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Abstract: A challenge in computational Agent-Based Models (ABMs) is the amount of time and resources re-
quired to tune a set of parameters for reproducing the observed patterns of phenomena being modeled. Well-
tuned parameters are necessary for models to reproduce real-world multi-scale space-time patterns, but cali-
bration is o�en computationally intensive and time consuming. Particle Swarm Optimization (PSO) is a swarm
intelligence optimization algorithm that has found wide use for complex optimization including non-convex
and noisy problems. In this study, we propose to use PSO for calibrating parameters in ABMs. We use a spatially
explicit ABM of influenza transmission based in Miami, Florida, USA as a case study. Furthermore, we demon-
strate that a standard implementation of PSO can be used out-of-the-box to successfully calibrate models and
out-performs Monte Carlo in terms of optimization and e�iciency.
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Introduction

1.1 Agent-based models (ABMs) are used for simulating, exploring, and understanding complex epidemiological
(Kang et al. 2020), economic (Filatova et al. 2009), and social (Wise & Cheng 2016) phenomena. To accurately
capture the complex systems they are modeling, ABMs o�en utilize the paradigm of Pattern-Oriented Model-
ing (POM; Grimm et al. 2005). Using POM, modelers aim to ensure that model outputs resemble the complex
spatio-temporal patterns observed in real-world systems (Kang&Aldstadt 2019b), which can increase amodel’s
performance and utility (Ligmann-Zielinska et al. 2014). Faithfully reproducing these patterns requires that
ABMs use carefully calibrated and well-tuned parameters that minimize the di�erence betweenmodel outputs
and observed patterns, generally using a performance metric like root mean squared error (RMSE; Kang & Ald-
stadt 2019b). This process of calibration is only one part of the verification and validation process that ABMs go
through (Ngo & See 2012), but represents a computationally intensive step.

1.2 Calibration has been identified as a key challenge in ABMs (Crooks et al. 2008). One challenge in calibrating
ABM parameters is the compute time and computational resources required (Clarke 2018; Crooks et al. 2008).
In spatially explicit ABMs, the challenges posed by calibration are o�en exacerbated by spatial and temporal
dependencies in models (Raimbault et al. 2019; Manson et al. 2020). While advances in cyberinfrastructure (CI)
have great potential to alleviate the problem, due to the computational complexity that arises from optimizing
noisy non-convex performance surfaces, calibration has remained costly (Kang et al. 2022). The complications
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presented by calibrating ABMs have led researchers to rely on heuristic and probabilistic approaches to opti-
mization (Mao & Bian 2011; Clarke 2018).

1.3 In this paperwedemonstrate the e�ectiveness and e�iciency of parallelizedParticle SwarmOptimization (PSO)
as a tool for calibrating ABMs. A key benefit of PSO is that it has been shown tobe e�ective in noisy (Parsopoulos
& Vrahatis 2001) and dynamic environments (Carlisle & Dozier 2000), important attributes for optimizing ABMs.
There is limitedwork demonstrating PSO as a tool for calibrating ABMs (Acedo et al. 2018; Alaliyat et al. 2019; He
et al. 2022). Therefore, we compare PSO to the commonly-usedMonte Carlomethod to examine howwell each
methodcanminimize thedi�erencebetweenmodel outputs and referencepatternsas a functionof thenumber
of parameter sets each method needs to evaluate. This comparison allows us to compare the accuracy and
computational e�iciency of PSO against a common benchmark. Our study shows that PSO is able to reproduce
reference patterns, while evaluating fewer sets of parameters in a computationally e�icient manner.

Model Calibration

2.1 Parameter choices in ABMs are o�en guided by knowledge on the phenomena they are simulating (Mao & Bian
2011), but in many cases there is uncertainty or disagreement in the estimates leading to a range rather than
a single value (Mao & Bian 2011; Ligmann-Zielinska et al. 2014). In these cases and cases where literature does
not exist for a specific parameter, modelers are forced to rely on calibration to fine-tune parameter choices and
determine which parameters best match real-world patterns (Crooks et al. 2008; Grimm et al. 2005; Kang &
Aldstadt 2019b). This process is sometimes complicated by data scarcity (Crooks et al. 2008; Liu et al. 2017) and
could require multi-objective optimization (Oremland & Laubenbacher 2014).

2.2 We formalize parameter calibration using the standard form of a constrained optimization problemwith noise,
that is:

min
x∈Rp

f(x) + n (1)

s.t. x ∈ C

where f : Rp 7→ R in Equation 1 is the function tominimize, called the objective function, n is a noise term, and
C ⊆ Rp is the constraint set or feasible region of the solution space (Jain & Kar 2017). In other words, our goal
is to find a point x̄ in the feasible region such that our objective function f evaluated at x̄ is less than or equal
to the objective function evaluated at another point in the feasible region (Jain & Kar 2017). The noise term n
in Equation 1 is a random variable with mean zero that represents the stochasticity of ABMs.

2.3 Finding the globalminimumof a simple non-convex function such as the one shown in Figure 1 can be achieved
relatively easily because of how computationally inexpensive the function is to evaluate, the low dimension,
and the lownumber of localminima. However, ABM-based spatial simulations are o�en computationally inten-
sive and thus expensive to evaluate, have many parameters resulting in a high-dimensional parameter space,
and are vastly complex with a plethora of local minima. More generally, non-convex optimization problems
are known to beNP-hard while some such problems have even been shown to beNP-hard to solve approxi-
mately (Jain&Kar 2017). The randomness of ABMsevenmakes this alreadydi�icult optimization evenharder as
advances in cyberGIS (Wang 2010) and cyberinfrastructure have enabledmodelers to create finer-grain, larger-
scale, andmore complex models.

Figure 1: A convex function (le�) vs. a non-convex function (right). The line between any two points on a convex
surface does not intersect the surface. Note that the non-convex function has multiple local-minima, compli-
cating optimization.
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2.4 The di�iculty of calibration has led modelers to heavily rely on discretization of their parameter spaces, model
reduction, and heuristics. Discretization refers to turning a continuous space with infinitely small granularity
into a finite space with coarse granularity. As an example, a parameter α ∈ [0, 100] might be discretized to
α ∈ {0, 10, 20, · · · , 100}, yielding a much easier space to search. While discretization can be useful and all
computational modelsmust tolerate some level of discretization error, discretization at this level assumes that
models are continuous meaning that small changes in each parameter yield only small changes in the model’s
outputs. Usinga large-grain searchof aparameter spacealsomeans that the searchmaymiss important optima
and equilibria that lie between chosen samples.

2.5 Model reduction refers to calibrating a model using a subset of the parameters that best represent the overall
performance of the model (Oremland & Laubenbacher 2014). This can be achieved in a variety of ways includ-
ing global sensitivity analysis (Kang & Aldstadt 2019a; Ligmann-Zielinska et al. 2014) and Cohen’s weighted κ
(Oremland & Laubenbacher 2014). While sensitivity analysis is useful for verification of a model (Ngo & See
2012; Crooks et al. 2008), model reduction results in a loss of information and can have unforeseen conse-
quences for ABMs. ABMs o�en have complex, non-linear relationships between input parameters suggesting
that time-saving approaches to optimization such as model reduction and one-at-a-time1 optimization may
not be well-suited for ABM calibration.

2.6 Using heuristics to solve problems in model calibration requires that we accept solutions that may not be op-
timal, whether we rely on discretization, model reduction, both, or neither, but it is a sacrifice we are forced
to accept because of the complexity of non-convex optimization. In the agent-based modeling context, Monte
Carlo (Mao &Bian 2011) and genetic algorithms (Oremland & Laubenbacher 2014) are o�en used to find approx-
imately optimal parameter sets. However, little work has been done to test the e�ectiveness of swarm intelli-
gence approaches (Acedo et al. 2018; Alaliyat et al. 2019; He et al. 2022). Particle Swarm Optimization (PSO) is
particularly well suited for calibrating spatially-explicity ABMs e�iciently because it has been successfully ap-
plied to many non-convex problems such parameter-tuning in machine learning, its performance is e�icient,
and it performs well in noisy (Parsopoulos & Vrahatis 2001) and continuously changing environments (Carlisle
& Dozier 2000).

Particle SwarmOptimization

3.1 Particle Swarm Optimization (PSO) is an evolutionary algorithm for optimizing non-di�erentiable, non-linear
functions introduced in 1995 for use in neural networks by Kennedy and Eberhart (Kennedy & Eberhart 1995;
Eberhart & Kennedy 1995). The method was developed by modeling the social behavior of animals like bird
flocks and fish schools (Kennedy & Eberhart 1995; Eberhart & Kennedy 1995). PSO and Genetic Algorithms (GA)
are similar in that they are population-based search routines. However, while agents in GA evolve based on
Darwinian principles of “survival of the fittest,” PSO is based on communication among a population rather
than fittest agents reproducing which has been found to be more e�icient in some studies (Panda & Padhy
2008).

3.2 The PSOmethod implemented for this research is based on a standardized PSO algorithm. Bratton & Kennedy
(2007) provides the necessary parameters and choices for a general-purpose optimizer, allowing users to pro-
vide a search space and a desired number of evaluations (number of particles× number of generations), both
of which are required for Monte Carlo as well. This standard algorithm allows particles to leave the feasible re-
gion, referred to as “letting the particles fly”, but not evaluating them outside of the feasible region to reduce a
bias towards the center of the parameter space (Bratton & Kennedy 2007). It also includes a constriction factor
k, seen in the Update Step of Figure 2 and Equation 4, which reduces time spent outside of the feasible region
and aids in convergence (Eberhart & Shi 2000; Bratton & Kennedy 2007).

3.3 The standard algorithm developed by Bratton & Kennedy (2007) recommends methods for initialization that
shi� the starting positions of the particles away from the global optimum, but notes that for practical opti-
mization applications this strategic initialization is unnecessary. Thus, our PSO algorithm initializes particles
uniformly throughout the feasible region and gives particles a random velocity. Once initialized, the algorithm
enters an optimization loop as shown in Figure 2. During each iteration of the optimization loop, if particles
are within the feasible region, they evaluate their fitness against the cost function using their positions in the
parameter space. If the position results in the minimum error achieved by that particle, it is recorded as its
individual best or −→p b. Particles then communicate with their neighbors to determine the minimum position
experienced among them which is recorded. When all particles are connected, this is the global best or −→g b

strategy.
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Figure 2: Flowchart for the PSO algorithm used.

3.4 A�er the evaluation and communication steps of the optimization loop are complete, PSO updates the veloc-
ities and positions of the particles as shown in the Update Step of Figure 2. Equation 2 sets the particle’s new
velocity (−→v t+1) as a combination of its current velocity (−→v t), the direction of the particle’s individual best po-
sition (−→p b), and the direction of the best position reported by all neighbors (−→g b). The particle velocity update
also includes a constriction factor k determined by Equation 4 and multiplies the individual best position and
global best position by cognitive and social constants respectively c and s, and two uniformly distributed ran-
dom variables β1, β2. With velocity calculated, each particle’s position is set to its position plus its velocity.

−→v t+1 = k(−→v t + cβ1(−→p b −−→p t) + sβ2(−→g b −−→p t)) (2)
−→p t+1 = −→p t +−→v t+1 (3)

where k =
2

|2− φ−
√
φ2 − 4φ|

, φ = c+ s, φ > 4 (4)

3.5 The network structure between the particles allows for information about fitness to propagate through the
particles. Choosing a network structure presents a trade-o� between convergence and exploration with highly
connected networks converging quickly while lowly connected particles are able to explore more (Kennedy &
Mendes 2002). While the ring topology is suggested as the standard for PSO by Bratton & Kennedy (2007), they
note “that it should not always be considered the optimal choice in all situations”. Thuswehave choosen to test
three of the most common topologies: fully connected, ring, and a von Neumann network structure. The fully
connected version of PSO (Figure 3a) is o�en referred to as gbest because particles focus onmoving towards a
global best and is the original version of PSO. The ring topology (Figure 3b) is o�en referred to as lbest because
rather than relying on a global best fitness the particles respond to the best fitness in between itself and its
neighbors. Lastly, we chose to test a von Neumann structure (Figuren 3c) because it has been found to be an
e�icient choice for general-purpose optimization for deterministic functions (Kennedy & Mendes 2002).
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Figure 3: Commonly used PSO topologies: (a) fully connected or global best, (b) ring or local best, and (c) von
Neumann.

3.6 The PSO algorithm iterates until it is terminated, which can happen in a variety of ways. The simplest termina-
tion criterion is to end the algorithm a�er a given number of iterations or total evaluations, with the number of
iterations being chosen based on the number of parameters and complexity of the space. This is the approach
followed by Bratton & Kennedy (2007), Alaliyat et al. (2019) and He et al. (2022). Kwok et al. (2007) and Zielinski
& Laur (2007) have discussed a variety of termination criteria including waiting for the particles to be between
a short distance of each other, the best fitness to reach a certain point, and the improvement over generations
to fall below a threshold. Our implementation has chosen to rely on number of iterations to create a general-
purpose solution and reduce the amount of hyper-parameters that have to be tuned.

3.7 The PSO algorithmhas no dependencies between particles when evaluating fitness at each step, allowing us to
evaluate themodel concurrently. Our implementation takes advantageof this aspect of the algorithm to exploit
parallelism. To speed up our implementation of PSO and better utilize cyberinfrastructure at our disposal, we
used the multiprocessing2 package for Python 3.x. In particular, we utilized the Pool class which allows us
to create a pool of workers that process particle fitness evaluations. Our code was then run on a multi-node
SLURM cluster to ensure it functions well on advanced cyberinfrastructure.

Case Study: ABM of Influenza Transmission

4.1 A spatially explicit ABMof influenza transmission inMiami, Floridawas used as the case study (Kang et al. 2019).
An expanded version of the model has been reported by Kang et al. (2022). It models the spread of influenza
throughout a simulatedpopulationusingaSusceptible-Exposed-Infectious-Recovered (SEIR)model for disease
progression. The model was chosen because it is a spatially explicit ABM and the model’s code and associated
data have beenmade available through the CyberGISX platform3 and GitHub4 for computational reproducibil-
ity.

4.2 Themodel instantiates heterogeneous human agents based on distributions of age and household size per U.S.
Census data. The model utilizes real-world locations of 300 schools, 1,600 workplaces, and 18,000 homes ob-
tained from the Regulatory and Economic Resources Departments Planning Division fromMiami-Dade County
OpenDataHub 5. Household size and the age of agents are initialized using data from the AmericanCommunity
Survey (ACS). A�er initialization, we use a distance-based model to assign agents to schools and workplaces:
agents between 6 and 19 are assigned to their closest school and agents between 20 to 65 are assigned to their
nearestworkplace. Agents in themodel simulate a typical day: Commuting fromschool orwork and interacting
with other agents when they are co-located in households, workplaces, and schools.

4.3 To represent the disease spread process in agents, a SEIR (Susceptible-Exposed-Infectious-Recovered) model
was used. The SEIR model is a compartmental model of epidemiology in which agents start o� as suscepti-
ble to the disease and if they are exposed to the virus they become infectious a�er an incubation period. A
weighted contact network is created from co-location data with weights proportional to the amount of time
spent co-located, with school/worked assumed to be 8 hours per day and home assumed to be the rest of the
day. Infectious agents can spread influenza to agents they come into contact with until the infectious period
ends at which point they become recovered and are assumed to be immune to the virus for the rest of the flu
season. A typical result from themodel can be seen in Figure 4which shows the spatial distribution of influenza
cases over a flu season.

4.4 The ABMcontains three parameters: introRatewhich describes the ratewithwhich human agents are randomly
infected with influenza, reproductionwhich is the expected number of secondary infection cases occurred per
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Figure 4: Map showing the spatial distribution of influenza cases simulated using the ABM (Kang et al. 2019).

an infection case, and infRatewhich describes the probability that a susceptible person could become exposed
through contact with an infectious person. Approximate ranges for these parameters and the number of days
for each step of the SEIR model were informed by the literature on influenza (Heymann 2008; Yang et al. 2009;
Fergusonet al. 2006). Tomeasurehowwell each set of parameters represents real-world influenza transmission
trends, we compared the modeling outputs to weekly influenza data obtained from the Florida Department
of Health6 as in Mao (2011) and Kang & Aldstadt (2019a). The model’s number of infectious agents per week
and Florida Health Department influenza cases per week are both normalized. We calculate the absolute error
between the two time series to measure the goodness-of-fit of the model (Kang et al. 2019).

Experiments

5.1 Ourcomputational experimentsaredesigned toanswer twokeyquestions: (1) towhatextent canPSObeused to
calibrate spatially-explicit ABMs “out-of-the-box” (i.e., without hyperparameter optimization) and (2) how does
PSO compare to Monte Carlo in terms of computational e�iciency, as measured by the number of evaluations
of the model? We used number of evaluations of the model as a metric because neither Monte Carlo or PSO
introduces significant overhead. Thismetric is capable of capturing compute time,memory usage, and I/O and
avoids creating a disincentive for exploring parameter sets that may result in longer or more computationally
intensive simulation runs. For example, with the model we have chosen, setting introRate to zero will result
in no one ever getting infected which results in the model completing much more quickly at the expense of
accurately describing the phenomena of interest. We have made the code for both the SEIR model used and
the PSO implementation are available on CoMSES: https://www.comses.net/codebase-release/834bd6
1c-7507-49d3-91d3-85c41564e8f2/.

5.2 For all of our experiments, PSO was run with 20 particles with parallel evaluation at each step (as described in
Section 3) on the agent-based model of influenza described in Section 4. Bratton & Kennedy (2007) notes that
a swarm between 20 and 100 particles gives comparable results and because our search space is only three
dimensionalwehave chosen to use the lowendof the range. To test the degree towhich PSO’s usefulness relies
on hyperparameter settings, we varied the topology and the number of generations, running PSO on the ABM
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35 times for each choice of hyperparemter setting. The topologies tested were the fully-connected, ring, and
von Neumann (Figure 3). Bratton & Kennedy (2007) do not o�er recommendations on the number of iterations,
so we turned to the work of Alaliyat et al. (2019) which similarly tuned 3 parameters on a spatially-explicit ABM
and chose 50 generations. Thus, for each choice of topology, we ran PSO using 48, 60, and 72 generations to
understand how the choice of number of generations a�ects the performance on PSO’s ability to calibrate the
spatially-explicit ABM.

5.3 Similarly, we ran Monte Carlo against the model. Rather than generations, Monte Carlo allows us to specify
the number of evaluations we would like to take of the model and we chose 500, 750, and 1,000 so that Monte
Carlo and PSOwouldmake approximately the same number of evaluations of the model. Just as with the PSO
experiments, Monte Carlo was run 35 times on the agent-based model for each choice of 500, 750, and 1,000
evaluations.

5.4 For both Monte Carlo and PSO, we measure the goodness-of-fit of the position in the parameter space by run-
ning the model with the parameters given by the particle’s position and compute the absolute error between
themodel’s output and actual case data from the Florida Department of Health. Both the case data andmodel
outputs are normalized before absolute error is calculated so that we can compare infection rates andmitigate
errors thatmay arise fromusing actual case numbers. Themodel operates at the granularity of aweek tomatch
the granularity of the data from the FloridaDepartment of Health, so absolute error between themodel and the
case data is calculated at each time step and summed to determine an relative metric for goodness-of-fit. We
are interested in the “best” set of parameters each optimization method can find as measured by lowest error
and the error of those parameters.

Results

PSO performance

6.1 First, we compare how PSO varied across parameter settings. The summary statistics for PSO applied to the
spatially-explicit ABM can be seen in Table 1. In Table 1, “Gen” gives the number of generations that PSO was
run, “µ N Evals”, “σ N Evals” and “CV N Evals” give the mean, standard deviation, and coe�icient of variation
(σ/µ) respectively for the number of times the model was evaluated. “Median Err”, “µ Err”, “σ Err”, and “CV
Err” give themedian, mean, standard deviation and coe�icient of variation of error achieved across all 35 runs.
Thesemeasures allowus toquantify the computational cost andperformanceof eachmethod. Thedistribution
of the lowest error for each run of the PSO experiments is visualized using boxplots in Figure 5.

Gen µ N Evals σ N Evals CV N Evals Median Err µ Err σ Err CV Err
Fully Connected 48 440.51 51.90 11.78% 32.19 32.14 0.94 2.92%

60 660.83 57.04 8.63% 31.77 32.29 5.00 15.48%
72 872.34 116.36 13.34% 31.06 31.75 4.38 13.80%

Ring 48 418.63 30.58 7.30% 32.73 32.64 1.58 4.84%
60 608.00 36.95 6.08% 31.85 31.64 1.07 3.38%
72 821.20 46.96 5.72% 31.23 31.31 1.16 3.70%

von Neumann 48 411.51 36.87 8.96% 32.41 32.39 0.80 2.47%
60 608.31 55.13 11.03% 31.58 31.46 1.19 3.78%
72 833.26 54.69 6.56% 31.21 31.08 1.12 3.60%

Table 1: Summary Statistics from PSO Experiments
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Figure 5: Boxplots of PSO’s performance on the model.

6.2 Comparing performance across topologies, the plots in Figure 5 indicate that all of the topologies have compa-
rable performances, however the fully-connected topology appears to be more prone to outliers. The outliers
experienced by the fully-connected topology for 60 and 72 generations are also reflected in much larger stan-
darddeviationsof error in Table 1. Theseoutliers inperformanceare likely a result of thehigh connectivity in the
topology. Because each particle is connected to every other, the topology sometimes results in the swarm con-
verging on local optima early without adequately exploring the parameter space (Kennedy & Mendes 2002).
Despite these occasional outliers for the fully-connected topology, the results show that all three topologies
havemean performances that arewithin a standard deviation of each other for each chosen number of genera-
tions. This is an unexpected result given the literature that suggests the Ring (Bratton & Kennedy 2007) and von
Neumann (Kennedy & Mendes 2002) tend to outperform the Fully Connected topology but it may be that the
stochastic nature of the ABM helped PSO to avoid converging on local minima (Parsopoulos & Vrahatis 2001).

6.3 We turnnext to examinehow thenumber of generations chosen for PSOa�ects theperformanceof themethod.
Table 1 shows somedi�erences in the performance of PSOas a function of the number of generations, but these
di�erences are not statistically significant, suggesting that “good” results can be obtained regardless of the
choiceof numberof generations. Interestingly, themedianerror falls as thenumberof generations increases for
each topology suggesting that the algorithm is slightly improving as it goes on. Similarly, we see that themean
error falls slightly as the number of generations rise for the ring and von Neumann topologies, but the outliers
cause fully-connected’s mean error to rise between 48 and 60 generations before falling again between 60 and
72 generations. Interestingly, the von Neumann topology is the only one where the standard deviation and
coe�icient of variance (CV) of error (“σ Err” and “CVErr” in Table 1) fell consistently as thenumberof generations
rose and it would be interesting to see if this pattern would be consistent on more models and across more
choices of number of generations.

6.4 Turning to the computational e�iciency of choices for the number of generations, it is important to note that
the number of evaluations does not equal the number of generations times the number of particles because
particles are not evaluated during a generation if they lie outside of the bounds. As noted in Section 3, we do
not require particles to stay within the bounds of the parameter space because that leads to a bias towards
the center of the parameter space (Bratton & Kennedy 2007). To illustrate this, we can see in Table 1 that the
increase from 48 to 60 generations is a 25% increase, but for fully-connected this resulted in an approximately
50% increase in the number of evaluations, while the increase from 60 to 72 generations represents a 20%
increase, but a 32% increase of evaluations for fully-connected. For a large number of generations, we would
expect the increase in generations to match the increase in model evaluations because the particles should
converge on a solution and therefore spendmore time within the bounds of the parameters.

6.5 By analyzing how the number ofmodel evaluations changes as a function of the number of generations, we see
that the number of evaluations is roughly the same for each choice of topology. The fully-connected topology
uses more evaluations on average for each chosen number of generations, but the di�erences are not statisti-
cally significant. For the ring and von Neumann topologies we see that the standard deviation as a percentage
of mean (coe�icient of variation) of the number of evaluations (“CV N Evals” in Table 1) declines consistently
as the number of generations rises. In contrast, the coe�icient of variation increases from 48 generations to 72
generations for the fully-connected topology. Taken together, it appears that the computational e�iciency of
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the ring and von Neumann topologies is more consistent than the fully-connected topology, while di�erences
in the computational e�iciency of the topologies are not statistically significant.

6.6 From these experiments we are able to observe that PSO’s performance is not greatly a�ected by the choice
of topology and the number of generations. While the performance of fully connected was comparable to that
of ring and von Neumann, the latter topologies produce more consistent results. This finding is mirrored in
analyzing the computational e�iciency of the topologies. Our analysis also shows that while allowing PSO to
run over a large number of generations seems to have a positive e�ect, the results do not change significantly
for the number of generations tested. Overall, the findings suggest that our PSO implementation canbe applied
with confidence “out-of-the-box” to spatially-explicit ABMswithoutmuch need for fine-tuning hyperparameter
choices like topology and number of generations, although the ring and von Neumann topologies tend to have
greater consistency meaning they should be favored by practitioners.

E�iciency compared to Monte Carlo

6.7 Althoughwe have demonstrated that PSO’s e�ectivness is relatively stable across hyperparameter choices and
can therefore be used “out-of-the-box”, our fitness metric is a relative one. To contextualize this performance,
we used Monte Carlo to evaluate the same ABMwith the same parameter ranges. We tested Monte Carlo using
500, 750, and 1000 evaluations respectively so that the number of evaluations is comparable to those used
by PSO and ran the algorithm 35 times for each chosen number of evaluations. This helps us to answer the
question of how e�icient PSO is compared to the commonly-used Monte Carlo method.

6.8 Table 2 gives the summary statistics for theMonte Carlo experiments. Just as in Table 1, “Median Fit”, “µ Fit”, “σ
Fit”, and “CV Fit” describe the median, mean, standard deviation, and coe�icient of variation for the best error
found by each run of Monte Carlo. Note that unlike in Table 1, there are no statistics for the number of evalua-
tions because Monte Carlo allows us to specify that explicitly while the PSOmethod has us specify a number of
generations instead. This data is also visualized in Figures 6 and 7 which give boxplots of the performance of
the methods and a scatterplot illustrating the performance versus computational e�iciency respectively.

Evals Median Err µ Err σ Err CV Err
500 36.88 37.46 3.93 10.49%
750 35.63 36.07 3.09 8.57%
1,000 35.81 35.72 1.81 5.07%

Table 2: Summary Stats fromMonte Carlo Experiments

Figure 6: Boxplots of error produced by best parameters found from eachmethod.

6.9 From Tables 1 and 2, we see that PSO’s mean and median minimum errors are below that of Monte Carlo for
all PSO and Monte Carlo parameter choices including those where Monte Carlo uses more than twice as many
evaluations. The plots in Figure 6 illustrate the drastic di�erence in the distributions of error with PSO consis-
tently much lower than Monte Carlo. Additionally, while the median error fell as the number of generations
grows for each PSO topology, we observe that the median error actually increases for Monte Carlo from 750 to
1,000 evaluations. Interestingly, the mean error fell as the number of evaluations rises for Monte Carlo as well
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as the ring and von Neumann topologies, but not for the fully-connected topology as a result of the outliers it
encountered.

Figure 7: Scatterplot showing the trade-o�betweennumber of evaluations of themodel vs. least error achieved
for all methods.

6.10 Comparing the consistency of the performance between the twomethods, the ring topology’s performance has
lower coe�icient of variance for every choice of PSO parameters and number of Monte Carlo evaluations. Von
Neumann also beats Monte Carlo in consistency except when comparing 48 generations to 1,000 Monte Carlo
evaluations where von Neumann still has a lower standard deviation in absolute terms. The fully-connected
topology’s outliers mean that despite having better median andmean performance than Monte Carlo, the per-
formance has a higher coe�icient of variance, meaning its results are less consistent than Monte Carlo.

6.11 Comparing the computational e�iciency, Figure 7 gives a plot of the error versus number of evaluations of the
model for each experiment. This allows us to visualize the trade-o� between performance and computational
e�iciency. As we would expect, both methods tend to slightly improve as the number of evaluations of the
model increase. However, we can see that choosing PSO over Monte Carlo increases our computational e�i-
ciency while increasing the quality of our parameters, giving us the best of both worlds.

6.12 Overall, it is clear that PSO producesmuch better parameter sets and is able to do sowith lower computational
cost than Monte Carlo. PSOwas able to achieve a 9.4-20.5% decrease inmean error and an 8.9-18.7% decrease
in median error even when PSO used less than half the number of evaluations as Monte Carlo. From these
findings, we conclude that PSO not only out-performsMonte Carlo in terms of optimization of spatially-explicit
agent-basedmodels, but also does so in a more computationally e�icient manner.

Discussion

7.1 With the benefit of hindsight, we can visualize the parameter space to understand why optimization may be
di�icult and why PSO was able to outperform Monte Carlo. The le� plot in Figure 8 gives us a 3-D visualization
of the parameter space with the colorbar indicating the error between the model outputs and observed case
data. The visualization was created using the 78,750 points in the parameter space evaluated by Monte Carlo.
The Monte Carlo results seem to uniformly cover the 3-D parameter space which is expected as each point is
chosen randomly from the parameter space. The specs of darker colors surrounded by yellow represent local
minima in the parameter space that could trick traditional optimization methods like gradient descent.
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Figure 8: 3-D visualization of the ABM parameter space with each point representing an evaluation of the ABM
and color representing absolute error between model output and case data. The plot on the le� shows the
results for all 78,750 Monte Carlo simulations and the plot on the right gives the results for all 199,812 PSO sim-
ulations.

7.2 Over the 78,750 evaluations taken by Monte Carlo, only 288 (0.37%) yielded an error below 40. Taking the con-
vex hull of these points, we get an area that represents only about 2.83%of the volume of the parameter space.
Narrowing our search to points which yielded an absolute error below 35, we get only 40 (0.05%) points which
give us a convex hull that represents 1.17% of the volume of the parameter space. Despite how small these
volumes may seem, the stochasticity in the ABM and non-convexity of the error function means that even if a
point is within these convex hulls, it may not produce a result that is below the thresholds we used to construct
the hulls. In fact these convex hulls contain a total of 2299 (2.92%) and 908 (1.15%) evaluated points respec-
tively despite only 288 and 40 points producing an error below 40 and 35. Therefore only 12.53% and 4.41% of
points within the convex hulls respectively fell below the thresholds of 40 and 35 absolute error. Of the 78,750
evaluations, only 2 (0.0025%) yielded a result with error below 30.

7.3 The rightplot in Figure8was createdwith the 199,812 evaluations takenusingPSO includingall hyperparameter
choices (topology andnumberof generations). Whencomparing theplots in Figure 8, the valueof PSObecomes
obvious–the region in the upper-right ([0.04, 0.1]× [1, 4]× [0.2, 1]) ismuch less densely populated compared to
the le� plot in Figure 8 despite the figure representing over two and half times more evaluations. This demon-
strates the power of PSO’s communication strategy in allowing particles to explore the entire parameter space
while focusing more attention on areas that tend to yield better results.

7.4 In contrast to Monte Carlo, PSO found 43,915 (22.1%) points that yielded an absolute error below 40 and 7,204
(3.6%) points that yielded an absolute error below 35 representing 60 and 71 times asmany points respectively
even a�er adjusting for di�erences in the total number of evaluations. This significant improvement in per-
formance is explained by the relative amount of evaluations within optimal regions of the parameter space.
Compared to Monte Carlo’s 2.92% and 1.15% of evaluations lying within the convex hulls of the points yielding
an error of 40 and 35, PSO had 112,779 (56.8%) and 100,608 (50.7%) points within them. So despite only 38.9%
and 7.2%of points fallingwithin the convex hulls producing an absolute error below the threshold respectively,
the increased time spent in these regions yieldedmuchbetter parameter sets overall. PSOalso found25 (0.01%)
points that produced an error below30,whileMonteCarlo only found2 (0.0025%). WhileMonteCarlo’s 2 points
do not form a convex hull with volume, the 25 points found by PSO form a convex hull with volume that rep-
resents 0.30% of the parameter space. It is worth noting that 40,896 (20.59%) of evaluations were within that
region with only 0.06% (25) of them resulted in an error below 30. Full plots of the convex hulls discussed can
be viewed in the Appendix.

Conclusions and Future Work

8.1 This study demonstrates that PSO can be an e�icient method for calibrating ABMs. Specifically, a standard im-
plementation of PSO based on the work by Bratton & Kennedy (2007) can be successfully used out-of-the-box
andwith a variety of hyperparameter choices,meaning thatmodelerswho choose to adopt PSOwill not beheld
back by a steep learning curve. Our results show comparable performance for all three choices of topology and
number of generations, with all hyperparameter choices outperforming Monte Carlo. Furthermore, our PSO
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approach is able to produce better parameter sets thanMonte Carlo while achieving higher computational e�i-
ciency. Our computational experiments suggest that the ring and von Neumann topologies should be favored
over the fully-connected topology for greater consistency.

8.2 There are a number of potential improvements that could be made to the PSO algorithm described in this pa-
per. Our implementation initialized particle position using uniformly random distribution in the bounds of the
parameter space to match Monte Carlo’s selection process, but work has shown that using low-discrepancy
quasi-random sequences can improve performance (Pant et al. 2008). Although we have tested the network
structures the literature recommends, there are network communication structures beyond the three explored
including random networks (Kennedy 1999), “pyramid”, and “star” (Kennedy & Mendes 2002) which may lend
themselves better to optimizing ABMs. While we have chosen a standardized implementation for this study,
there are many variations on the algorithm which may be even better suited for calibrating ABMs (Banks et al.
2007; Carlisle & Dozier 2000). As discussed in Section 3, there are also a variety of metrics to determine when
the PSO algorithm should terminate, which can be further explored on a wider set of ABMs. Poli et al. (2007)
gives an overview of the variations and open questions surrounding PSO which will be helpful for future work
in this direction.

8.3 Further experimentation is needed to determine if PSO is e�ective and e�icient on a wider variety of ABMs. In
particular, it is important to understand how PSO compares to other optimization methods as the number of
model parameters and complexity increase. Further work is also needed to compare how PSO’s performance
and e�iciency compare to other heuristic optimization methods and techniques that rely on model reduction.
While Parsopoulos & Vrahatis (2001) suggests that PSO performs well under noisy and continuously changing
environments, it would be informative to explore how this standardized PSO performs for dynamic calibration
of a model as new interventions occur. The PySwarm Python package by Miranda (2018) and the approach
described in this paper o�er great potential for further exploration. Beyond Particle SwarmOptimization, there
are other interesting swarm intelligence algorithmswhich could be explored such as Artificial Bee Colony (ABC)
optimization (Karaboga & Basturk 2007).
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Appendix: Convex Hull Plots

Figure 9: Evaluations using Monte Carlo of ABM parameter space with color representing error and blue lines
representing Convex Hull of points that produced error<35.

Figure 10: Evaluations using Monte Carlo of ABM parameter space with color representing error and blue lines
representing Convex Hull of points that produced error<40.
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Figure 11: Evaluations using PSO of ABM parameter space with color representing error and blue lines repre-
senting Convex Hull of points that produced error<30.

Figure 12: Evaluations using PSO of ABM parameter space with color representing error and blue lines repre-
senting Convex Hull of points that produced error<35.
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Figure 13: Evaluations using PSO of ABM parameter space with color representing error and blue lines repre-
senting Convex Hull of points that produced error<40.

Notes

1where one parameter is varied while the others remain the same
2https://docs.python.org/3.7/library/multiprocessing.html
3The model can be accessed and executed on the CyberGISX environment: https://cybergisxhub.cig

i.illinois.edu/notebook/a-reproducible-and-replicable-spatially-explicit-agent-based
-model-using-cybergis-jupyter-a-case-study-in-queen-anne-neighborhood-seattle-wa/

4The Github repository for the ABM can be found at https://github.com/cybergis/QueenAnneFlu
5Miami-Dade County Open Data Hub: http://gis-mdc.opendata.arcgis.com/
6Florida Department of Health Influenza Data: http://www.floridahealth.gov/diseases-and-condi

tions/influenza/florida-influenza-surveillance-report-archive
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