valuewas
selected foradq_infr, the criterionof community recovery for index-1 householdswas satisfied in the initial time
steps. Additionally, since index-3 households constitute a small share of the population (about 4%), change in
the value of adq_cas does not significantly a�ect the overall output. Finally, the optimized value for adq_nbr
implies that at least 40% of neighbors should restore in order to satisfy the community criterion for index-2
households.

Validation

5.5 The small training error obtained for RecovUS (-0.21%) means themodel is not underfitting the data, i.e., using
the input dataset together with the values obtained for the parameters from calibration would lead to a predic-
tion that adequately represents the pattern observed in the empirical data (Goodfellow et al. 2016). However,
measuring the performance of amodel against the samedataset used for calibrationmay result in an optimistic
conclusion. The more meaningful approach is to validate the model, i.e. examine generalization performance
of the model over previously unobserved datasets to assure it would not overfit the data (Theodoridis 2015). A
small gap between training error and test error would satisfy this purpose (Goodfellow et al. 2016). This study
applied the k-fold cross-validation method, which is a common technique for estimating a model’s test error.
The idea is to randomly divide the dataset into k subsamples with roughly equal sizes, form a training set by
deleting one group, and assign the deleted group to the test set. The model is calibrated over a training set
and is used over the corresponding test set to obtain the prediction error, also known as the test error. The test
errors are finally averaged on the number of sets (k) to yield an average estimation of the generalization error
(Theodoridis 2015; Twomey & Smith 1997; Wold 1978).

5.6 The dataset was divided into four subsamples constituting the four training and test sets (Table 3 and Figure
7). Count and Ratio in Table 3 represent the number and percentage of damaged houses in each dataset, re-
spectively. Since RecovUS captures the spatial aspect of recovery by evaluating the recovery of neighbors and
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community assets, subsamples are four geographic regions of the dataset (zip codes) with almost the same
number of damaged houses rather than sparse samples. As depicted in Table 3, each test set consists of about
one-fourth (since k = 4) of the total number of damaged houses.

Dataset Train Test

Count Ratio (%) Count Ratio (%)

All 42645 100.00 - -
set-01 30771 72.16 11874 27.84
set-02 32617 76.48 10028 23.52
set-03 31430 73.70 11215 26.30
set-04 33117 77.66 9528 22.34

Table 3: Training and test sets for k-fold cross-validation

Figure 7: Training and test sets for k-fold cross-validation.

5.7 Using the k-fold cross-validation method, the model was first calibrated using one training set at a time to ob-
tain the optimized values for the parameters. Calibrationwas performedusing a similar procedure as explained
before. Table 4 summarizes the results. Themodel was run over one of the training datasets and a range of val-
ues for themodelparameters (100 repetitionsoneach setof values). Theaverageerror, called trainingerror,was
then calculatedby comparing the averagenumber of repairs/reconstructions predictedby themodel (averaged
on 100 repetitions) with the number of repairs/reconstructions from the empirical data. The set of values asso-
ciated with theminimum training error was selected as the calibrated values. The calibrated values were again
used over the same training dataset, but themodelwas run 1,000 times to calculate and report amore accurate
training error (Table 4). Then, the calibrated model was run 1,000 times over the corresponding test dataset,
and the average error, called the test error, was calculated by comparing the number of repairs/reconstructions
predicted by the model with the number of repairs/reconstructions from the empirical data. This procedure
was repeated over the four folds of the data and the associated errors were calculated. Finally, the model’s
test error, calculated by averaging the four test errors weighted by the number of samples, was obtained to be
equal to 0.44% (Table 4). The small di�erence between training and test errors (0.66%) assures that themodel
generalizes well on unobserved data.

Dataset adq_infr adq_nbr adq_cas r0 r1 r2 Training error (%) Test error (%)

Set 1 50 90 50 35 95 95 0.358 -17.199
Set 2 50 85 50 30 90 90 0.123 -0.201
Set 3 50 85 50 35 90 85 0.017 14.393
Set 4 50 40 50 40 95 95 0.138 6.687
Average test error (%) 0.443

Table 4: Model parameters

Computational Experimentation

5.8 Twoseries of sensitivity analyseswereperformed toevaluate the relative importanceofmodel variables andas-
sumptions. Herein, relative importancemeans the amount of which a variable or assumption a�ects themodel
output in terms of damaged houses repaired/reconstructed. In the first series of analysis, the six thresholds of
the model were set to the calibrated values (Table 2), the value of a variable changed, and variation in the pre-
dicted progress of recovery was monitored. Six variables, including r_asna, r_prds, r_hbt, and r_vac, insurance
penetration, and recovery rate of infrastructure were selected to showcase the model sensitivity (while these
variables are described in the following section, a detailed explanationhas beenprovided in theAppendix). The
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model was run 100 times for each setting, and the predictions on the percentage of repair/reconstruction were
averaged. Figure 8 illustrates the average results. Intervals of the standard deviation of the outputs are shown
on the bottom right corner of each figure.

Figure 8: Sensitivity of the model to (a) probability of having the estimated ASNA index (r_asna); (b) deviation
frommedian perceived neighborhood radius (r_prds); (c) habitability threshold (r_hbt); (d) availability of rental
units (r_vac); (e) flood insurancepenetrationwhenonly high-risk zonesmaybe covered; (f) flood insurancepen-
etration when all zones may be covered (the base case of 80% penetration in high-risk zones is also presented
for comparison); (g) infrastructure recovery rate.

5.9 The first variable was r_asna. As explained in the Appendix, households’ ASNA indexes were predicted by a
latent class regression model using household attributes. Then, the model assigned the predicted index to a
household with a probability of r_asna% and assigned one of the other two indexes with a probability of (100
- r_asna)%. Therefore, this variable together with the household attributes a�ects the share of the population
in each class, which in turn influences how the criterion on the recovery of the community will be satisfied. Fig-
ure 8a illustrates the percentage of repaired/reconstructed houses (averaged on 100 runs) predicted on three-
month intervals for di�erent values of r_asna. The default value for the variable was 80%. The results suggest
that the model is not sensitive to the changes in r_asna. However, insensitivity was caused by the input data,
not the model structure. First, with the generated household attributes and assuming r_asna = 80%, about
65%, 31%, and 4% of the households were predicted to be of ASNA index 1, 2, and 3, respectively. Secondly,
the rapid recovery of infrastructure caused the criterion on community recovery to be easily satisfied for index-
1 households in the 3rd month. Consequently, given the satisfaction of the financial criterion, there would be
a good chance of repair/reconstruction for these households who meanwhile constitute a major share of the
population. This also a�ects recovery decisions of the second largest part of the population (i.e., the index-2
(social-networks-aware) households). Since the community criterion for index-2households is theadequate re-
covery of their neighbors, and many of the neighbors are of index 1 for which community criterion has already
been satisfied, a high chance of repair/reconstruction once again exists for the index-2 households. Further-
more, although variation in the value of r_ansa changes the proportions of households, the dominant indexes
are still 1 and 2. Therefore, the major shares of these classes combined with the fast recovery of infrastructure
brought about the insensitivity of the model to changes in r_asna.

5.10 The next variable was r_prds. This variable identifies the random deviation of a household’s perceived neigh-
borhood radius from the median radius corresponding to its ASNA index. For example, r_prds= 20% (default)
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means that for each household, the index-specificmedian radius ismultiplied by a randomdraw from the inter-
val 100±20= [80, 120]% to yield the radius of its perceived neighborhood. Figure 8b suggests that themodel is
not sensitive to the changes in the value of r_prds. Since the community criterion for index-2 and index-3 house-
holds is evaluatedon the recoveryof neighbors andcommunity assets that exist in theperceivedneighborhood,
changes in the radius of perceived neighborhoods alter their quantity and consequently a�ect the satisfaction
of the criterion. However, the major share of index-1 households as neighbors of index-2 households and the
small share of index-3 households caused the model not to show sensitivity to r_prds. Therefore, once again,
this observationwas produced by the input data and cannot be interpreted in general as the insensitivity of the
model to r_prds.

5.11 Another variable was r_hbt. This variable identifies the threshold for the level of damage above which a house
is assumed to be uninhabitable. The value of r_hbt impacts the model output in two aspects. First, it a�ects
the amount of financial assistance that eligible households may receive from FEMA, as FEMA-HA is paid up to
the amount of returning to the habitability level. Second, it determines whether households whose recovery
criteria havenotbeen satisfied canwait in their ownhouseormust rent another residence (and if cannot, sell it).
Figure 8c shows the sensitivity to r_hbt. The solid red line with triangular markers illustrates the output for the
default value of r_hbt= 10%. The results show that the model is sensitive to this variable such that its smaller
values speed up the progress of repair/reconstruction. The behavior corresponds to the output expected from
the model algorithm. When r_hbt increases, the amount of FEAM-HA reimbursement decreases, which in turn
causes the financial criterion not to bemet for a higher number of households. Additionally, the increase in the
value of this variable means that more households whose recovery criteria have not beenmet can wait in their
own houses. Both consequences contributed to the overall decline in the progress of repair/reconstruction.
Figure 8c further suggests that themodel is almost insensitive to changes in r_hbt for values greater than 40%.
This happeneddue to the level of damage estimated from tax assessment data. Basedon this estimation, about
4% of damaged houses sustained a damage level greater than 40%, and only 1% were damaged by more than
50%. This share, however, was greater for lower levels of damage such that 64%, 39%, and 19% of houses
burdened damage greater than 10%, 20%, and 30%, respectively. Therefore, since a few houses experienced
damage greater than 40%, r_hbt above 40% did not a�ect the model output.

5.12 Sensitivity analysis was also performed on r_vac. This variable estimates the probability of availability of va-
cant rental units. If recovery criteria are not satisfied, the home is uninhabitable, and the household can a�ord
to rent another residence, there is a probability of r_vac% that a vacant rental property, and consequently the
option of waiting, would be available to the household. The results show that smaller values of the variable
speed up the progress of repair/reconstruction. The change is less for smaller values of r_vac but increases
with its growth such that changing r_vac from 0% to 50% decreases the percentage of repair/reconstruction in
the 24th month by about 1%, but changing the variable from 50% to 100% decreases the percentage by about
20%. This decrease is a result of the assumption of the model on decisions of households whose recovery cri-
teria have not been met, their homes are uninhabitable and can a�ord to rent another residence. In such a
case, most households prefer to wait (r1 = 95%) rather than sell their property. Therefore, an increase in the
value of r_vacmeans that more households will be able to wait in the hope of better conditions, which in turn
results in a decrease in the overall percentage of repair/reconstruction, which could have happened a�er the
sale. Oppositely, with a smaller r_vac, suchhouseholds cannot find aplace to rent andmust sell their residence.
A higher share of sold houses means that buyers, some of whommay decide to repair/reconstruct (r0 = 35%),
will have a higher share in the overall recovery. Although based on the model assumptions, a decrease in the
availability of rental units would result in more repair/reconstruction, the extra amount is caused by new own-
ers (buyers) at the cost of relocating the current households. Relocation is commonly deemed an unfavorable
social phenomenon, as relocators may encounter problems in adapting to their new living environment, de-
veloping new social ties, and finding jobs which can trigger psychological burdens (Goenjian et al. 2001; Jamali
et al. 2020; Najarian et al. 1996; Riad & Norris 1996; Uscher-Pines 2009). Accordingly, motivating individuals to
withstand deficiencies and rebuild instead of relocation is a near-consensus position among policymakers and
researchers (Berke et al. 1993; Birkland 1997; Jamali et al. 2020; Kumar&Havey 2013). Therefore, the availability
of rental units in the post-disaster setting is desirable, as it could help with reducing relocations and increasing
households’ resilience and coping capacity (Cutter et al. 2010; Moradi et al. 2019).

5.13 The next sensitivity analysis was implemented on the penetration of flood insurance. Based on themodel algo-
rithm, NFI settlements were the first type of financial resource assigned for repair/reconstruction. As described
previously, it was assumed that 80%of households residing in high-risk flood zones benefited from flood insur-
ance. Sensitivity analysis was performed to examine how changes in the default assumption impact themodel
outcome. For this purpose, it was first assumed that only high-risk zonesmay have insurance and the penetra-
tion rate changed from 50% to 100%. The results, as depicted in Figure 8e, suggest that the overall outcome
is not sensitive to variation in the insurance penetration rate. Again, this observation is rooted in the input
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data. RecovUS modeled 74,604 houses of which 42,645 houses were estimated to be damaged by Hurricane
Sandy. However, a small number of them were located within the zones with a high risk of flooding (5,397 of
total and 3,245 of the damaged houses). Consequently, considering the small share of damaged houses that
potentially may have insurance (less than 8%), changes in the value of insurance penetration rate would not
significantly alter the overall outcome. Therefore, in the second round of analyzing the sensitivity to the in-
surance penetration rate changes, eligible zones were expanded to the whole island. It was assumed that all
zonesmay have insurance (regardless of the level of flood hazard), and the penetration rate varied from 10% to
100% (Figure 8f). The outcome shows that the model is sensitive to changes in the insurance penetration rate
when it is applied to a su�icient number of houses. Insensitivity of the model when only high-risk zones are
considered and its sensitivity once the region is expanded correspond to the reports that suspect accuracy and
su�iciency of 100-year flood maps as the boundaries of high-risk zones since a major share of losses happen
outside of these boundaries (Brody et al. 2018; Highfield et al. 2013). Further, themodel predicts that expanding
the region to the whole island enhances the progress of repair/reconstruction even when a small penetration
rate of 10% is applied. This outcome is also supported by the literature on the significant role of insurance in
housing recovery and household resilience to disasters (Moradi et al. 2020; Nejat & Ghosh 2016; Tobin 1999).
However, the model predicts that improvement in the amount of repair/reconstruction due to an increase in
flood insurance penetration is more significant in the first few months and is diluted over time. For example,
while the di�erence in the percentage of repair/reconstruction for penetration rates of 10% and 100% is about
22% in the 6thmonth, it is lowered to 10% in the 24th month. This means that while a higher penetration ac-
celerates the progress of repair/reconstruction and speeds up the return to normalcy, it might not significantly
change the long-term outcome. Meanwhile, considering the controversial aspects of the National Flood Insur-
ance Program such as recognizing improper land development, mitigation failures, and actuarial unsoundness
(Burby 2001; Kunreuther 1996; McMillan 2007), the decision for increasing insurance penetration requiresmore
consideration.

5.14 Finally, the sensitivity to di�erent regimes of infrastructure recovery was evaluated. As described before, it
was estimated that infrastructure majorly recovered in the first three months (77.5%) and completely recov-
ered by the end of the 6th month. To examine the influence of di�erent recovery regimes, the three-month
rate of infrastructure recovery changed from 0% to 90% (Figure 9), and the predicted progress in housing re-
pair/reconstruction was compared (Figure 8g).

Figure 9: Regimes of infrastructure recovery used for sensitivity analysis.

5.15 Figure 8g shows four patterns for housing repair/reconstruction based on di�erent values for infrastructure re-
covery rate: apattern for an infrastructure recovery rateof 0%, apattern for 10%, apattern for 20%and30%, and
apattern for 40%to90%. Theoutcomesuggests that quicker infrastructure recovery results in anenhancement
in the progress of housing repair/reconstruction inmonths 3-15. This improvement is causeddue to satisfaction
of the community criterion for index-1 households and its ripple e�ect on the recovery of index-2 households,
which together constitute about 96% of the households. This observation is aligned with the literature that
reports the positive e�ect of infrastructure functionality on housing repair/reconstruction (Arup 2016; Burton
2015; Comerio 2014; Miles & Chang 2011; Moradi et al. 2019).

5.16 The sensitivity analyses presented above rely on a local technique inwhich variables are changed one at a time.
When a model includes nonlinearities and interactions, a global sensitivity analysis is also necessary since lo-
cal methods do not adequately represent its sensitivity (Saltelli et al. 2019). In this research, an ablation study
was performed to evaluate the global sensitivity of themodel. Ablation study examines amodel by removing its
buildingblocks toexamine their e�ect on themodel output (Hessel et al. 2018;Meyes et al. 2019; Sheikholeslami
2019). As described previously, RecovUS is based on two fundamental assumptions stating that financial condi-
tions and community recovery are the prerequisites for housing repair/reconstruction. Each of these assump-
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tions includes several blocks; financial conditions consist of five blocks of NFI, FEMA-HA, SBA loan, liquid as-
sets, and CDBG-DR, and community recovery includes three blocks of recovery of infrastructure, neighbors,
and community assets. To examine the e�ect of each block on the overall repair/reconstruction of households,
the model was run with excluding the block from the algorithm. For example, the e�ect of liquid assets on
the percentage of repair/reconstructionwas evaluated by removing the block of liquid assets. In other words, it
was assumed that householdswould not spend any share of their liquid assets on repair/reconstruction (Figure
10a), the model was ran 100 times, and the results were averaged. Additionally, the e�ect of each fundamental
assumption was evaluated by removing all of its constituent blocks. Figure 10b schematically shows remov-
ing the fundamental assumption of community recovery as an example. The analysis results are illustrated in
Figure 11.

Figure 10: Examples of ablation study: (a) removing the block of liquid assets; (b) removing the criterion of
perceived community recovery.

Figure 11: Sensitivity of the model to its assumptions and building blocks.

5.17 Four distinctive patterns are observed in Figure 11. The highest ratio of repair/reconstruction is achieved in
the base case in which none of the blocks are removed. Removing NFI, FEMA-HA, SBA loan, CDBG-DR assis-
tance, and recovery of community assets does not change this pattern significantly. With the input data and
assumptions described before, the share of NFI, FEMA-HA, SBA loan, and CDBG-DR assistance from the total
financial resources available to households for repair/reconstruction was about 8%, 4%, 7%, and 10% respec-
tively. Therefore, each of these resources could not individually a�ect the overall outcomemuch. However, al-
though itmight be argued that thementioned resourceswere not shown to greatly influence the recovery of the
community, it should be noted that each of them is important to their eligible population. For example, CGBG-
DR assistance is mainly intended to help with the recovery of lower-income households. Therefore, although
it constituted only 10% of the total resources and slightly influenced the global pattern of recovery, it helped
with recovery of a particular portion of the population who could not a�ord the cost of repair/reconstruction
without this type of assistance. The insensitivity of themodel to the recovery of community assets also resulted
from the small share of community-assets-aware households (less than 5%) studied in this research. In the cur-
rent study, recovery of community assets did not help much with the overall recovery of households; however,
they are still important to the recovery of di�erent communities where a higher share of households perceive
community assets as the most important anchors of their neighborhood.

5.18 On the other hand, removing the block of liquid assets, the assumption of financial conditions, or the assump-
tion of community recovery results in the largest decline in the overall ratio of repair/reconstruction. Liquid as-
sets constitutedmore than two-thirds of the financial resources. Consequently, removing this resource a�ected
the overall outcome like the case in which financial conditions were not satisfied at all. Interestingly, remov-
ing the assumption of community recovery as a recovery criterion impacted the overall repair/reconstruction
of households similar to removing the assumption of satisfaction of financial conditions. This result suggests

JASSS, 23(4) 13, 2020 http://jasss.soc.surrey.ac.uk/23/4/13.html Doi: 10.18564/jasss.4445



that the two fundamental assumptions of this study (i.e., availability of financial resources and restoration of
perceived community) are equally important to homeowners’ recovery decisions.

5.19 Two other curves exist between these two extremes: removing the block of recovery of neighbors and restora-
tion of infrastructure. By removing the block of recovery of neighbors, social-network-aware households will
perceive that their neighborhood has not recovered at all. Removing the block of recovery of infrastructure
has a similar meaning to the infrastructure-aware households. Figure 11 shows that the e�ect of infrastructure
restoration on the overall recovery of households is more than the neighbors’ recovery. This is because first,
the number of infrastructure-aware households in this study was twice the number of social-network-aware
households (about two-thirds and one-third of the households, respectively). Second, the non-functionality of
infrastructure not only directly impacts the repair/reconstruction decision of infrastructure-aware households
but also indirectly a�ects recovery decisions of social-network-aware households sincemost of their neighbors
are infrastructure-aware. Therefore, recoveryof infrastructurehada ripplee�ecton the recoveryofhouseholds.

5.20 The experiments explained above helped with addressing the research objectives. The results showed that
internal, interactive, and external drivers of recovery a�ected households’ recovery decisions. As described
before (Figure 5), the model incorporated three categories of drivers: internal (household income, education,
and race, and physical damage), interactive (recovery of perceived neighbors), and external (financial assis-
tance, recovery of infrastructure, and recovery of community assets). Household income, education, and race
are the internal drivers that estimate a household’s ASNA index. This index classifies households based on
their perception of the community, which in turn identifies the share of recovery of infrastructure, neighbors,
and community assets in households’ decisions. Most households were estimated to be infrastructure aware
(about 65%). The second major group was social-networks-aware households (about 30%) for which recov-
ery of community assets mattered most. The last class (i.e., community-assets-aware households) constituted
a minor share of households (less than 5%). Accordingly, recovery of infrastructure followed by recovery of
neighbors had the highest impact on the recovery of households. It is worth noting that recovery of infrastruc-
ture has a ripple e�ect since it directly impacts infrastructure-aware households and indirectly a�ects social-
networks-aware households (through their infrastructure-aware neighbors), which together constitute about
96% of the households. This relationship is observed in Figure 8g as the higher rates of infrastructure recov-
ery are associated with accelerated progress in households’ repairs/reconstructions. This positive relationship
has been reported in the literature as described before (Comerio 2014; Nejat & Damnjanovic 2012; Xiao et al.
2018). Damage to houses is also an important driver, as it identifies whether a household can a�ord the cost
of repair/reconstruction. More severe damage requires more financial resources and is o�en associated with
lower odds of repair/reconstruction (Mayer et al. 2020; McNeil et al. 2015). Additionally, the impact of finan-
cial resources is reflected in Figure 8c and f. Increasing the amount of financial aid (e.g., increasing FEMA-HA
reimbursement through decreasing r_hbt) and expanding the aid to accommodate more households (e.g., in-
creasing insurance penetration rate) enhance the progress of repair/reconstruction. This observation is also
supported by the literature (Kamel & Loukaitou-Sideris 2004; Nejat &Ghosh 2016; Tobin 1999). Therefore, seven
out of the eight drivers of recovery employed in themodel e�ectively impacted the recovery of households. Re-
covery of community assets had a relatively small share due to the small number of households indexed as
community-assets aware. Additionally, the results showed that the fundamental assumptions of the study (i.e.,
availability of financial resources and recovery of perceived community), both are important to homeowners’
recovery decisions and a�ect the overall pattern of repair/reconstruction to a similar degree (Figure 11). Among
constituents of the first assumption, liquid assets had the highest impact due to its major share in financial
resources. Among the elements of the second assumption, restoration of infrastructure followed by recovery
of community assets played the key role because most households were indexed as infrastructure-aware and
social-network-aware.

Conclusions

6.1 This research aims to develop a model that could integrate the e�ects of financial resources and communal
aspects of recovery by capturing spatial interactions of households with their perceived neighborhood. While
several models have been proposed for the simulation of recovery, the major contribution of this research is
to develop a model that simulates housing decisions through the mindset of insiders. In RecovUS, not only do
factors such as level of damage, financial resources, and a�ordability and availability of rental properties a�ect
households’ decisions in favor of repair/reconstruction, waiting, or selling, but also their perception of their
neighborhood and its restoration also play a critical role. The model separates this perception for di�erent
residents such that heterogeneous households prefer community features dissimilar in terms of type and dis-
tance. Theoutput from themodel confirms that internal, interactive, andexternal drivers of recovery e�ectively
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play a role in the households’ decision-making and influence the progress of repair/reconstruction. Therefore,
RecovUS contributes to the field of disaster recovery modeling by weighting the communal aspects of recov-
ery and calling out the necessity of including households’ interactions with their perceived neighborhood for
achieving a more realistic simulation and prediction.

6.2 Like all studies, the current research was associated with limitations. Addressing these limitations could be
future lines of study. A challenge was providing individual-level data on damage and restoration of proper-
ties. Although this informationwas estimated from tax assessment data, the approach comeswith a limitation:
properties are appraised within a fiscal year, not on a single date. Therefore, based on the time that a disas-
ter impacts a region and the date on which a property is appraised, the value may be related to the status of a
house in 1 to 364 days a�er the disaster. This influences estimation of both damage and repair/reconstruction.
Although discounting all values back to a base date helpedwith alleviatingmarket inflations and comparability
of the values, the estimation is still a�ectedby the recovery stageonwhichabuildinghasbeenappraised. More-
over, the value of a building can be a�ected by a variety of causes other than physical damage such as market
dynamics, depreciation, upgrade, etc. However, in the spatiotemporal vicinity of a disaster (like the case stud-
ied in this research), the price changes can be plausibly assumed to be caused by the physical damage and the
restorationprogress, though there stillmight be inaccuracies. Damage couldbe estimatedusingothermethods
and applied to evaluate the expected capability of the model in simulating di�erent patterns.

6.3 Also, themodel does not impose any time limit on the duration of renting. Households that a�ord the rent and
can find a vacant unit may wait up to the last run of the program (24 months). However, although temporary
housingmay takeweeks tomonths (Peacock et al. 2007), it is not necessarily via renting a place. For at least the
first fewmonths,many higher-income householdsmay decide to stay at hotels andmotels, while lower income
households may stay with their friends and families (Morrow & Peacock 1997; Peacock et al. 2007). However,
the model assumes they will rent. Additionally, the model does not include programs that facilitate temporary
housingbyproviding cash rental assistance,mobile homes, etc. These subjects canbe accommodated in future
research.

6.4 Furthermore, althoughRecovUSneither underfits nor overfits the data, the generalization of themodel to other
disaster scenarios needs additional consideration. For example, the spatial pattern of damage is di�erent in a
hurricane or earthquake from a tornado. While hurricanes typically a�ect a vast area, tornadoes usually have
a local spatial expansion and impact a limited region on and around their path. In addition to the type of dis-
aster, other factors such as characteristics of households, types and timing of financial resources, and recovery
of infrastructure and community assets can be significantly di�erent. When input data is much di�erent, the
parameters should be optimized by recalibrating themodel, while some submodulesmay even requiremodifi-
cation. Suchdata canhelpwith evaluating the generalizability of themodel to other types of disasters, di�erent
socioeconomic structures, various distributions of financial resources, and di�erent patterns in the restoration
of infrastructure and community assets.

6.5 The model development was also influenced by technical constraints. Due to the so�ware and HPCC limita-
tions, the number of model parameters was restricted to reduce the calibration duration. Consequently, Re-
covUS was calibrated on six variables. In the absence of this limitation, more parameters could have been em-
ployed to accommodate di�erent conditions. For example, the probability of selecting the wait option, condi-
tioned on whether a home is habitable or not, could be represented by two di�erent parameters, rather than
by a single parameter (r1) as is in the current version. Moreover, RecovUSwas calibrated byminimizing the dis-
agreement between the predicted and observed outcomes (i.e., recovery decisions). While percent agreement
is a commonly used method, calibrating the model using other measures such as the kappa statistic could de-
crease the potential of chance agreement. Additionally, aggregating the household-level results into a larger
geographical unit (e.g. blockgroup) canprovideadditional insights into the spatial natureof recoverydecisions.

6.6 Another important subject is thepossible loss of incomedue to the collapse of the local economy. In the current
study, household-level incomewas estimated from the 2013 census data andwas used to estimate households’
ASNA indexes, rentpower, networth, andeligibility for SBA loanandCDBG-DRassistance. Although thechanges
in household income are expected to have been reflected in the American Community Survey estimates, it still
might a�ect the income-related values. The potential e�ect of income variability can be integrated into future
versions of the model.

6.7 Finally, the current research examined homeowners’ recovery decisions residing in their primary single-family
detached houses. More research is required to study the recovery of other types of occupancy and housing
characteristics. Recovery of renters, secondary homes, multifamily properties, etc. are important subjects that
require more study. Therefore, expanding the model to include other aspects of recovery can be the subject of
another study.
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6.8 Despite the limitations, RecovUS provides a platform to spatially model houses and community assets to ex-
amine the impacts of financial aids and restoration of community on recovery decisions of households with
heterogeneous characteristics. RecovUS benefits from the advantage of calibration and modular structure. If
assumptionsor inputdataare tobe included thatare significantlydi�erent fromthecurrent research, themodel
can be recalibrated to optimize its parameters or, if required, submodules can be easilymodified to address the
new conditions without impacting the model’s integrity. For example, this study assumed that households
whose recovery criteria have not been met may wait for the whole runtime (i.e., 24 months), if their home is
habitable or they are able to rent another place. Other options, such as staying with friends and families rather
than renting, stayingwith significant others in the first fewmonths and then renting another place, substituting
the wait/sell parameter with time-sensitive parameters such that the weight of the sell option increases over
time, etc. are of possible modifications that could be easily incorporated into themodel. New submodules can
also be added (e.g., to simulate business recovery), while the integrity of the model stays preserved.

6.9 Another feature of RecovUS is that the required input can be obtained from free and publicly available data
sources. The idea behind this design was to provide a model that could o�er a perspective toward the situa-
tion at a minimum amount of time and cost. Additionally, if more specific and accurate data is provided, the
model couldbeeasily fine-tuned. Therefore, RecovUScanhelpwithdata-drivenplanningbyprovidinga tool for
predicting impacts of di�erent resource allocation and reconstruction scenarios to outline policies that could
better address social, economic, and political concerns while accommodating the various needs of di�erent
stakeholders.

Model Documentation

Themodel has been developed in the environment of NetLogo 6.1.0 (Wilensky 1999) — The code is available in
https://www.comses.net (Moradi 2020a).
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Appendix: Overview, Design Concepts, and Details (ODD)

The Appendix includes the ODD protocol accompanying the article, which can be accessed here. The code can
beaccessedhere: https://www.comses.net/codebases/8f1d300e-6333-4b36-820f-c414016ea395/releases/
1.0.0/.
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