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Abstract: Investigating how echo chambers emerge in social networks is increasingly crucial, given their role in
facilitating the retention ofmisinformation, inducing intolerance towards opposing views, andmisleading public
and political discourse. Previously, the emergence of echo chambers has been attributed to psychological biases
and inter-individual di�erences, requiring repeated interactions among network-users and rewiring or pruning of
social ties. Using an idealisedpopulationof social network users, the present results suggest thatwhen combined
with positive credibility perceptions of a communicating source, social media users’ ability to rapidly share
information with each other through a single cascade can be su�icient to produce echo chambers. Crucially,
we show that this requires neither special psychological explanation (e.g., bias or individual di�erences), nor
repeated interactions—though these may be exacerbating factors. In fact, this e�ect is made increasingly worse
the more generations of peer-to-peer transmissions it takes for information to permeate a network. This raises
important questions for social network architects, if truly opposed to the increasing prevalence of deleterious
societal trends that stem from echo chamber formation.

Keywords: Echo Chambers, Source Credibility, Information Cascades, Agent-Based Modelling, Bayesian Mod-
elling

Introduction

1.1 As we navigate social media platforms, we are free to customise our networks according to our individual needs:
we choose to connect with users we like while we ignore others, we follow ‘Influencers’ that inspire us, and we
selectively share and repost content. Combined with curated News Feeds, selective attention to and sharing of
content has been associated with spreading of digital misinformation (Del Vicario et al. 2016a) and false news
stories (Vosoughi et al. 2018). Over the past decade, several researchers investigated the spreading and retention
of misinformation and false news on social media platforms (Starbird et al. 2014; Bessi et al. 2015; Bakshy et al.
2015; Del Vicario et al. 2016a) and their implications for e.g., the polarisation of opinions (Bessi et al. 2016; Sikder
et al. 2020). However, the scientific community still lacks clear answers to fundamental questions relating to the
general prevalence of misinformation and false news and their e�ects on individuals (Lazer et al. 2018).

1.2 To understand the spreading of misinformation and false news, recent work has investigated the impact of
echo chambers on digital misinformation. Echo chambers are enclosed epistemic systems where like-minded
individuals reinforce their pre-existing beliefs (Madsen et al. 2018). The enclosing nature of echo chambers has
been shown to induce intolerance towards opposing views (Takikawa & Nagayoshi 2017), misleading public and
political discourse (Jasny et al. 2015; Jasny & Fisher 2019) and quantitative analyses suggest that echo chambers
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may contribute to the spread of misinformation (Törnberg 2018; Del Vicario et al. 2016a). Considering these
findings, investigating how echo chambers emerge on social media might o�er an important opportunity for
understanding and potentially counteracting the occurrence of digital misinformation.

1.3 Importantly, although some social media users might ‘live’ in echo chambers, using social media does not
necessarily imply restricted exposure to information. Compared to non-users, the average social media user
experiences more diverse content (Newman et al. 2017a), and it has been suggested that the majority of social
media users do not necessarily self-select into echo chambers (Haw 2020). However, the formation of social ties
is influenced by social network algorithms, e.g., via selective user recommendations (Chen & Syu 2020), which
can limit a user’s exposure to other people with di�erent beliefs or preferences. Interestingly, recent theoretical
work has suggested that echo chambers can also improve individual access to information via optimising the
allocation of information resources (Jann & Schottmüller 2020). Overall, these findings further highlight the
importance of clarifying how echo chambers emerge on social media and raise questions about the value-free
nature of echo chambers: What factors lead to an echo chamber causing beneficial vs. unfavourable outcomes?

1.4 In the present work, we formally study echo chamber formation within simulated populations of social media
users. Extending previous work (Madsen et al. 2017, 2018; Sasahara et al. 2020), we specifically focus on echo
chamber formation as a consequence of a single interaction between generations of network users (contribution
1). As a motivating example, consider a person that shares a tweet with their friends. Subsequently, each of
their friends retweets the initial tweet. Assuming that each user has 100 friends that share no social ties with
another user’s friends, the ‘second-generation’ of friends that has access to the initial tweet already has a size of
10000. If this process is repeated for only a few generations of users, a single initial piece of information can
permeate rapidly through a social network without requiring repeated communications between individual
users. Considering this ability to rapidly spread information on social media, we see a single-interaction model
of echo chamber formation as an important contribution expanding previous models focusing on repeated
interaction and network pruning over time (see also Lorenz 2007; Sikder et al. 2020).

1.5 In addition to focusing on a single interaction, our model takes into account that social media users might
selectively integrate information from a communicating source based on their perceived credibility of this
user. As such, our belief updating mechanism (see Section 2) accounts for the influence of users’ credibility
perceptions of each other during belief formation (contribution 2). To isolate the influence of credibility, we
contrast two hypothetical populations of agents. The first one (‘social’ agents) evaluates the credibility of a
source by comparing their communication with the beliefs of their friends (i.e. social network connections /
ties). The second control group (‘asocial’ agents) samples random credibility estimates for a communicating
source during belief formation. We test the robustness of our network setup across a wide range of parameter
combinations varying the epistemic authority of users (robustness check 1), percentage of users sharing their
beliefs with their peers (robustness check 2), and the number of social ties per user (i.e. the connectivity density
of the network; robustness check 3). Overall, we hope that our model simulations will help to better understand
potentially su�icient causes of echo chambers in social networks.

Background

Echo chambers

2.1 To investigate when and how echo chambers emerge, it is important to explore their causes. These might be
routed in psychological biases: previous analyses of echo chambers and their impact on digital misinformation
identified confirmation bias—seeking information confirming one’s prior beliefs (Nickerson 1998)—and social
influence—people’s tendency to align their behaviour with the demands of their social environment (Kelman
1958)—as key driving factors of echo chamber formation (Del Vicario et al. 2016a; Starnini et al. 2016; Sikder et al.
2020). For example, a recent quantitative analysis showed that social influence combined with a preference
for forming connections with similar peers and abandoning dissimilar social ties results in rapid echo chamber
formation a�er repeated interaction (Sasahara et al. 2020). Additionally, work in statistical physics has shown
that confirmation bias induces clustering of like-minded individuals (i.e. echo chambers) and proliferation of
opinions (Ngampruetikorn & Stephens 2016).

2.2 The above findings might be explained by the fact that social influence and confirmation bias lead to selective
avoidance of information challenging one’s prior beliefs, and consequently, limited access to cross-cutting
content on social media such as Facebook (Henry et al. 2011; Bakshy et al. 2015; Ngampruetikorn & Stephens
2016). In addition to contributing to the formation of echo chambers, it is important to point out that selective
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rewiring can also foster cooperative behaviours. For example, it has been shown that cooperative behaviours
are more likely to evolve (Righi & Takács 2014; Yamagishi et al. 1984) and survive (Santos et al. 2006) in networks
where individuals can self-select and prune their social ties. Along with psychological biases, it has been argued
that cognitive di�erences between individualsmight induce echo chambers (Barkun2013). Overall, these findings
suggest that both psychological variables and cognitive variability among individual agents might be important
requirements for the formation of echo chambers.

2.3 Aiming to clarify the necessity of psychological variables and heterogeneity, recent simulation-based work has
investigated echo chamber formation in an idealised population of homogeneous rational (i.e. Bayesian) agents
engaging in repeated interaction and with a preference for similar-minded others (Madsen et al. 2018). Results
provided a formal argument for the inherent susceptibility of social networks towards echo chamber formation
despite absence of cognitive di�erences among agents. In other words, repeated interaction in conjunction
with a bias against dissimilar peers was su�icient for the formation of echo chambers. These findings are in
line with earlier work showing that echo chambers inevitably emerge if users engaging in repeated interaction
preferentially rewire or prune their social ties to avoid contact with dissimilar peers (Henry et al. 2011).

2.4 Importantly, while previous work on echo chambers (Madsen et al. 2018; Sasahara et al. 2020; Sikder et al. 2020)
and opinion dynamics (Hegselmann & Krause 2002; Lorenz 2007) shows that repeated interaction and pruning
of social ties with dissimilar others solidifies echo chambers, the present work investigates whether the initial
way in which information arrives into the network already ‘skews the pitch’ prior to repeated interaction. This is
motivated by theoretical (Bikhchandani et al. 1992) and simulation-based (Pilditch 2017) work on information
cascades, which has suggested that single interactions between agents can be su�icient for the formation of
echo chambers and other maladaptive population outcomes.

Bayesian source credibility model

2.5 The credibility of a source plays an important role when integrating their communications with our own obser-
vations and prior expectations (Cuddy et al. 2011; Fiske et al. 2007). Moreover, source credibility plays a critical
role in persuasion and argumentation theory, especially in the context of politics (Housholder & LaMarre 2014;
Robinson et al. 1999; Cialdini & Cialdini 1993), which has become increasingly influenced by online communica-
tion systems (Bail 2016). Both heuristic accounts, such as the heuristic-systematic model (HSM) (Chaiken 1999)
and dual-process theories, including the elaboration-likelihood model (ELM) (Petty & Cacioppo 1986), have
been used to study the influence of credibility on persuasion, showing a positive general impact (Chaiken &
Maheswaran 1994).

2.6 Recently, research has investigated the influence of source credibility from a Bayesian perspective, meaning that
credibility is modeled as an analytic cue that moderates belief updating (Bovens & Hartmann 2003; Hahn et al.
2009; Harris & Hahn 2009). This Bayesian source credibility model (BSCM) proposes that a person’s prior belief
in a hypothesis is represented as subjective probability P (h) taking values between 0 and 1. Upon observing a
source’s communication rep, the Bayesian source credibility framework posits that the posterior probability of a
hypothesis, P (h|rep), is given by the normalised product of the likelihood P (rep|h) and the prior P (h):

P (h|rep) = P (h)P (rep|h)∑
h′∈H P (rep|h′)P (h′)

(1)

whereH corresponds to the set of hypotheses {h,¬h}. Selecting a binary setHwas an intended simplification
allowing us to account for the dichotomous nature of several prominent topics a�ected by echo chamber
formation (e.g., Brexit with two-party politics). BSCM extends previous heuristic accounts such as HSM or ELM
by providing a quantitative, normative framework for modelling the impact of source credibility during belief
updating, and it has been shown to provide a good account of people’s judgments in argumentation (Harris et al.
2016; Madsen 2016). Specifically, BSCM represents the credibility of a source by two orthogonal quantities: (1)
the perceived probability that the source is an expertP (e) vs. no expertP (¬e) = 1−P (e) and (2) the perceived
probability of the source being trustworthy P (t) vs. not trustworthy P (¬t) = 1− P (t). In words, P (e) refers
to the probability of the source having accurate information, whilst P (t) refers to the probability that a source
intends to pass on accurate information (to the best of their ability). P (e) and P (t)moderate the influence of a
source’s communication signal rep on a target’s initial belief in the hypothesis P (h) during updating (see Figure
1). Both expertise and trustworthiness received independent support in recentwork showing that people account
for these properties of a source when updating their prior beliefs based on the source’s belief communications
(Hawthorne-Madell & Goodman 2019).
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Figure 1: Bayesian Source Credibility Model.

2.7 In line with the initial introduction of the BSCM model (Hahn et al. 2009; Harris et al. 2016), we define the
likelihood of a source’s communication rep assuming that the hypothesis is true h and under consideration of
the target’s perceived expertise P (e) and trustworthiness P (t) of the communicating source as:

P (rep|h) =
∑
e′∈E

∑
t′∈T

P (rep|h, e′, t′)P (e′)P (t′) (2)

here, wemarginalize over the presence vs. absence of a source’s expertiseE = {e,¬e} and trustworthiness T =
{t,¬t}. Similar, if the hypothesis was false ¬h, the likelihood of a source communicating rep is given by:

P (rep|¬h) =
∑
e′∈E

∑
t′∈T

P (rep|¬h, e′, t′)P (e′)P (t′) (3)

2.8 In our agent-based simulations, we adapted the established BSCMmodel to furnish simulated network users
with a cognitive architecture for belief formation that allows to incorporate credibility perceptions of others
(further details on the computation of likelihoods follow in Section 3). Importantly, by using BSCM asmecha-
nism for belief formation, our agent-based simulations depart from previous ‘bounded confidence’ models in
which ties between agents were interrupted once the di�erence between the beliefs of any two paired agents
surpassed a critical threshold (Hegselmann & Krause 2002, 2005; Lorenz 2007; Bolletta & Pin 2020; Sasahara
et al. 2020; Madsen et al. 2018). While such bounded confidence models have been successful accounts of echo
chamber formation following pruning of network ties between dissimilar agents, they have not yet provided a
full description of how interactions between agents with very di�erent beliefs can contribute to the formation of
echo chambers. By including the perceived credibility of sources in our simulated network, we hope to further
address this question, allowing for the exchange of information between agents irrespective of di�erences in
their beliefs. The next section introduces the details of our agent-basedmodel.

Agent-Based Model

Model setup

3.1 We built an idealised social network withN = 1000 agents. At the start of each run of the model (i.e. a single
model simulation), agents were randomly assigned to x-y coordinates in a two-dimensional environment. An
agent’s location did not change during subsequent interaction. Following spatial allocation, each agent formedn
(static) social ties with their nearest network neighbors. Ties represent the social network connections between
users and allowed for the communication of beliefs between agents. Ties persisted during a model simulation
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irrespective of changes in agents’ beliefs. Distance to other agents was measured by Euclidean distance, a proxy
for relational proximity in social networks (Duggins 2017; Pilditch 2017).

3.2 The number of social ties per agent (i.e. the network’s connectivity density) was manipulated betweenmodel
simulations (robustness check 1; see Table 1). This allowed us to test whether the formation of echo chambers
changes as a function of the number of ‘generations’ it takes for information to fully permeate a network (e.g.,
10% connectivitymeans on average it will take 10 generations of communication to permeate the entire network).
The more ties (connected friends/users) an agent has, the more immediately an agent will see information
appearing on the network (and thus the shorter/faster the cascade).

Name Description Levels

Connectivity density (%) (Ties per Agent / Total Number of Agents)× 100 0.5, 1.0, 1.5, ... 50.0

Expertise strength τ Varying levels of a source’s expertise strength 0.00, 0.20, 0.40

P(Declaration) Probability of making a belief public 0.10, 0.50, 1.00

Table 1: Robustness checks.

3.3 In the BSCM framework, there are several ways for initializing prior beliefs P (h) in a hypothesis. Following
previous work (Madsen & Pilditch 2018; Madsen et al. 2018), agents in our network sampled prior beliefs P (h)
from univariate Gaussians with a neutral mean µ = 0.5. We tested di�erent values of σ2. To ensure that our
simulation results were not a consequence of a Gaussian prior, we also explored settings in which beliefs were
sampled from a uniformdistribution, which is a common choice in the related complexity literature (Hegselmann
& Krause 2002; Lorenz 2007). None of these variations significantly influenced our model results, and in the
remainder of this paper we focus on a setting in which agents sampled P (h) fromN (µ = 0.5, σ2 = 0.2).

3.4 In addition to sampling prior beliefs, each agent v had their own subjective expertise evsubj. and trustworthiness
tvsubj. scores. e

v
subj. and t

v
subj. are later used for the calculation of the perceived expertise P (e) and perceived

trustworthinessP (e) estimates of a communicating source. For convenience, evsubj. And t
v
subj. were also sampled

fromunivariate Gaussianswithµ=0.5 andσ2=0.20. For all three quantities, distributionswere truncated between
[0, 1] to ensure that agents sampled values in 0 ≤ x ≤ 1. Figure 2 shows an illustration of an example network
setup prior to the start of a simulation and Algorithm 1 further summarises the steps involved in setting up our
network.

Figure 2: Illustration of a random network setup ofN = 1000 agents in which each agent formed n = 5 social ties
(connections) with their nearest neighbors. Histograms show distributions of each agent’s sampled prior beliefs
P (h) and subjective expertise evsubj. and trustworthiness t

v
subj. prior to the start of simulations.
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Algorithm 1 Setup network.
1: procedure PLACE AGENTS
2: CreateN agents
3: for v = 1 toN do
4: set v position random x-y coordinate
5: end for
6: end procedure
7: procedure SETUP PRIORS AND TIES
8: for v = 1 toN do
9: P (h)[v]←X∼N(µ, σ2)
10: esubj.[v]←X∼N(µ, σ2)
11: tsubj.[v]←X∼N(µ, σ2)
12: create links with n nearest neighbours . based on Euclidean distance
13: end for
14: end procedure

3.5 Each agent was furnished with the same possible behaviours and cognitive functions. At each time step of a
model’s simulation, anagent (thecommunication target) first looked foracommunicationrep∈{hsupport, hreject}
from another agent (the source) which could either communicate support of the hypothesis (hsupport) or dis-
approval of the hypothesis (hreject). Whether a source communicated support or disapproval was based on
the source’s own belief declaration∈ {h,¬h} at the previous time step. Communication between source and
target was only possible if both agents had formed a social tie prior to the start of a simulation. Considering
the source’s communication, the communication target then revised their initial belief P (h) using the BSCM
architecture outlined above. In standard BSCM, the orthogonal nature of a source’s expertise and trust is typically
operationalised such that trust being high (t) or low (¬t) leads to changes in the direction of belief revision (i.e.
low trust makes you revise your beliefs in the opposite direction than high trust), whilst expertise moderates the
strength (size) of the revision (Harris et al. 2016; Madsen & Pilditch 2018). To accommodate for di�erent levels of
expertise, we included an additional parameter τ (‘expertise strength’) determining how strongly the presence
(e) vs. absence (¬e) of a source’s expertise influenced a communication target during belief revision (robustness
check 2; Table 2). Conceptually, τ can be thought of as varying levels of expertise or epistemic authority (Walton
2010): a source with stronger expertise is going to exert larger influence on a communication target’s belief
than a source with lower expertise. Here, we explored three di�erent levels of expertise: no expertise (τ = 0.00),
medium expertise (τ = 0.20), and high expertise (τ = 0.40).

3.6 Table2 shows the resultingconditionalprobability tablewhich specifiedhowtheP (rep|h, e′ , t′)andP (rep|¬h, e′ , t′)
components of the likelihoods in Equations 2 and 3 were computed. To ensure that the direction of the influence
of expertise strength τ matched a communication target’s prior belief (i.e. towards 1 if P (h) > 0.5 and towards 0
if P (h) < 0.5), we flipped the impact of expertise strength based on the the target’s P (h). Similar to an indicator
function, I thus returned 1 for agents having a prior belief P (h) > 0.5 and -1 for agents having a prior belief P (h)
< 0.5.

e, t ¬e, t e,¬t ¬e,¬t
h 0.5 + IP (h)>0.5×τ 0.5 + IP (h)>0.5 0.5 - I(P (h)>0.5×τ 0.5 - I(P (h)>0.5

¬h 1 - (0.5 + IP (h)>0.5×τ ) 1 - (0.5 + IP (h)>0.5) 1 - (0.5 - IP (h)>0.5×τ ) 1 - (0.5 - IP (h)>0.5)

Table 2: Conditional Probability Table.

3.7 To complete BSCM revision, a communication target still needed to compute the perceived expertise P (e) and
trustworthinessP (t) components in the likelihoods outlined in Equations 2 and 3. In ourmodel, each each agent
computed P (e) and P (t) of a communicating source based on the beliefs of n other agents with whom they
formed social ties. Specifically, following observation of a source’s communication rep ∈ {hsupport, hreject},
a target agent (receiver) computed the perceived expertise and trustworthiness of the communicating source
based on the number ofn agents in the receiver’s network that supported the same hypothesis as communicated
by the source (e.g., h if source communicated hsupport) and the number of agents in the network entertaining
the opposite hypothesis from the source’s communication (e.g., ¬h if source communicated hsupport). Formally,
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for a source communicating rep = hsupport, this can be written as:

P (e) =

∑nh

v=1 e
v
subj.∑nh

v=1 e
v
subj. +

∑n¬h

v=1 e
v
subj.

(4)

P (t) =

∑nh

v=1 t
v
subj.∑nh

v=1 t
v
subj. +

∑n¬h

v=1 t
v
subj.

(5)

where evsubj. and t
v
subj. correspond to the subjective trustworthiness and expertise values each agent sampled

prior to the start of simulations, nh corresponds to the subset of agents in a receiver’s network n supporting
h, and n¬h to the subset of agents in a receiver’s network not supporting the hypothesis¬h, respectively. If a
source’s communication was rep = hreject, the subset of agents entertaining ¬hwas placed in the nominator of
Equations 4 and 5.

3.8 To isolate the influence of incorporating credibility estimates by contrasting a source’s communication with the
credibility of network peers supporting a source’s communication vs. entertaining the opposite hypothesis, we
ran simulations separately for two di�erent agent populations. In the first population (‘social’ agents), agents
computed credibility estimates bymeans of Equations 4 and 5. In the second population (‘asocial’ agents), which
functioned as our control group, agents sampled perceived P (e) and P (t) of a communicating source from a
uniform distribution [0, 1]. As such, agents in the control group computed stochastic credibility estimates for a
source irrespective of the beliefs of their network peers.

3.9 Having specified all components of the likelihoods, a communication target (receiver) revised their initial belief
by means of Equation 1 and declared for either h or¬h based on a deterministic decision rule:

belief =

{
h if P (h|rep) > 0.5

¬h if P (h|rep) < 0.5.
(6)

If P (h|d) = 0.5, an agent declared either belief with a probability of 50%. In a third step, the declared belief
(i.e. h or ¬h) was thenmade pubic based on the P(Declaration) probability which was manipulated between
simulations (robustness check 3; see Table 1). For example, a declaration of 1 means all agents made their beliefs
public, while 0.10 means that there is a 10% probability for each agent making their opinion public. Including
di�erent values for P(Declaration) was motivated by recent findings showing thatmost social media users do
not discuss their political beliefs on social media, but mainly focus on exchanging shared hobbies and passions
(Newmanet al. 2017b). As such, wewanted to ensure that our simulation results are robust across social networks
varying in terms of the percentage of users discussing their beliefs with peers. We thus explored three levels of
P(Declaration) as a proxy for the percentage of people exchanging their beliefs about a particular topic.

Simulations

3.10 Simulations were initiated through a random agent. Random in this case means that the first agent randomly
communicated eitherhsupport orhreject to other agentswithwhom they formed social ties. Due to this stochastic
process, on average, half of the 1st generation of communication targets receiving input from the random agent
should declare for a hypothesis hwhile the other half will declare ¬h a�er BSCM integration. The number of
agents the random agent communicated to was determined by the connectivity density. Connectivity values
above 50%were omitted as this would have enabled every other agent to be connected to the random agent
in the 1st generation, precluding the occurrence of a cascade. To improve the readability of plotted example
networks (Figures 2 and 5), the random agent was placed in the center of each simulation (i.e. central green
x-y-coordinate).

3.11 A�er revising their prior beliefs, the first-generation of initially neutral agents (those that received input from the
random agent) made their beliefs public based on the manipulated P(Declaration) value. Their communication
targets (i.e. second-generation) thenused the communications rep∈{hsupport, hreject} from the first-generation
agents as input for their own belief revision following the same procedure. Algorithm 2 shows the basic steps
involved in a single instance of belief revision (i.e. from one generation to the the next). Here, source refers to an
agent from the previous generation that already publicly declared a belief (i.e. h or ¬h) and the connections
nsource of the source refer to the potential communication targets of the next generation. As we investigated
whether a single pass-through of information (i.e. single interaction) was su�icient for the formation of echo
chambers, we did not allow for repeated interaction, meaning that agents could not qualify as communication
targets a�er declaring for a belief. The process of transmitting communications continued down successive
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generations until the network was either completely saturated (i.e. all agents declared for a belief) or the number
of believers (i.e. h or¬h) did not change for two consecutive time periods.

Algorithm 2 Updating beliefs
1: procedure SOURCE SELECTS COMMUNICATION TARGET
2: for v = 1 to nsource do . n = source’s connections
3: if v = neutral then . check if target did not already declare for a belief
4: belief[v] = BSCM(rep, ntarget) . n = target’s connections
5: if random-uniform > P(Declaration) then
6: publicly declare for either h or¬h based on P (h|rep)
7: end if
8: end if
9: end for
10: end procedure

3.12 To ensure that our simulations provided stable results, each possible combination of robustness checks (100×
(connectivity density)× 3 (expertise strength τ )× 3 (P(Declaration))) was ran independently for 50 times for
each the social agent population and control group. To further test the robustness of our simulations, we varied
the size N of networks in separate simulations (N = [100, 500, 1000, 2000]). Additionally, following Madsen
et al. (2018), we contrasted our random network setup with a scale free network (Amaral et al. 2000) which
is commonly used for the study of social networks (Duggins 2017; van der Maas et al. 2020). Overall, varying
network setup and size showed that the results for the present setup were only directly dependent on the
network size if P(Declaration) was so small that the network fractured (i.e. no cascade occurred, see Section 4),
and similar to Madsen et al. (2018), switching from a random to a scale free network did not result in a substantial
aggravation/reduction of echo chambers formation. Our model interface allows for intuitive changes to all
mentioned robustness checks (andmore), and if of interest to the reader, these can be explored by downloading
our code (see Model documentation, for details).

Results

4.1 Tomeasure echo chambers e�ectively across simulations, we were first interested in measuring global propor-
tions of beliefs across the whole network (i.e. the relative number of agents with belief h compared to agents
entertaining belief ¬h). Based on previous simulation-based work, we expected that global proportions would
consistently approximate 50/50 across both agent populations (Pilditch 2017). This measure was necessary to
ensure that echo chambers are not a by-product of a dominant network-wide belief. Following checks for possi-
ble network-wide belief confounds, our key dependent measure of echo chamber formation was the average
percentage of like-minded neighbours an agent possessed (i.e. the local network similarity).

4.2 Formally, local network similarity corresponded to the average percentage of agents in the target’s direct network
that shared the samebelief as the target. For example, 50%means that, onaverage, agents hadequal proportions
for each belief type in their direct network n, where direct network refers to the fraction of the whole network
that is directly connected to an agent via social ties. As such, a higher percentage of agents sharing the same
belief as the target is a proxy for a more severe closure of the target’s epistemic belief network. We expected
that our population of social agents would show increased percentages of like-minded neighbours (i.e. echo
chambers) for low connectivity density values. We did not expect clustering e�ects in the asocial population in
which agents evaluated network peers’ credibility at random.
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Figure 3: Global belief proportions across parameter settings. Each distribution corresponds to the average
global proportions obtained from 50 independent runs for each possible parameter combination (x-axis min
andmax [0,1] have been rescaled to match min andmax proportions obtained from results).

4.3 Figure 3 summarises the average findings from 50 independent runs for each of the 900 parameter combinations
shown in Table 1 (100× (connectivity density)× 3 (expertise strength τ )× 3 (P(Declaration))). As expected, we
can see that the average global belief proportions of social agents approximated 50/50. Running a Wilcoxon
rank sum comparison revealed that global belief proportions in the social agent population did not di�er
significantly from our asocial control group (W = 3636508, p = 0.882). Figure 4 further shows global proportions
for each of our possible parameter combinations. Here, each measure for a specific parameter combination
corresponds again to an average of 50 independent runs. Further examination under consideration of di�erent
parameter combinations confirms the above results, suggesting that irrespective of varying expertise strength,
connectivity density, or P(Declaration), proportions consistently approximated 50/50 (with some noise in the
social population, especially for low connectivity values). Overall, this finding is important, as it ensures that
subsequent clusters of like-minded others were not a function of a global bias towards either belief.

Figure 4: Global belief proportions for a) social agent population and b) asocial control (y-axis min andmax [0,1]
have been rescaled to match min andmax proportions obtained from results).

4.4 Next, we contrasted the averageproportions of like-mindedothers betweenour social population inwhich agents
computed the perceived credibility of a source based on the support for vs. disapproval of the communication
by their fellow network peers and our asocial control group in which credibility perceptions were randomly
sampled from a uniform distribution. Again, results are based on running 50 independent runs for each of the
900 parameter combinations. When combining clustering e�ects across all parameter combinations, the social
population showed significantly larger proportions of clustering (mean = 51.51, SD = 5.46) than the asocial control
population (mean = 49.76, SD = 1.96;W = 5836752, p < 0.001). While this finding suggests that considering peers’
beliefs during the computation of a source’s credibility a�ected echo chamber formation, it does not reveal how
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clustering relates to our robustness checks. To isolate the influence of each robustness check, we next looked at
clustering e�ects independently for each parameter combination.

4.5 Figure 5a shows the the average proportion of like-minded neighbours for our target social population. Here,
we found that clustering increased as a function of increasing expertise strength τ , increasing P(Declaration)
and decreasing connectivity density (x-axis). Importantly, to fully reduce the formation of echo chambers, the
average network member must be connected to around 15-20% of the network, which is infeasible considering
the size of real world social networks which can have several Billion users. The reason for a reduced clustering
e�ect given increased connectivity density is that increasing connectivity density increases agents’ access to
information across the network (i.e. the beliefs of other agents). Thus, a�er reaching a connectivity density
of around 15-20%, each agents had access to a significant proportion of the beliefs across the entire network,
which reduced the formation of echo chambers.

Figure 5: Main clustering results. a) average percentage of like-minded neighbours (i.e. echo chambers), social
agents. b) average percentage of like-minded neighbours, asocial agents.

4.6 The finding that an expertise strength of τ = 0.00 (i.e. neutral) prevented the formation of echo chambers is a
natural result of our model. Specifically, setting τ to 0.00 reduced the communicative impact of a source to
0, irrespective of their perceived credibility (see Table 2). Consequently, a receiver was not influenced by the
source’s communication rep, which can conceptually be compared to disregarding the communication of a
social media user that has no epistemic authority (e.g., no knowledge about the topic of discussion).

4.7 Figure 5b shows the results from our asocial agent population. If agents randomly computed credibility esti-
mates of sources, thus ignoring the declared beliefs of their network peers when evaluating the impact of a
communication, no clustering emerged irrespective of a given parameter combination. This finding highlights
the implications of evaluating network-peers based on credibility perceptions: while stochastic evaluation
prevents echo chambers, evaluating a source’s credibility based on the support their communication finds in
one’s network was a key requirement for echo chamber formation in the present model. The results in the le�
panels of Figure 4a and Figure 5a-b (P(Declaration) = 10%) showing stronger noise for global belief proportions
and a reduced clustering e�ect for connectivity density values of 0.5% can be fully attributed to fracturing of
the network (i.e. the number of social ties was so small that no propagation of beliefs occurred). This outcome
is a function of our model setup and has no implications for our findings. Specifically, for connectivity density
values of 0.5% forN = 1000 agents, a single agent had 5 social ties. Combined with a P(Declaration) probability
of 10%—meaning that on average only one out of 10 agents made their belief public and was thus able to com-
municate to others—themajority of simulations for this specific combination prevented information exchange
between agents and as such no belief propagation / cascade occurred. A larger population or larger propagation
probabilities resolved this fracturing e�ect, as can be seen in the other two P(Declaration) panels.

4.8 To visualise the above findings, Figure 6 includes example outcomes of post-cascade belief proportions with 1%
and 5% connectivity density. a) and c) correspond to our social agent population and b) and d) to the asocial
control population. Red (h) and blue (¬h) colours illustrate clusters of similar-minded agents holding di�erent
beliefs. Specifically, as seen in Figure 6a and Figure 6c, social agents formed two polarised clusters of similar-
minded agents, with limited belief exchange between clusters. Figure 6b and Figure 6d show the results from the
asocial agent population, which did not show any signs of echo chambers. Here, most agents connected to an
equal proportion of similar and dissimilar beliefs, which is illustrated by the absence of distinct colour patterns.
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Figure 6: Example post-cascade networks. Grey = agents that did not declare a belief; red = agents that declared
h; blue = agents that declared¬h. Connectivity density values of upper networks: a) social agents: 1%; b) asocial
agents: 1%. Connectivity density values of lower networks: c) social agents: 5%; d) asocial agents: 5%.

Discussion

5.1 Ourwork examinedwhether echo chambers emerge in a population of homogeneous, equally rational users that
update their beliefs through a single interaction and under consideration of the credibility of communicating
sources. Our results show that when agents evaluated the credibility of a communicating source by looking how
many of their fellow network peers supported vs. not supported the source’s communication (‘social’ agent
population), echo chambers emerged inevitably as a result of single interactions with connectivity densities
smaller than 15-20%. This result suggests that previously identified causes of echo chambers, including psy-
chological biases and inter-individual di�erences in cognition, are not strictly necessary for the observation of
echo chambers. Additionally, extending previous work (Hegselmann & Krause 2002; Lorenz 2007; Madsen et al.
2018; Sasahara et al. 2020), agents interacted irrespective of di�erences in their beliefs. As such, we showed that
limiting interactions based on a bounded confidence threshold (Hegselmann & Krause 2002) or network pruning
(Sasahara et al. 2020) was not necessary for the formation of echo chambers.

5.2 Moreover, our findings suggest that repeated interaction between agents may not be required to form echo
chambers. More precisely, while results of previous models (e.g., Lorenz 2007; Madsen et al. 2017, 2018) revealed
that echo chambers emerged and strengthened as a consequence of repeated interaction between similar-
minded agents, we have shown here that a single interaction between generations of agents is su�icient to
produce local echo chambers. Importantly, on average, each belief was equally represented in our simulations.
Thus, our results further show that segregated groups were not a consequence of global dominance of either
belief. We note that repeated interactions, as well as threshold adoptions and network pruning are likely to
further exacerbate the present echo chamber e�ects found a�er single cascades.
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5.3 Overall, our findings illustrate that echochambers,whichmight induce spreadingand retentionofmisinformation
(Vosoughi et al. 2018), conspiratorial thinking (Del Vicario et al. 2016a), and political polarisation (Bessi et al.
2016; Del Vicario et al. 2016b), are not necessarily caused by psychological biases, rewiring of social ties/network
pruning, or repeated interactionsbetweenusers. Rather, the lateral (i.e. peer-to-peer) transmissionof information
in combination with limited access to information (i.e. low connectivity density) and and a simple mechanism
for evaluating the credibility of communicating sources based on the beliefs of fellow network peers, can be
su�icient for echo chamber formation. The degree of making opinions public (P(Declaration)) mainly a�ected
echo chamber formation if it was so low that it e�ectively fractured the functional message passing around the
network. Additionally, the magnitude of expertise strength modulated the influence of credibility, resulting in
increased echo chamber e�ects for higher levels of expertise. This suggests that being friends with users having
strongknowledgeof a topicmight exacerbate the formationof echochambers. Given that thepresent simulations
included rational Bayesian agents, it is further expected that incorporation of additional psychological variables,
such as the confirmation bias (Del Vicario et al. 2016a; Ngampruetikorn & Stephens 2016; Starnini et al. 2016),
could intensify the strength and persistence of echo chambers.

5.4 More generally, our results show that agent-based models, which enable capturing of dynamic interactions
between individuals, provide a valuable opportunity for studying the formation of emergent phenomena such
as echo chambers. This is in line with a growing body of literature employing agent-based models to investigate
several related phenomena, including opinion polarisation (Duggins 2017), identity search (Watts et al. 2002),
(dis)belief in climatechange (Williamsetal. 2015; Lewandowskyetal. 2019) andmicro-targeting (Madsen&Pilditch
2018). Given the potential of agent-basedmodels for the study of emergent behaviours, further work could focus
on developing interventions aiming to reduce the occurrence of opinion segregation. Such interventions might
extend previous work using ‘educational broadcasts’ (Madsen et al. 2018) or behavioural changes allowing for
the interaction between dissimilar peers (van der Maas et al. 2020).

5.5 An important avenue for further workmight be a closer examination of the belief updating process of the present
agent populations. Specifically, agents in the present populations updated beliefs sequentially based on the
declarations of previous generations (see also Bikhchandani et al. 1992; Pilditch 2017). Recent empirical studies
demonstrated that people are sensitive to such statistical dependencies in social learning. For example, Whalen
et al. (2018) showed that when beliefs of others were formed sequentially, people updated their prior beliefs
less. Considering such findings, an important step for follow-up simulations involves testing the robustness
of echo chambers between varying levels of belief dependencies in a network. An additional extension might
focus on the declaration functions used prior to communicating beliefs. In the present work, agents used a
deterministic decision rule. Potential alternatives that might be contrasted in future work include probability
matching (Shanks et al. 2002) or the communication of full probability densities (Fränken et al. 2020).

Model Documentation

The model was implemented in NetLogo version 6.0.4 (Wilensky 1999). All simulations were performed in R
version 3.6.3 (R Core Team 2020) using the package RNetLogo (Thiele 2014). The code for the multi-agent model
and simulation configurations is available on CoMSESNetwork-ComputationalModel Library as: Cascades across
networks are su�icient for the formation of echo chambers: An agent-basedmodel (version 1.0.0), https://www.
comses.net/codebases/0654205c-5645-4da7-888f-4aecca8fafd5/releases/1.0.0/. Model code and
simulation results canalsobe found inourGithubhttps://github.com/janphilippfranken/information_
cascades_jpf_tdp_2020 repository.
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