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Abstract: Meritocratic matching solves the problem of cooperation by ensuring that only prosocial agents
group together while excluding proselfs who are less inclined to cooperate. However, matching is less e�ec-
tive when estimations of individual merit rely on group-level outcomes. Prosocials in uncooperative groups
are unable to change the nature of the group and are themselves forced to defect to avoid exploitation. They
are then indistinguishable from proselfs, preventing them from accessing cooperative groups. We investigate
informal social networks as a potential solution. Interactions in dyadic network relations provide signals of in-
dividual cooperativeness which are easier to interpret. Network relations can thus help prosocials to escape
from uncooperative groups. To test our intuitions, we develop an ABM modeling cooperative behavior based
on a stochastic learning model with adaptive thresholds. We investigate both randomly and homophilously
formed networks. We find that homophilous networks create conditions under which meritocratic matching
can function as intended. Simulation experiments identify two underlying reasons. First, dyadic network inter-
actions in homophilous networks di�erentiate more between prosocials and proselfs. Second, homophilous
networks create groups of prosocial agents who are aware of each other’s behavior. The stronger this proso-
ciality segregation is, themore easily prosocials cooperate in the group context. Further analyses also highlight
a downside of homophilous networks. When prosocials successfully escape from uncooperative groups, non-
cooperatives have fewer encounters with prosocials, diminishing their chances to learn to cooperate through
those encounters.
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Introduction

1.1 Cooperation is central to human life and di�icult to achieve. Students, communitymembers, activists, employ-
ees, or scholars, for example, need to join forces with their peers to realize benefits they could never generate
alone. Yet, individuals are also tempted to free-ride on others’ e�orts. This jeopardizes the successful coop-
eration they would like to benefit from in the first place (Heckatorn 1996; Olson 1965; Simpson & Willer 2015).
Among a range of possible solutions to this “social dilemma” (Dawes 1980; Nowak 2006), matching mecha-
nisms prevent people who are less inclined to cooperate from entering a group that needs cooperation from its
members (Chaudhuri 2011; Guido et al. 2019). An example would be a student project group whose members
only allow peers with high grades to join because they believe that those peers are hard workers.

1.2 Matchingmechanismsexploit stable individualdi�erences in individuals’ tendencies tobecooperative, concep-
tualized for example as prosocial valueorientation (Balliet et al. 2009) or as personality traits related to altruism
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or agreeableness (Thielmann et al. 2020). A successful matching mechanism ensures that only members su�i-
ciently personally disposed to cooperate (herea�er: prosocials) can enter. Matching mechanisms also provide
a powerful incentive to behave cooperatively even for those who are only motivated by self-interest (herea�er:
proselfs). Game theoretical models of so-calledmeritocraticmatching show theoretically howmatchingmech-
anisms foster cooperation (Gunnthorsdottir et al. 2007; Nax et al. 2017a,b; Nax & Rigos 2016). Through merito-
cratic matching, cooperative group members are selected into cooperative and thus highly profitable groups.
Persistently uncooperative individuals are e�ectively punished by being le� to team up with other persistent
defectors in poorly performing groups. Yet, defectorswho change their behaviorwill be rewarded for becoming
and remaining cooperative by being allowed to enter productive groups. In otherwords, awell-functioning and
meritocraticmatching systemunder ideal conditions fosters cooperation in a population. Thematching system
protects genuine cooperators from exploitation by free-riders and incentivizes non-cooperative individuals to
act cooperatively.

1.3 We contribute to the literature about meritocratic matching in two ways. First, we demonstrate and analyze
how imperfect information threatens the success of meritocratic matching. We address the largely overlooked
problem that “bad barrels can spoil good apples”, referring to situations where imperfect initial matching dis-
courages cooperation among prosocial group members. For example, at the beginning of a course teachers
may match students in groups based on alphabetical order or date of enrollment when other information sig-
naling students’ cooperativeness is not available as input for matching. In this case, some prosocial students
can endup in project groups comprisingmanynon-cooperativemembers. This provides a perverse incentive to
those prosocials to change their behavior from cooperation to defection, in order to protect themselves against
exploitation by their fellow groupmembers. However, “spoiled” prosocialsmay also have a hard time escaping
fromunproductive groupsbecauseboth their (involuntary) non-cooperativebehavior and the lowperformance
of the group they reside in makes it di�icult for other groups to recognize their cooperative intentions.

1.4 The “bad barrels” problem occurs to the extent that actors in other groups lack full and accurate information
on the “true” cooperative nature of individuals. Consider the student groups discussed above. Students may
prefermembers with high grades to join their project group, but these grades can reflect outcomes from earlier
groupprojects inwhich the final gradewasdeterminedon the group-level, not on the level of the individual stu-
dents. Theremay be substantial di�erences in the e�ort that individual students were willing to invest, but this
heterogeneity is not reflected in their grades. It is hard for outside observers to disentangle individual actions
from the group context.

1.5 To study situations in which imperfect information undermines meritocratic matching as a solution to coop-
eration problems, we developed an agent-based model (ABM) in which cooperation decisions are based on a
learning process. Using this model, we analyze the conditions and mechanisms under which imperfect infor-
mation about individual cooperation jeopardizes the e�ectiveness of meritocratic matching. Specifically, we
compare di�erent information rules on the degree to which they e�ectively promote cooperation. To be clear,
“rules” do not refer to exogenously imposed institutions but reflect di�erent conditions in which agents have
(in)complete information due to individual and contextual constraints. The baseline for this comparison is the
standard implementation of meritocratic matching based on full information regarding individual merit. We
thereby deviate from the conventional full rationality assumption underlying meritocratic matching. To sum-
marize, we investigate whether and under which information conditions meritocratic matching is meritocratic
enough in an uncertain world.

1.6 Our second contribution to the literature is our investigation of informal social networks as a possible solution
to the “bad barrels” problem. Social networks provide an additional source of information agents can use for
matching. Dyadic interactions in informal social networks provide signals of individual cooperativeness which
are easier to interpret andmore explicit. For example, studentsmatched in project groups o�en also have aca-
demic support relationswith peers (Brouwer et al. 2018). In these relations, they can learnmore aboutwhether
these peers are desirable partners for academic cooperation. Our agent-basedmodel incorporates therefore a
mechanism describing how network ties cutting across groups provide additional individual information.

1.7 In particular, we use our model to analyze whether homophily in informal social networks, one of the most
prominent structural features of social networks, helps to restore the e�ectiveness of meritocratic matching in
a world of imperfect information. Homophily (Lazarsfeld & Merton 1954; McPherson et al. 2001) refers to the
tendency to preferentially connect to similar others in a network, driven by shared attributes (gender or edu-
cational background) or geographical closeness (neighborhood). Similarity may arise out of sharing a status
(gender, educational background) or value attribute (attitudes, behavior). We stress in the next paragraph how
value homophily in cooperation may arise as a byproduct of status homophily. We show how homophily con-
ditions the e�ectiveness of informal social networks as an additional source of information for overcoming the
bad barrels problem.
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1.8 Recent work shows a strong correlation between sociodemographic attributes and cooperation. For example,
some suggest thatwomen aremore cooperative thanmen (Höglinger &Wehrli 2017), while economics students
are more likely proselfs than other students (Marwell & Ames 1981). In other words, personal predispositions
towards certain forms of cooperative behavior are more likely to occur for individuals with similar character-
istics or socialized in some similar way. Combining these di�erences in cooperativeness with the tendency
to preferentially connect to sociodemographically similar others, informal social networks are likely to be ho-
mophilous also in terms of cooperativeness. The importance of homophily for cooperation is also reflected by
the fact that individuals cooperate more willingly with similar others (Melamed et al. 2020). An informal ho-
mophilous network link may then help mismatched “good apples” to escape from defective groups by giving
them the chance to dyadically show behavior that convinces their network neighbors (and likely members of
good groups) of their genuine cooperativeness. We thus argue that homophily improves the chances of spoiled
prosocials to be identified as potentially valuable candidates for future groups.

1.9 But there is also a downside to homophily in social networks. If prosocial actors are quickly able to escape
uncooperative groups by displaying their cooperativeness in informal social networks, proselfs increasingly
find themselves stranded in poorly performing uncooperative groups. This undermines the other mechanism
through which meritocratic matching works: the provision of incentives for defectors to change their behav-
ior. The more proselfs are concentrated in a group, the more di�icult it will become for them to change their
ways. Homophily would further exacerbate this problem by restricting their network interactions to other non-
cooperative individuals. Thus, our second contribution to the literature is that we use our ABM to clarify the
network conditions under which homophily promotes or jeopardizes the e�ectiveness of meritocratic match-
ing in a world of imperfect information.

1.10 In Section 2, we discuss earlier formal models of meritocratic matching and show how we build on and move
beyond this work, formulating three intuitions about the implications of themechanism the ABM implements.
Section 3 describes the ABM and Section 4 presents a detailed analysis of the information conditions and net-
work conditions under which meritocratic matching helps solve the conundrum of cooperation.

Theoretical Foundations and New Intuitions

2.1 Prior a�iliations to groups, organizations, firms, or teams can serve as signals of an individual’s potential merit
underuncertainty (Bacharach&Gambetta2001;Gambetta2009;Spence 1973). Forhiringcommittees, for exam-
ple, previous a�iliation to a reputable firm is a signal of an employees’ unobservable “true” individual qualities.
Similarly, a past a�iliation with a fraudulent firmmay be interpreted as indicating bad qualities. Signaling the-
ory proposes that the rational use and interpretation of the information conveyed by signals sustain trust and
cooperation inanuncertainworld (Bacharach&Gambetta2001). This typeof signalingassumes that individuals
rationally display and read such signals so that credible signals (e.g., cooperative behavior that is prohibitively
costly for proselfs) di�erentiate between genuinely prosocial and proself types. In our model, cooperative be-
havior is the only available behavioral cue. A rationality assumption on which signaling theory rests, related to
classical rational choice theory, is that individuals have the unlimited cognitive capacity to process signals and
information. This rationality assumption is challenged by decades of research, demonstrating that people are
boundedly rational, incompletely informed, and cognitively constrained (Wittek et al. 2013). For the analysis of
meritocratic matching under uncertainty, this is a particularly relevant concern, as elucidating individual co-
operative signals from behavior in groups requires a lot of cognitive capacity and information processing, and
even in dyadic interactions in a network, cooperative behavior cannot be separated from the network context.
Led by the critique of rationality assumptions, we rely on simple “low rationality” decision heuristics to explore
what happens if agents select new group members, and group members rely on similarly simple heuristics to
decide whether to cooperate or not in a given group or dyadic context and then to relate observed behavior to
infer cooperative traits.

2.2 Our work advances earlier ABM literature linking cooperation to matching mechanisms. First, Bowles & Gintis
(2004) used an ABM to show how cooperative strategies that ostracize free-riders from groups can thrive and
foster cooperation in an evolutionary context. Similar to meritocratic matching, their key mechanism is that
ostracized agents are less likely to be accepted into cooperative groups in the future. However, the authors rely
on random matching rather than matching based on merit and do not incorporate informal social networks.
Second, Duca et al. (2018) studied howmeritocratic matching is a�ected by heterogeneity in endowments. As-
sumingmyopicbest responsebehavior, they showhow inequality canstronglyhamper thee�ectivenessofmer-
itocratic matching. Our work introduces inequality likewise, albeit in individual cooperativeness traits rather
than endowments. Unlike Duca et al. (2018) we add the assumption that information about individual merit is
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unreliable but that networks can provide additional information. Third, we build on Nax et al. (2015) who were
among the first to show, using simulations of an evolutionary imitation dynamic, how reliance on groupmerits
(group scoring) during matching deteriorates cooperation compared to individual merit-based matching. In-
terestingly, they find that cooperation still arises even when there is only a 1% chance that individual merits
are used instead of group merits. However, their model neglects heterogeneity among individuals as well as
network solutions and does thus not allow us to highlight conditions for the bad barrels problem we identify.
Unlike Nax et al. (2015) we focus on conditions under which the bad barrels problem arises.

2.3 We followearlierworkmodelingbounded rationalitywith learning theory andevolutionarymodels to explicate
how bad barrels can spoil good apples when it comes to cooperation in groups. To bemore precise, simulation
studies of evolutionary dynamics in cooperation problems highlighted how cooperation can thrive as a suc-
cessful strategy, but only when combined with (in)direct reciprocity (Axelrod 1984; Nowak & Sigmund 1998).
If others defect, then even cooperative recipients are more prone to reciprocate defective behavior. In other
words, a good apple can be spoiled by contact with a bad apple. Simulation models based on reinforcement
learning lead to a similar conclusion, especially when combined with the assumption that being exposed to
others’ defections leads initially cooperative agents over time to lower their expectations and be content with
low cooperation as an outcome (Macy & Flache 2002). To be sure, there are di�erences between explanations
of cooperation based on evolutionary dynamics (Nowak 2006) and explanations based on stochastic learn-
ing models (Macy & Flache 2002). Stochastic learning stresses that changes in cooperation are not driven by
payo�-dependent variation in rates of o�spring across di�erent strategies or types of agents – as in evolution-
ary selection – but by variation in the likelihood that agents choose particular cooperative or defective actions
over time. Despite this di�erence, under both approaches agents increasingly adopt behavior that is associated
with better outcomes. In this paper, we choose a model based on stochastic learning, because we believe that
success-driven change of behavior within agents better captures the decision-making of human social actors
than the assumption that behavioral strategies are fixed and all change comes frommutation and selection (for
a statement reflecting on this critique on the use of evolutionary algorithms in ABM, see, e.g., Chattoe-Brown
1998).

2.4 Combining and advancing the perspectives of signaling theory, bounded rationality, reinforcement learning,
and meritocratic matching under heterogeneity and uncertainty, we develop in what follows a set of theoreti-
cal intuitions that serve to guide the design of our ABM and simulation experiments. Earlier work leads to the
intuition that prosocials develop a low level of cooperation through reciprocity if mismatched into groups with
many non-cooperative members. Thus, when outsiders are incapable of perfectly inferring the qualities of a
group member by observing group outcomes and individual contributions, these “good apples” are spoiled.
Various strands of literature support the assumption that human decision-makers tend to (falsely) infer indi-
vidual qualities from group characteristics, as suggested, for example, by research on fundamental attribution
error (Ross 1977) and statistical discrimination (Fang & Moro 2011).

Intuition1. Due tomismatching, prosocial agents cooperate lesswhenmatching isbasedonagents’
prior group performance.

2.5 In order to escape the negative reputation of a poorly performing group, innately cooperative individuals need
some other channel through which they can show their individual quality. Dyadic interactions in informal net-
works allow for the development of individual reputations (Buskens & Raub 2002; Raub & Weesie 1990). Once
cooperative reputations have been established in such dyadic interactions, agents from other groups can use
the network information in addition to information in the group context when determining the matching of
agents into new groups. This allows them to eventually achieve higher levels of cooperation.

Intuition 2. The possibility to signal prosociality in dyadic network interactions increases cooper-
ation among prosocials.

2.6 In a homophilous network, cooperative types aremore likely to cluster together andmainly, but not exclusively,
interact with other cooperative types. Homophily thus increases the chances that members of highly coopera-
tive groups interact with mismatched “good apples” from low-performing groups. It thus further improves the
possibility of mismatched cooperators being “spotted” as potentially promising new recruits.

Intuition 3. Network clustering and information from dyadic network interactions increase coop-
eration levels of formerly mismatched prosocials in the group context.
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The Agent-Based Model

3.1 Agents in our model are either prosocial or proself. Prosocial agents are more cooperative, while proselfs are
more egoistic and defection-oriented. Figure 1 depicts the basic interaction structure. Thematching procedure
places eachagent intoonegroup. Eachgroupproduces its own local collective good (Figure 1a). Figure 1b shows
howthesamepopulationofagents is connectedbyan informalnetworkofdyadic relations thatpotentially links
agents alsoacross groupboundaries. Both in their groupaswell as indyadic interactions, agents are confronted
with cooperation problems. These cooperation problems aremodeled as iteratedn-person Prisoner Dilemmas
(PD)at thegroup-level, and iterated2-personPDsat thedyadic level, respectively. Fromtime to time, agents can
decide to leave their current groups and groups need to admit newmembers (rematching). A�er rematching, a
new iterated PD game is started in all groups. Throughout the entire simulation, agents play bilateral PD games
with one of their network partners at randomly selected moments. Thus, sometimes they decide in the same
iterationwhether to contribute to their group’s collective good andwhether to cooperate in the ongoing private
interaction with a particular network partner.

3.2 In what follows, we describe the various elements of the model. More precisely, we elaborate on the behav-
ioral and learning algorithms for cooperation, the implementation of prosocial and proself agents, the timing
of cooperation decisions in groups and network dyads, the networkmodel, and the di�erentmatching ruleswe
compare to assess the e�ectiveness of meritocratic matching under di�erent conditions. We end with the de-
sign of our simulation experiments. The pseudocode of a simulation run is visualized in Algorithm 1 (Appendix
A1).

Figure 1: Stationary set-up of the model. Agents are embedded in a single group (a) and network (b). Magenta-
colored ties show links within the group; grey ties are network ties.

Cooperate or not? The decision-makingmodel for cooperation

3.3 Cooperation is modelled with a probabilistic threshold model (Macy 1991b,a; Macy & Evtushenko 2020; Mäs &
Opp 2016). We apply the model both in the group and in dyadic interactions. Somewhat simplified, agents co-
operate if enough others in their group (or network partner) also cooperated in the past, otherwise they defect.
How many others is “enough” is defined by an agent-specific threshold. Cooperative types have lower initial
thresholds than non-cooperative types. All other things being equal, prosocials are thus more likely to behave
cooperatively. Yet, agents’ propensity to cooperate is also a�ected by others’ behavior. This happens through
reinforcement learning. Agents becomemore likely to repeat a behavior associatedwith a satisfactory outcome
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and avoid behavior that resulted in an unsatisfactory outcome. Generally, if cooperation (defection) generates
a positive outcome, thresholds decline (increase), making cooperation more (less) likely.

3.4 We now explain themodel for the cooperation decision in the group. Its application to the network game is ex-
plained further below. Figure 2 provides an overview of the decision and learning sequence. First, each agent
compares their current threshold (τi,t) to the most recent proportion of cooperation by group mates (kt). Sec-
ond, all agents decide probabilistically in a random sequence to cooperate or defect (Equation 1; pi,t). Third,
a�er all decided (ci,t), each agent calculates their payo� (Equation 2; si,t) and standardized outcome (Equa-
tion 3; oi,t), subsequently applying a learning heuristic to adapt the threshold accordingly for the next iteration
(Equation 4).

Figure 2: A schematic overview of the threshold model. C = cooperation; D = defection.

3.5 In the first iteration of a game, others’ cooperation is unknown. Initial behavior is governed by agents’ innate
characteristics given by the initial threshold (τi) such that the lower τi, the higher the probability of initial coop-
eration, pi,t (ci,t = 1)= 1− τi (Mäs & Opp 2016). A�er the first decision, thresholds and behavior then change
based on past outcomes, reflecting adaptive learning within a group or network relation over time. More pre-
cisely, the more the current rate of cooperation in a group (kt) exceeds an agent’s adaptive threshold (τi,t), the
higher the probability of cooperation. Equation 1 formalizes the logistic function modeling this link. The slope
parameterm controls the degree of randomness in agents’ decisions. The higherm, the more the cooperation
decision is determined by the di�erence between threshold and past group cooperation rate.

pi,t(ci,t = 1) =
1

{1 + exp[m(τi,t − kt)]}
(1)

where 0 ≤ τi,t ≤ 1, 0 ≤ kt ≤ 1, andm ≥ 1.

3.6 A�er all agents decided, each agent calculates its payo�, denoted by si,t in Equation 2. The cost of cooperation
is 3 (h), while the benefit of cooperation is 4.5 (b). These payo�s constitute a PD in which agents are tempted
to defect. For cooperators, we multiply b by the count of cooperative acts in the group (vc,t) and divide it by
group size (FS) to calculate payo�s, minus the cost of cooperation (h). Defectors benefit from cooperating
others while not paying the cost of cooperation. However, agents receive -0.5 (d) when all defect. Thus, when
all agents defect this is detrimental to both the agent and the group.

si,t =
b(vc,t)

FS − h
(2)

where h = 0 if ci,t = 0, and si,t = d if ci,t = 0 and vc,t = 0.

3.7 A�er calculating payo�s, agents compare their payo� of the current iteration to their payo� in the previous
iteration, followed by dividing the di�erence by three times the maximum payo� possible. This yields a stan-
dardized outcome oi,t specified in Equation 3. Current payo�s weigh more heavily in oi,t than the payo� in
the previous iteration. Essentially, the higher the current payo�, the higher the standardized outcome, and the
more likely behavior that led to this satisfactory outcome is reinforced. The rate at which thresholds adapt is
controlled by the learning rate (l). If oi,t = 0, we set oi,t to 0.00001 to ensure that thresholds are updated.

oi,t =
l[(2si,t − si,t−1)]

3 | smax |
(3)

where 0 ≤ l ≤ 1.

3.8 Finally, agents update their threshold based on ci,tand oi,t (Equation 4). If cooperation is associated with
oi,t > 0, thresholds drop, increasing the chances of future cooperation, while outcomes oi,t < 0, increase the
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threshold following cooperation. The sameprinciple holds following defection. Outcomes oi,t > 0 increase the
threshold and thereby the probability of future defection, while a negative outcome reduces both.

τi,t+1 = τi,t − {oi,t[1− (1− τi,t)(1/|oi,t|)]ci,t}+
{oi,t[1− (1− τi,t)(1/|oit|)](1− ci,t)}

(4)

Prosocial and proself agents

3.9 Agents are randomly selected to be either prosocial or proself, based on a given proportion of prosocial agents
in the population. We assume that prosocial types need less external motivation to cooperate at first, imple-
mented by the assumption that their initial thresholds (τi = 0.3) are lower than those of proselfs (τi = 0.7).
Agents’ first decision a�er a rematching phase is governed by their initial threshold (τi), reflecting their innate
cooperativeness. Thus, agents reset a�er matching.

Discrete-time steps per iteration

3.10 In an iteration of the group game agents decide, in random sequence, to cooperate or defect. An iteration is
divided into discrete time steps. Per time step, each agent has the same probability (1/n) to be selected. Due
to asynchronicity, agents may have di�erent values for the perceived proportion of cooperation in the group,
depending on prior cooperation and defection decisions in previous discrete-time steps. The iteration ends
when all agents decided at least once to cooperate or defect, followed by calculating their payo�s, and then
finally by updating their threshold.

3.11 A di�erent number of time steps is used for the network 2-person PD, reflecting that interactions with network
partners occur in a di�erent context and at a di�erent pace than interactions in the group game. Specifically,
in the network context, each dyad has an r chance (r = 0.05) to be selected per iteration, this means that each
agent has a 10% likelihood to play the game in any given iteration (and 90% chance to not play a network 2-PD
in the given iteration). Hence, the chances to play the 2-person PD are slimmer than playing the n-person PD in
each iteration. The value of r = 0.05 is chosen to assure that cooperation is learned slowly enough in network
interactions. In this way, behavior in network interactions is not fully determined by an agent’s type but is still
a signal of it. Di�erent values for r were explored in a sensitivity analysis (Appendix A9.4).

Social network

Random spatial graph algorithm

3.12 Following earlier ABM studies (Grow et al. 2017a; Keijzer et al. 2018), we adopted a spatial random graph algo-
rithm (Wong et al. 2006) to generate the network structure. We rely on a NetLogo algorithm, freely available in
the CoMSES computational model library (Grow et al. 2017b). This algorithm can create networks with struc-
tural features resembling real-life social networks, such as a high level of clustering and short average geodesic
distances. Its core idea is that agents are assigned random coordinates in a two-dimensional space and that
then network ties between agents are created such that geographically close agents aremore likely to be linked
than geographically distant ones. Details of the algorithm are explained in Appendix A2. Here, we concentrate
on howwe adapt it to induce homophily.

3.13 Figure3visualizeshowstructural homophilybetweenprosocial agents is imposed in the spatial randomgraphs.
In random networks (Figure 3a), both the geographic location of prosocial and non-prosocial agents and thus
also theprobability for anetwork linkbetween twoagents areunrelated to their type. In homophilousnetworks
(Figure 3b) the geographic allocation is such that prosocial agents are locally clustered so that the algorithm
more likely links agents of the same type to eachother thanwould be givenby randomchance. To assess the re-
sulting degree of type-homophily in the networkwe adopt Moody’s gross-segregation (MS) index (Bianchi et al.
2020; Moody 2001). Intuitively, the interpretation of themeasure is that it is MS times as likely for a network link
to occur in a dyad of same-type agents than in a dyad of agents of di�erent types. Details of the implementation
of MS are given in Appendix A3. As Figure 3 shows, MS is about 1.0 in random networks, while in the networks
with homophily same-type agents are linked about 1.5 times as likely than di�erent-type agents.
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Figure 3: Visualization of two spatial randomgraph single runswith a random (a) andhomophilous (b) network.
Moody Segregation index (MS) refers to the odds ratio for a link to occur between similar and dissimilar agents.

Reputation formation through interactions in the network

3.14 Whenever a dyad in the network is selected to play their 2-person PD game, both players decide whether to co-
operate based on the samedecision procedure, learning algorithm, and payo� schemedescribed above for the
group game. We add the subscript sn to indicate network parameters. More specifically, agents make separate
decisions per tie, governed by the same threshold for every network partner and taking into account each of
their alters’ previous cooperation decision. A�er the interaction, agents update their outcome and adjust their
single threshold for all network partners for future interaction with potentially di�erent alters. This implemen-
tation also means that an agent can cooperate in an interaction with alter j but defect with alter k. Alter refers
to a directly connected agent.

3.15 Stable cooperation is more likely to emerge in dyads between prosocial players than between proself players.
For instance, in prosocial-prosocial interactions in which both previously cooperated, both keep cooperating
withaprobabilityof0.97. A�eran interaction, thresholdsof cooperators tend to lower towards0. Thecontrary is
true for proself-proself interactions inwhich both previously defected, then the probability to cooperate is 0.03.
In proself dyads, defecting will result in negative outcomes and decrease proself agents’ thresholds, making
themmore likely to cooperate in the near future. However, they are still less likely to cooperate than players in
prosocial-prosocial interactions, quickly earning them a worse reputation.

3.16 In addition to homophily in the structure of the network, we implement homophily in dyadic interactions. Only
similarly-behaving agents will play the 2-person PD. Practically, this implementation facilitates cooperator-
cooperator and defector-defector interactions. If agent i and j both cooperated in the previous iterations (or
defected) and the dyad is selected, they do play the 2-person PD, otherwise they do not interact. This assump-
tion reflects what in a more detailed elaboration of a backward-looking partner selection process would intu-
itively be the outcome. Players would be satisfied with mutual cooperation with a network partner and thus
repeat that interaction. Players who experience mutual defection or exploitation would abandon their part-
ner and try to find better matches. However, sooner or later defecting proselfs can find only other proselfs to
connect with, due to the reputation they acquired. Further assuming that actors prefermutual defection to not
interacting at all in network relations, we therefore assume that bothmutual cooperation andmutual defection
result in repetition of an interactionwith the samepartner. Only a�er defectors change to cooperation, they are
available for interactionswith cooperators. In Appendix A9.5, we show that althoughplausible, this assumption
of ‘behavioral homophily’ is not crucial for the qualitative results of our analysis. Yet, the di�erences between
conditions in our simulation experiment are highlighted more clearly if behavioral homophily is assumed.
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3.17 The accumulation of individual cooperative and defective decisions in the network yields a personal reputation
score, formalized asC10,sn, capturing the most recent 10 network decisions of an individual. Furthermore, we
assume that one’s reputation is known among alters and alters of their alters. For example, agent i plays the
2-person PD with alter j, but i knows how j behaved in all of his last 10 interactions. Personal reputations can
be used in thematching phase to assess the cooperative qualities of a potential new groupmember, as we will
explain next.

Meritocratic matching

Leave-stay procedure

3.18 Agents decide to leave a group when they are not happy with the average level of cooperation from the last 10
iterations (G10) in thegroup. Moreprecisely,weassume that agents stay if past cooperationexceeds their innate
threshold, τi ≤ G10, and leaveotherwise (τi > G10). Thus, prosocials accepta lower level of cooperation (0.3 ≤
G10) than proselfs (0.7 ≤ G10) reflecting their innate cooperativeness even when others defect. However,
agents still condition their decision to leave or stay on what others do so that also proselfs leave a group when
cooperation drops too low. Sensitivity analyses were conducted to test the e�ects of the leave-stay procedure
(Appendix A9.3). Next to τi > G10, we test the consequences of leaving if 1 − τi > G10 and 0.5 > G10.
The leave-stay procedure is activated a�er 100, 200, and 300 iterations. Agents who decide to leave are put
into a pool, followed by matching to a new group. Note that leavers start in the new group with their initial
threshold (τi → τi,t), while stayers maintain their current threshold (τi,t). Resetting is done to model the fact
that threshold changes depend on social interactions, and it resembles a reset e�ect for leavers.

Matching rules

3.19 A�er a leave-stay decision, groups are ranked from high to low based on the group-specific G10. We assume
that all leavers prefer a higher-ranked group to a lower-ranked one. Agents, in turn, are ranked based on their
perceived merit. In general, the matching procedure assures that groups with higher ranks also receive agents
with higher perceived merit. More precisely, the procedure starts by assigning as many agents to the highest-
rankedgroupas thereareempty slots, startingwith thehighest-rankedagents, then takes the remaininghighest
ranked agent and assigns them to the empty slots in the next highest-ranked group. Note that it is expected
that the best functioning groups do not have empty slots to fill because no agent le� the group. This procedure
repeats until all agents from the pool arematched. What determinesmerit depends on the exactmatching rule
and whether reputational information from the networks is available, as will be explained below.

3.20 As we set out in the theory section, the severity of the “bad barrels” problem is determined by the extent to
which agents lack information about the individual behavior of others. We therefore compare three di�erent
matching rules to assess howmoving from perfect to imperfect information concerning individual cooperation
and the possibility to use network-based reputation formatching decisionsmoderate the e�ectiveness of mer-
itocraticmatching. Appendix A4 presents some additional rules we explored as the benchmark for comparison
with earlier work. Findings for these additional matching rules are reported in Appendix A6. Figure 4 shows
three matching rules for agents who le� their group.
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Figure 4: A visualization of the three matching rules and information available during matching. Note: C = co-
operation; D = defection; all prior = average level of cooperation of all prior iterations; prior 10 = average level
of cooperation in prior 10 iterations.

3.21 Rule 1. This rule represents our baseline scenario in which agents have complete information about all prior
individual cooperative actions (Figure 4a). Agents are initially assigned to groups based on their first cooper-
ation decision, which is itself determined based on the agent’s initial threshold. This approach limits initial
mismatching. Prosocials initially have a 70 percent chance to cooperate, whereas proself agents have a 30 per-
cent chance to cooperate.

3.22 Rule 2. This rule allows us to test intuition 1. Agents are randomly matched to groups and no reputational
information from the network is available for assessing their individual merit in rematching decisions (Figure
4b). To further model incomplete information of agents in other groups, merit assessments are entirely based
on the recent levelof groupcooperation (G10) of anagent’spast group (Duca&Nax2018). This rule testswhether
mismatched cooperative agents can get away fromdefective groups if agents in other groups know the average
level of cooperation in the group.1

3.23 Rule 3. With this rule, we add the possibility that agents in other groups can use individual reputational infor-
mation from thenetwork. Thus, agents are nowembedded into twocontexts (Figure 4c). Agents in other groups
rely during matching on the combination of social network information and group merit to assess an agent’s
merit: GC10 = (C10,sn + G10)/2, where agents store their last 10 social network decisions in C10,sn, while
G10 represents the average cooperation of the last 10 iterations in their previous group. But there is a caveat:
agents only rely on GC10 when local network information is available (yellow pane in Figure 4c) and use G10

when network information is unknown. Agents thus do not have global network information. Local network
information may not be available if members of the receiving group do not belong to the social vicinity of an
applicant. To be precise, agents knowC10,sn only if they are alters or alters’ alters of an applicant. Otherwise,
they can only useG10. The addition of network information is interesting becauseG10 allows prosocial agents
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with lowG10 to increase their chances to join better groupswhenC10,sn is high. The contrary is also true. Itmay
be detrimental for agents with a highG10 to incorporate a lowC10,sn. There are two network implementations
under rule 3: a random and homophilous network, allowing us to test intuition 2 and 3 respectively (Figure 4c).

Simulation experiment

3.24 To check whether our intuitions for the model are correct, we conducted simulation experiments via Behav-
iorSpace in NetLogo (Wilensky 1999). Ourmost important experimental outcome is cooperation levels reached
for prosocials, but we also zoom in on proself and collective cooperation levels. We choose a scenario roughly
inspired by 2 consecutive academic years, divided into 4 semesters, in which students are grouped for a project
and can self-organize new project groups a�er each semester.

3.25 Wemodel a population with n = 160 agents, placed inG = 20 equally sized groups. The population contains
a minority of 40% prosocial students (PA = 0.4). Agents play an iterated n-person PD for 400 iterations in the
groupswith rematching occurring a�erX = 100, 200, and 300 iterations. This assures groups that remain fixed
for a su�iciently long period to develop stable cooperation levels. The network contains 800 social ties, where
each agent has at least 5 network alters. A network is either formedwith all dyads being equally likely or based
on homophily.

3.26 Regarding the threshold model, we assume a moderate degree of learning (l = 0.5) and randomness (m = 5),
following earlier work (Macy 1991a). The full parametrization of themodel can be found in Table A1 in Appendix
A5. Appendix A9 reports the various robustness checks of our findings.

Findings

Investigating intuitions 1 – 3

4.1 Figure 5 reports mean cooperation levels over time, averaged over 100 simulation runs for prosocials, proselfs,
and the entire population (collective) per matching rule.

Figure 5: Average level of cooperation of 100 independent runs for prosocials (a), proselfs (b) and the collective
(c), separated by matching rule. Intuition 1: red vs. blue; Intuition 2: blue vs green; Intuition 3: blue vs. black.
Parameter settings:m = 5; l = 0.5; PA = 0.4; r = 0.05.

4.2 The spikes in Figure 5a a�er matching show prosocial agents initially cooperating with high frequency in ac-
cordance with their initial thresholds. However, cooperation tends to soon decline to lower levels than right
a�er the matching moment. The cooperative intentions of prosocials are to no avail in some groups. The loss
of cooperative potential a�er matching points to the presence of mismatched prosocials.

4.3 Intuition 1 is corroborated by our model. Comparing matching rules 1 (red) and 2 (blue) in Figure 5a indicates
that mismatched prosocials are less able to cooperate if meritocratic matching is based on agents’ prior group
performance.2 Proself agents are slightly better o� when complete individual information is available, but we
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need to stress that di�erences between cooperation levels reached under complete and incomplete informa-
tion rules aremarginal (Figure 5b). Ourmodel does thus not support what is considered an important strength
of meritocratic matching – proselfs do not behave significantly more cooperative over time when their individ-
ualmerits are visible. In sum, our simulation findings suggest that cooperative agents end up in less-than-ideal
groups whenmatching is based on incomplete information.

4.4 Our results show also that incomplete information jeopardizes the collective e�iciency of meritocratic match-
ing. Figure 5c shows that cooperation rates are highest under complete information, which is collectively op-
timal under the social dilemma game groups play (Figure 5c). What is more, Figure 5b suggests that collective
cooperation levels are not drivenby egoistic agents overcoming their innate inclination todefect. Rather, Figure
5a shows that prosocialswho cooperate under Rule 1 andRule 3 (homophily) drive cooperation at the collective
level. Consequences of removing meritocratic matching broken down for prosocials, proselfs, and the collec-
tive are reported in Appendix A7. Without matching and network information, the model with only a n-person
PD suggests that the collective fares best when agents in the group, irrespective of group composition, interact
for over 10000 iterations without matching to another group (Appendix A7, Figure A2f).

4.5 Weanalyzedwhether randomorhomophilousnetworks help restore the e�ectiveness ofmeritocraticmatching
in a world of imperfect information. On the one hand, intuition 2 proposed that individual information derived
from dyadic interactions in a randomly formed networkmitigates the bad barrels problem (green line in Figure
5a). Formerly mismatched cooperative agents are better able to signal their prosociality and, therefore, im-
prove their chances tomove intomore cooperative groups. However, there is only amarginal increase from the
incomplete information rule 2 (blue) and rule 3 in which additional individual network information is available
in random networks (green). We cannot confirm intuition 2 for random networks.

4.6 On the other hand, the picture changes radically when homophily is implemented in the network, consistent
with intuition 3. The black line in Figure 5a shows how cooperative agents increasingly cooperate when infor-
mation is incomplete, due to the possibility to escape from defective groups. In particular, adding homophily
increases cooperation rates only for prosocials and not for proselfs (Figure 5b). The di�erence to the random
network condition shows the underlyingmechanism. Prosocials cooperatemore because due to homophilous
networks they more o�en succeed in leaving bad barrels and joining groups in which they more readily coop-
erate. Our findings also suggest that there is still some loss of e�iciency due to imperfect information, demon-
strated by the large di�erence between cooperation levels when information is complete or incomplete (red vs.
black line in Figure 5a).

4.7 In the next two sections, we explore underlying reasons why homophily is an important driver for prosocials’
cooperation. In a nutshell, we point to prosociality segregation and the impact of homophily on dyadic inter-
actions as underlying reasons for the findings reported in Figure 5.

Prosociality segregation

4.8 One feature that facilitates cooperation of prosocial agents is the presence of similar others in the group. Thus,
the occurrence or absence of prosociality segregation – i.e. more prosocials in cooperative and proselfs in de-
fective groups – may be an important explanans for the reported cooperation levels in Figure 5. In Figure 6,
we use the gross-segregation index (MS) tomeasure the odds of beingmatched with similar types in the group
context (Moody 2001).

4.9 Segregation in the group context is highest when complete information is available (red line in Figure 6). Both
prosocials and proselfs are three times as likely to be grouped with their own type. What is more, the MS odds
ratio value at iteration 0 for complete information shows that initial mismatching is less prevalent compared to
incomplete information conditions. Even if a cooperative agent is spoiled by themere presence in an uncooper-
ative group, a cooperative e�ort at the early stages of the game still serves as a signal to others when complete
individual information is available. This signal, in turn, positively a�ects prosocials’ chances to escape the un-
cooperative environment and to match to a more cooperative group.

4.10 Figure 6 shows that when agents are embedded in homophilous networks, the odds to join forces with similar
others are around 1.5. Harvesting individual information from a homophilous network allows cooperators to
team up, leaving defectors only their own types to bematched with. For prosocials, assorting with similar oth-
ers promotes more chances to cooperate (Figure 5a), while the opposite counts for proselfs. The increases of
cooperation in Figure 5a appear to be largely driven bymismatched prosocials leaving bad groups andmoving
to more cooperative groups with many similar others. The contrary is true for incomplete information settings
when matching is initially imperfect and remains to be so. “Spoiled” cooperative types may then have a hard
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time escaping from unproductive groups due to the low performance of the group they reside in which makes
it hard for them to demonstrate their genuine cooperativeness to other groups (green and blue line in Figure 6).

Figure 6: Average level of prosociality segregation of 100 independent simulation runs, separated permatching
rule. MS = Moody gross-segregation odds ratio index. We report 95% confidence intervals at t = 0, 100, 200,
300, and 400. Parameter settings:m = 5; l = 0.5; PA = 0.4; r = 0.05.

Impact of homophily

4.11 Here we zoom into how homophily a�ects cooperative behavior in dyadic interactions and – thereby – the in-
formation agents can obtain about potential new group members from their network interactions. In Figure
7, we compare a single run of cooperation levels in a random and homophilous network. The full simulation
experiments provide a similar picture (Appendix A8). Strikingly, homophily does not so much increase cooper-
ation of prosocials (Figure 7a), but it reduces cooperation of proselfs in dyadic interactions (Figure 7b). Agents
have no other choice in random networks than to play the 2-person PD. Such a 2-person interaction scheme
in random networks – where there is a 50/50 chance to link to other-type agents – is particularly beneficial for
proself agents to learn to cooperate when they have repeated interactions with cooperating others (most likely
prosocials). Namely, when interacting with prosocials, proselfs will quickly generate a probability to cooperate
of 0.5 (1/{1 + exp[5(1 − 1)]}), in which a random walk from defection to cooperation leads to locking into
cooperation. Figure 7, green line, shows the tendency towards all-out cooperation in randomnetworks, which,
as a result, makes it hard to di�erentiate between more prosocial and proself agents. While prosocials main-
tain higher levels of cooperation than proselfs even in random networks (Figures 7a and 7b, green lines), the
di�erence in cooperation rates is small. As a result, dyadic interactions in randomnetworks provide insu�icient
information to separate prosocials fromproselfs. Consequently, dyadic interactions in randomnetworks donot
lead tomore cooperation in the group context among both prosocials and proselfs (Figures 5a and 5b). As such,
information derived from random networks does not serve more as an exclusionary mechanism compared to
informationderived fromhomophiliousnetworks and thereforedoesnot lead tomore cooperation in the group
context among prosocials and proselfs.
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Figure 7: The average level of network cooperation in a typical run; one for prosocials (a) andone for proselfs (b)
separated by agents’ embeddedness in a random (green) or homophilous (black) network. Parameter settings:
m = 5; l = 0.5; PA = 0.4; r = 0.05.

4.12 However, the picture changeswhenwe inspect cooperation levels of proselfs in a homophilous network (Figure
7, black line). In suchnetworks, agentsmainlyhavenetwork ties to similar others and similarly-behavingagents
preferentially interact with each other. Cooperators – most likely prosocials – tend to receive cooperative acts
in return, while defectors receive mostly defection. The context in homophilous networks has a downside for
proselfs as a result of their limited interaction with cooperative others. Proselfs have little opportunity to learn
cooperative behavior from interactions with others since the other is most likely a proself type. Meanwhile,
homophilous networks enable prosocials to signal that they are cooperative regardless of the group context
into which they have beenmatched. This allows prosocials who find themselves in a bad barrel to nonetheless
identify themselves as cooperative. Thus, homophilous networks make prosocials more likely to be identified
as good cooperation partners and proselfs less likely to be considered desirable group members. Overall, in-
dividual information derived from homophilous networks enables agents to distinguish more readily between
prosocial and proself types, and consequently allows prosocials more easily to join forces (Figure 6) and coop-
erate more o�en (Figure 5a). As such, homophily serves as an exclusionary mechanism, clearly di�erentiating
between prosocials and proselfs. Our work, reflecting ideas from earlier research on homophily in networks
(McPherson et al. 2001), stresses the importance of homophily as a structural and behavioral process operat-
ing in social networks. The pervasiveness of homophily in informal social networks elucidates to what degree
cooperative acts, as well as information on others’ cooperative behavior, flow locally among similar others,
contrasting randomly formed networks.

Sensitivity analysis

4.13 We implemented several robustness checks inspecting under which conditions our simulation findings are ro-
bust. First, we explored various learning rates (l), since learning dynamics play a pivotal role in solving the
problem of cooperation (Macy & Flache 2002). Second, the presence of more prosocial agents may increase
chances to team-up with similar others; thus we inspect the impact of the proportion of prosocials (PA) in the
population. Third, noise in the behavioral decision-making model (indicated bym) is bound to play an impor-
tant role when agents make decisions in threshold models (Macy & Evtushenko 2020; Mäs & Opp 2016). We
inspect the consequences of more or less noise. Fourth, noise also has a role in the leave-stay procedure in
which a proportion of agents who were happy with group performance and therefore stayed in the group will
wrongly be put in the leavers pool. On a similar note, we test the consequences of altering input for the leave-
stay procedure, either τi, 1− τi, or 0.5 in relation toG10. Finally, we vary the rate r at which dyadic interactions
rather than group interactions occur.

4.14 Appendix A9 provides a comprehensive taxonomy of the various robustness checks with a total of 42600 sim-
ulation runs. Our simulation findings regarding cooperation and prosociality segregation turn out to be fairly
robust to changes in the proportion of prosocials present in the population (Appendix A9.1), for learning rates
below 0.9 (Appendix A9.1), and for variations in the leave-stay procedure (Appendix A9.2-A9.3). Notably, a high
learning rate (l = 0.9) allows agents to quickly learn how to cooperate, providing a di�erent solution than
meritocratic matching for cooperation to thrive (Appendix A9.1). Moreover, we find that the bad barrels prob-
lem and homophilous network solution are more pronounced whenm = 5 and r < 0.25 compared to when
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m = 1 or 10 and r = 0.25 or 0.5. The sensitivity analyses raise a few points. First, the simulation findings are
sensitive to more or less noise in the decision-making model, showing two cooperation equilibria (Appendix
A9.1). More noise (m = 1) leads to a self-correcting equilibriumwhere cooperation levels steadily hover around
0.34, whereas less noise (m = 10) leads to a self-reinforcing equilibriumwhere cooperative agents quickly lock
into cooperation (Macy & Flache 2002). Second, the importance of complete information rules for prosocials
to cooperate is robust to changes in network dyad selection (r), but our incomplete-information-with-network-
information solution is not. Figure A10 in Appendix A9.4 shows when chances for dyad selection increase to
values of 0.25 and higher, individual information from homophilous networks does not contribute to proso-
cials’ chances to cooperate more o�en or to join more cooperative groups with similar others. The reason for
model sensitivity to r is found in the inability to di�erentiate between proself and prosocial agents regarding
network cooperation. When r ≥ 0.25, proselfs more readily learn to cooperate at similar levels as prosocials,
even when proselfs are embedded in parts of the social network where initial defection prevails. Finally, we
also tested whether model results change qualitatively when we abandon the assumption that homophily is
not only a�ecting the network structure but also who interacts with whom (see Appendix 9.5). While e�ects
become smaller quantitatively, they remain unchanged qualitatively.

Discussion

5.1 Our work has uncovered a limitation of meritocratic matching. The availability of information strongly a�ects
the ability of the matching mechanism to generate cooperative groups. Complete information on individual
predispositions provides ideal conditions for meritocratic matching. To analyze the consequences of incom-
plete information on model outcomes, we introduced several matching rules. When only group-level informa-
tion is available for thematchingmechanism, prosocials end up not fully exploiting their cooperative potential,
hindering cooperation in general. We also asked whether social network information can solve the bad bar-
rels problem. Our simulations show that if prosocial agents have access to individual information derived from
homophilous networks they canmobilizemore of their cooperative potential. Homophilous networks improve
the functioning ofmeritocraticmatching systemsby allowing cooperators to identify other cooperators. Agents
preferentially connect to and interact with similarly behaving others in the network: cooperators mainly inter-
act with cooperators while defectors are le� to interact with other defectors. This creates ideal conditions for
mismatched prosocial agents to display their cooperative tendencies, as they do not have to fear exploitation
by uncooperative network partners. Dyadic interactions thus increase di�erentiation between prosocials and
proselfs. In addition, homophilous networks create groups of prosocial agents who are aware of each other’s
behavior. The stronger this prosociality segregation is, the better prosocials are able to cooperate in the group
context. The availability of information on prosocial others and the relative e�ectiveness of behavior in ho-
mophilous dyadic network interactions helps prosocials group up, resulting in more cooperation in the group
context.

5.2 Our study comes with limitations which suggest avenues for future research. One limitation pertains to the
comparison of the value of network cooperation to group cooperation, which may be context-dependent. Our
robustness checks showed that di�erentiation in the frequency of interactions (r) matters. But the goals of
work-related teams may also di�er from the social goals of inter-employee friendships. Some may even not
want a spillover between the friendship and work domain. This may limit the extent to which networks help
solving the “bad barrels” problem. The problem further perpetuates when merit information from the group
context surpasses the importance of network-basedmerit. However, for important contexts, it seems plausible
that network information is su�iciently reliable and relevant to improve selection decisions. For example, a
scientific department recruiting new sta�may want tomobilize informal collaboration networks of employees
withmany ties to applicants working in the discipline, to collectmore individual information about applicants.
Especially, when work-related information is lacking or unreliable.

5.3 An important topic highlighted by ourmodel is the tension betweenwhat is individually or collectively optimal
in meritocratic matching. Prosocials fare better under meritocratic matching, but proselfs – and thereby the
collective – may need more time to follow suit. This tension, i.e., maximizing collective benefits that arise out
of cooperation andminimizing individual di�erences in benefits, finds its roots in the classical societal problem
which the meritocratic system aims to attenuate: inequality. One way to suppress inequality as an outcome is
to bolster equality in opportunities—a core tenet of meritocratic matching since it leads to equal opportunities
in principle. But meritocratic matching may also perpetuate inequality by shi�ing it to merit-based inequality.
For instance, the ideal situation occurs when proselfs quickly recognize that they need to cooperate in order
to advance. However, our model also suggests that proselfs need time to learn to cooperate and they learn
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faster in the presence of prosocials (Appendix A7). Whenmeritocratic matching functions optimally, prosocials
and proselfs are quickly segregated. One may question whether it is fair to condemn proselfs to defective col-
lectivities. The consequence is that meritocratic matching is beneficial for prosocials and harmful to proselfs.
The question is whether such a cleavage between cooperative and defective groups is collectively optimal. For
example, in the context of higher education, our model suggests that it is best for cooperative students to join
forces with other cooperative types, leaving non-cooperative students astray. But this risks writing o� groups
of proselfs who are not by definition incorrigible defectors. Thus, meritocratic matching can also have nega-
tive externalities for non-cooperative types who initially fell of the cooperative wagon, exacerbating societal
inequality.

5.4 Also, future work may want to inspect conditions under which the network works as an exclusionary mecha-
nism. For instance, our model shows how random networks operate as an exclusionarymechanism in dividing
prosocials and proselfs only under certain conditions. Especially in the early stages of interactions in random
networks, proselfs are relatively less attractive than prosocials. On the whole, we find that this does not trans-
late to a radical change in cooperation rates in the group context compared to the condition of homophilous
networks. A follow-up study may entail exploring network conditions under which the exclusionary mecha-
nism in cooperative relations in homophilious networks increases the exclusion of non-cooperators also in the
group context. A further intriguing possibility to explore could be that heterophilous networks – networks in
which prosocials are preferentially connected to proselfs – can lead to better chances for proselfs to escape
from low-cooperation groups because they can learn more e�ectively to cooperate also in the relational con-
text.

5.5 Finally, althoughwealready introduced somepotentialmodel extensions in Appendix A10, ourmodel necessar-
ilymakes assumptions about theway individuals process and respond to the information obtained from group
and dyadic interactions. As a first step towards testing the practical implications of our model, it is important
to test these behavioral assumptions in laboratory experiments or empirical settings. We envision settings in
which participants are embedded in group and network contexts and use information concerning merits from
one context to inform others in another context. Furthermore, the homophily solution in a world where meri-
tocratic matching is based on imperfect information does not particularly exacerbate the problem for proselfs.
A reason why proselfs do not experience a backfire e�ect of homophily may be the static nature of the net-
work in our model. A dynamic network in which agents preferentially form and dissolve ties with (dis)similar
cooperative others may eventually result in a cooperative cluster in which prosocials reside while proselfs are
condemned to interact with similar others in a defective cluster. Then homophily may be detrimental for the
chances of proselfs to cooperate in the group context. Our model already incorporates interaction dynamics
(via parameter r), but dynamic networks may introduce another mechanism that separates defectors from co-
operators.

5.6 In summary, we showed that meritocratic matching systems in which merit is assessed based on group-level
outcomes su�er from what we termed the “bad barrels” problem. Persons with cooperative intentions (the
“good apples”) end up in uncooperative groups (the “bad barrels”). They are unable to single-handedly change
the nature of the group and are forced to behave more uncooperatively themselves in order to avoid exploita-
tion. The good apples are thus spoiled by the bad barrels in which they find themselves. Matching systems
which rely on group-level information are unable to identify these spoiled good apples, resulting in collectively
ine�icient outcomes.

5.7 As a potential solution, information from informal social networks can be used to improve the functioning of
meritocratic matching systems. Informal social networks, particularly when these networks show homophily
on traits that relate to cooperativeness, allow individuals to show their merit without being constrained by
group-level interdependence. Imagine again the student context discussed earlier. At the start of an academic
year, students are randomly grouped to work together in project teams. The course ends at some point and
all groups receive a collective grade. A students’ true value as a potential contributor in future project teams
may not be reflected by the group grade, but social relations with similar others who also generally invest a lot
of time and e�ort into their studies is a way out for students who have more to o�er. Our findings are in sync
with the five rules for cooperation to arise proposed by Nowak (2006); that is, we show that reciprocity within
groups in the long haul (Appendix A7), (in)direct reciprocity in network interactions, and network clustering via
homophily foster cooperation. However, our work also uncovered a potential downside of homophily: segre-
gation of proselfs limits their possibility to learn cooperative behavior over time in interactionswith prosocials.
This raises an intriguing possibility for futurework: identifying an optimal degree ofmeritocraticmatching that
balances the benefits for prosocials with the benefits for the overall population.
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Notes

1Note that Figure A1 in Appendix A6 elucidates that relying on the last 10 individual cooperation decisions in
the group context does not alter cooperation levels reached under rule 2.

2An additional incomplete information rule – see Appendix A6 – corroborates that solely observations of
agents’ individual behavior in the context of that group also lead to similar lower cooperation levels as under
rule 2.
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