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Abstract: This paper describes simulations and analysis of flash crash scenarios in an agent-based modelling
framework. We design, implement, and assess a novel high-frequency agent-based financial market simulator
that generates realistic millisecond-level financial price time series for the E-Mini S&P 500 futures market.
Specifically, a microstructure model of a single security traded on a central limit order book is provided, where
different types of traders follow different behavioural rules. The model is calibrated using the machine learning
surrogate modelling approach. Statistical test and moment coverage ratio results show that the model has
excellent capability of reproducing realistic stylised facts in financial markets. By introducing an institutional
trader that mimics the real-world Sell Algorithm on May 6th, 2010, the proposed high-frequency agent-based
financial market simulator is used to simulate the Flash Crash that took place on that day. We scrutinise the
market dynamics during the simulated flash crash and show that the simulated dynamics are consistent with
what happened in historical flash crash scenarios. With the help of Monte Carlo simulations, we discover
functional relationships between the amplitude of the simulated 2010 Flash Crash and three conditions: the
percentage of volume of the Sell Algorithm, the market maker inventory limit, and the trading frequency of
fundamental traders. Similar analyses are carried out for mini flash crash events. An innovative "Spiking Trader"
is introduced to the model, replicating real-world scenarios that could precipitate mini flash crash events. We
analyse the market dynamics during the course of a typical simulated mini flash crash event and study the
conditions affecting its characteristics. The proposed model can be used for testing resiliency and robustness of
trading algorithms and providing advice for policymakers.
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Introduction

1.1 With the advent of electronic financial markets for the exchange of securities, the electronic centralized limit
order book has become the standard market mechanism for transaction matching and price discovery. This
form of order book offers market participants a more liquid market system with a small bid-ask price spread,
increased market depth and decreased transaction times.

1.2 Algorithmic trading is commonly defined as the use of computer algorithms to automatically make trading deci-
sions, submit orders, and carry out post-submission order management. In the past decade algorithmic trading
has grown rapidly across the world and has become the dominant way securities are traded in financial markets,
currently generating more than half of the volume of U.S. equity markets. Constantly improving computer tech-
nology and its application by both traders and exchanges, together with the evolution of market micro-structure,
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automation of price quotation and trade execution have together enabled faster trading. Nowadays the speed of
order submission has become a principal characteristic for distinguishing trading agents. Market participants
known as high-frequency traders are capable of trading hundreds of times in a second, using fast algorithms
and specialized network connections with exchanges. High-frequency traders are often orders of magnitude
faster in order submission than other traders, and even other trading algorithms.

1.3 The rise of algorithmic trading and high-frequency trading has had broad impacts on financial markets, especially
on the price discovery process and market price stability. One conspicuous impact is the increasingly frequent
"flash crashes" in major financial markets. The flash crashes comprise large and rapid changes in the price of an
asset that do not coincide with changes in economic fundamental value for the asset. The flash crash events
have occurred in markets that are among the largest and most liquid exchanges in the world. One representative
flash crash event is the famous 2010 Flash Crash, which happened in the U.S. stock market on May 6th, 2010.
During this flash crash event, one market participant’s algorithm caused a sharp price drop in the E-mini S&P
futures market. The flash crash soon spread to other futures markets and equity markets. The market price fell
almost 6% in just several minutes, while the bulk of losses was recovered nearly as quickly. The 2010 Flash Crash
led to turmoil market conditions and caused huge market value loss. As for the cause of the 2010 Flash Crash,
Kirilenko et al. (2017) show that the key events in the 2010 Flash Crash have clear relationships with regard to
algorithmic trading.

1.4 The 2010 Flash Crash seems to be singular because of the fact that no following events have rivalled its depth,
breadth, and speed of price movement. Nevertheless, flash crashes on a smaller scale happen frequently.
These events are termed mini flash crashes (Johnson et al. 2012). According to Johnson et al. (2012), there are
more than 18,000 mini flash crashes that are identified in the U.S. equity market between 2006 and 2011. As
scaled-down versions of the 2010 Flash Crash, mini flash crashes are abrupt and severe price changes occur
in an extremely short time period (Golub et al. 2012). Mini flash crashes are attracting great research interest
because their frequent occurrence could destabilize the financial market and undermine investor confidence
(Golub et al. 2012).

1.5 The flash crash episodes1, including large flash crash and mini flash crash events, are of significant concern to
researchers, practitioners, and policymakers. Financial markets in which price changes are orderly and reflect
proper changes in valuation factors are desirable. However, flash crash episodes could potentially disorganise
such a desirable market and cause adverse consequences for financial stability if they were to impede investment
by undermining investor confidence in the price at which securities could be transacted (Karvik et al. 2018). To
prevent flash crash episodes from becoming more frequent and longer-lasting, it is important to understand how
such episodes arise. In this paper we explore the dynamics during both large flash crashes and mini flash crashes.
The major objectives are understanding what happens during these events and identifying conditions that would
affect characteristics of these flash crash scenarios. The main methodology employed here is financial market
simulation in agent-based models. The agent-based financial market simulation provides realistic synthetic
financial market data and a testbed for exploring dynamics during flash crash episodes and conditions that
influence the characteristics of flash crash episodes.

1.6 Financial market simulation based on agent-based models is a promising tool for understanding the dynamics of
financial markets. With huge potential academic and industrial value, agent-based financial market simulation
has gained extensive research attention in recent years. Financial market simulation by agent-based models is
an exciting new field for exploring behaviours of financial markets. An agent-based financial market simulation
consists of a number of distinct agents that follow predetermined rules in a manner analogous to how real-world
traders behave in reality. Unlike traditional economic theories, there is no equilibrium assumption in agent-
based financial markets. In addition, traders are no longer assumed to have rational behaviours as in traditional
economic theories. The removal of these assumptions makes agent-based financial market simulation more
realistic than traditional equilibrium-based economic and financial theories. These advantages of agent-based
financial market simulation make it possible to explore complex phenomena such as flash crash episodes in
modern financial markets, which is unachievable with traditional equilibrium-based theories.

1.7 Various agent-based simulators have been developed in the literature. However, there are still gaps in creating
ideal agent-based financial market simulators that are capable of generating synthetic high-frequency market
data that are realistic. Specifically, most existing agent-based financial markets are of lower frequency such as
daily or minutely. To explore market dynamics that involve high-frequency trading, a higher simulation frequency
in sub-second level is needed. In addition, instead of using full exchange protocols, many simulators make
assumptions about the price formation process and use mathematical formulae to approximate the matching
engine. This significantly undermines the realism of the simulator. Last but not least, the proper calibration and
validation of agent-based financial market simulation are still an open problem.

1.8 To sum up, there are two challenges that this paper aims to address:
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• C1: To design and implement a high-frequency agent-based financial market simulator with full exchange
protocols, and with a proper calibration and validation process to reproduce a realistic artificial financial
market.

• C2: Under the proposed agent-based financial market simulator, investigate the market dynamics during
flash crashes (including both large flash crashes and mini flash crashes) and explore the conditions that
influence the characteristics of flash crashes.

1.9 Motivated by the above challenges, we developed a novel high-frequency financial market simulator to bridge the
existing gaps. The simulator is then employed to explore the dynamics during flash crashes and the conditions
that affect flash crashes. Broadly speaking, our contributions in this paper are threefold:

• It is known that sub-second level simulation is needed to replicate high-frequency dynamics in financial
markets, which is rarely implemented in previous work. In this work, a high-frequency agent-based
financial market simulator that comprises various types of traders is implemented, with each simulation
step corresponding to 100 milliseconds. The 100 milliseconds step interval is chosen because the average
interval between two transaction messages from the exchange is around 100 milliseconds. Shorter step
interval is not chosen because of a huge increase in computational expenses, though higher frequency
is realisable in our simulation. In addition, our experimental results show that a step interval of 100
milliseconds is sufficient to capture high-frequency dynamics in financial markets. Full exchange protocols
(limit order books) are implemented to simulate the order matching process, which acts exactly the same
as the match engine in real-world exchanges. In this way, we provide a microstructure model of a single
security traded on a central limit order book in which market participants follow fixed behavioural rules.
The model is calibrated using the machine learning surrogate modelling approach. As for model validation,
statistical tests and moment coverage ratio results show that the simulation is capable of reproducing
realistic stylised facts in financial markets.

• Under the framework of the proposed high-frequency agent-based financial market simulator, the 2010
Flash Crash is realistically simulated by introducing an institutional trader that mimics the real-world Sell
Algorithm2 on May 6th, 2010, which is generally believed to have precipitated the flash crash event. We
investigate the market dynamics during the simulated flash crash and show that the simulated dynamics
are consistent with what happened in historical flash crash scenarios. We then explore the conditions that
could have influenced the characteristics of the 2010 Flash Crash. According to our Monte Carlo simulation,
three conditions significantly affect the amplitude of the 2010 Flash Crash: the percentage of volume (POV)
of the Sell Algorithm, market maker inventory limit, and the trading frequency of fundamental traders.
In particular, we found that the relationship between the amplitude of the simulated 2010 Flash Crash
and the POV of the Sell Algorithm is not monotonous, and so is the relationship between the amplitude
and the market maker inventory limit. For the trading frequency of fundamental traders, the higher the
frequency, the smaller the amplitude of the simulated 2010 Flash Crash.

• Similar analysis is carried out for mini flash crash events. An innovative type of trader called "Spiking
Trader" is introduced to the agent-based financial market simulator, mimicking real-world price shocks
to precipitate more mini flash crash events. Market dynamics for a typical simulated mini flash crash
event are analysed. We also explore the conditions that could influence the characteristics of mini flash
crash events. Experimental results show that the market maker inventory limit significantly affects both
the frequency and amplitude of mini flash crash events. However, the trading frequency of fundamental
traders shows no obvious influence on mini flash crash events in our experiments.

1.10 The novelty of our approach lies in several aspects. Firstly, the proposed agent-based financial market simulator
has a higher frequency than most other simulators in the literature. Our simulation step is at the milliseconds
level, which allows for the investigation of high-frequency dynamics in the simulated financial market, while
most simulation models in the literature adopt larger simulation steps of 1 second or 1 minute. Secondly, we
explore the influence of different market configurations on the amplitude of the 2010 Flash Crash. To the best of
our knowledge, there are few similar experiments in the existing literature. Thirdly, an innovative type of trader
named "Spiking Trader" is proposed to precipitate more mini flash crash events. Fourthly, the experiments that
explore the conditions that influence the frequency and amplitude of mini flash crash events are also a novelty
of this work.

1.11 The remainder of the article is organized as follows. Section 2 presents general background on the agent-based
financial market simulation and an overview of previous research about flash crash events. Section 3 shows

JASSS, 27(2) 8, 2024 http://jasss.soc.surrey.ac.uk/27/2/8.html Doi: 10.18564/jasss.5403



the structure and details for the proposed agent-based model, while Section 4 presents the model calibration
process and model validation results. Section 5 and Section 6 provide simulation and analysis for the 2010
Flash Crash scenario and mini flash crash scenarios, respectively, in the framework of the proposed agent-based
financial market simulation. Section 7 concludes and gives directions for future work.

Background and Related Work

Agent-based financial market simulation

2.1 An agent-based model (ABM) is a computational simulation driven by the individual decisions of programmed
agents (Todd et al. 2016). ABMs are often used in simulating financial markets. In agent-based simulated financial
markets, an agent’s objective is to "digest the large amounts of time series information generated during a
market simulation, and convert this into trading decisions" (LeBaron 2001). The model aggregates these trading
decisions from all agents to build market snapshots (e.g. limit order book states) for each step and generate
transactions. With the advantage of capturing the heterogeneity of agents and diversity of the underlying
economic system, ABMs provide a promising alternative to traditional equilibrium-based economic models.

2.2 Gode & Sunder (1993) build an agent-based model with only zero-intelligence traders to simulate financial
markets. Those zero-intelligence traders are not able to think strategically, or do any advanced learning, or
statistical modelling of the financial market. Surprisingly, results show that zero-intelligence traders can trade
very effectively in the simulated market. The prices tend to converge to the standard equilibrium price and
market efficiency tends to reach a very high level. According to their experimental results, they argue that some
stylised facts in financial markets may rely more on institutional design rather than actual agent behaviour.
Agent-based models are also proposed to model the "Trend" and "Value" effects in financial markets. Chiarella
designed an agent-based model composed of two types of traders: fundamentalists and chartists (Chiarella
1992). With only two types of traders, lots of dynamic regimes that are compatible with empirical evidence can be
generated in the simulated artificial financial market. An extension of the Chiarella model is proposed in Majewski
et al. (2020). The extended model adds a new type of trader called noise trader and allows the fundamental
asset value to have a long term drift. The extended Chiarella model is capable of reproducing more realistic price
dynamics. This extended Chiarella model in Majewski et al. (2020) forms the basis of the proposed agent-based
financial market simulation in this paper. A more complex agent-based model for financial market simulation is
proposed in McGroarty et al. (2019). Five different types of traders are present in the simulated market: market
makers, liquidity consumers, momentum traders, mean reversion traders, and noise traders. Their model is
capable of replicating most of the existing stylised facts of limit order books, such as autocorrelation of returns,
volatility clustering, concave price impact, long memory in order flow, and the presence of extreme price events.
Those stylised facts have been observed across different asset classes and exchanges in real financial markets.
The successful replication of these stylised facts indicates the validity of their agent-based simulation model. It
is shown that agent-based financial market simulation is capable of generating artificial financial markets with
realistic macro behaviours.

2.3 The prevalence of electronic order books and automated trading permanently changed the way the market
works. It is virtually impossible to infer meaningful relationships between market participants using traditional
mathematical methods because of the complexity of electronic financial markets. Instead, agent-based financial
market simulation has been gradually getting popularity in the market microstructure literature. An agent-based
simulated financial market offers an experimental environment for examining market features and characteristics.
It also provides plenty of artificial financial market data for analysis. Hayes et al. (2014) develop an agent-
based model for use by researchers, which offers the capability of capturing the organization of exchanges, the
heterogeneity of market participants, and the intricacies of the trading process. Agent-based models can also
provide regulators with an experimental environment that helps to comprehend complex system outcomes. In
other words, it allows for a clearer examination of the relationship between micro-level behaviour and macro
outcomes. For example, Darley & Outkin (2007) test the regulatory changes that came with decimalization in the
NASDAQ market using agent-based financial market simulation. The agent-based models of the NASDAQ market
shed light on how these changes would impact market function.

2.4 To summarise, agent-based financial market simulation simplifies complex financial system simulation by
including a set of individual agents, a topology and an environment. Different agent-based models in the
literature focus on different practical problems in financial markets. In this paper, we focus on agent-based
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models applied to flash crash analysis. In the following section, we provide a literature review of flash crash
episodes.

Flash crash episodes

2.5 During the 2010 Flash Crash, over a trillion dollars were wiped off the value of US equity markets in an event
that has been largely attributed to the rapid rise of algorithmic trading and high-frequency trading (Kirilenko
et al. 2017). The base indices in both the futures and securities market experienced a rapid price fall of more
than 5% in just several minutes, after which the bulk of the price drop was recovered nearly as fast as it fell. The
staff from CFTC and SEC present a thorough report on what happened during the 2010 Flash Crash event (SEC
and CFTC 2010). They identified an automated execution algorithm that sold a large number of contracts as the
main catalyst for the flash crash. The Sell Algorithm, which was activated on the E-mini S&P 500 futures market,
kept pace with the market aiming at selling around 9% of the previous minute’s trading volume (SEC and CFTC
2010). Even though no negative impact was known previously, this process triggered a cascade of panic selling
by market participants that employ high-speed automated trading systems. The consequent "hot-potato" effect,
where those market participants rapidly acquired and then liquidated positions among themselves, resulted in
rapid and extreme price decline.

2.6 Flash crash episodes have attracted attention after the 2010 Flash Crash event. Several months after the crash,
the staff from regulatory authorities released a report that highlighted the important role of a large seller in
initiating the flash crash event (SEC and CFTC 2010). It is reported that although high-frequency traders appear to
have exacerbated the magnitude of the crash, they do not actually trigger the flash crash. Though high-frequency
traders played a role in creating the so-called "hot-potato" effect, the flash crash would very likely have been
avoided without the overly simplistic sell algorithm based on volume alone. There is also a lot of academic
research on flash crash episodes. For example, Kirilenko et al. (2017) applied purely empirical approaches to
understanding the causes of the 2010 Flash Crash. They use regression analysis on a unique dataset that is
labelled with the identities of all market participants. It is demonstrated that in response to the activity of the
Sell Algorithm, high-frequency traders caused the "hot-potato" effect that exacerbated the price drop. This is
consistent with the SEC and CFTC (2010) report. Brewer et al. (2013) applied a simulation approach to studying
consequences of different regulatory interventions that aim to stabilize the limit order book market after a flash
crash event. They trigger a flash crash by simulating the submission of an extremely large order. In this way they
study the conditions under which the influence of a flash crash could be substantial and the mechanisms that
could mitigate the influence. Their simulation results indicate that three mechanisms could potentially mitigate
the detrimental effects of flash crashes: introducing minimum testing times, switching to call auction market
mechanism and shutting off trading for a period of time.

2.7 An important stream of flash crash research is simulating flash crashes in agent-based models, which usually
involves investigating how high-frequency traders contribute to the emergence of flash crash events. Paddrik
et al. (2012) develop an agent-based model of the E-mini S&P futures applied to flash crash analysis. A general
flash crash in price is replicated in their model. However, they only reproduce a rough shape of the flash
crash price behaviour, and detailed analyses of trader behaviours and market depth are absent. Karvik et al.
(2018) developed an agent-based model to analyse the flash crash episodes in the sterling-dollar forex market.
They emphasize the important role of high-frequency traders in the emergence of flash crash episodes. The
proposed approach in this paper is partly inspired by their work. Jacob-Leal et al. (2016) develop an agent-based
model to study how the interplay between low-frequency traders and high-frequency traders impact asset price
dynamics. Their experimental results indicate that high-frequency trading exacerbates market volatility and
plays a fundamental role in the emergence of flash crashes. They also show that flash crashes are associated
with two salient characteristics of high-frequency traders, namely their capability of generating high bid-ask
spreads and synchronizing on the sell side of the limit order book. The most similar model to our proposed
one in literature is the agent-based model proposed in Vuorenmaa & Wang (2014). They build an agent-based
simulation framework that reproduces key characteristics of the 2010 Flash Crash. Consistent with SEC and CFTC
(2010), they argue that high-frequency traders play an important role in creating vicious feedback loop system,
which is triggered by a large institutional sell. Their results imply that policy-makers should pay more attention
to number of high-frequency traders in the market, inventory sizes of these traders, and the regulated tick size.
Jacob-Leal & Napoletano (2019) test the effects of a set of regulatory policies with regard to high-frequency
trading by developing an agent-based model that is able to generate flash crashes. It is shown that there is a
trade-off between market stability and resilience when determining policies directed towards high-frequency
trading. Their experimental results indicate that possible policies to prevent flash crash events include the
imposition of minimum order resting times, circuit breakers, cancellation fees and transaction taxes.
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2.8 There are also different angles of view for flash crash episodes in literature. Paulin et al. (2019) design and
implement a hybrid microscopic and macroscopic agent-based approach to investigate the conditions that
give rise to the "electronic contagion"3 of flash crash events. Their results demonstrate that the flash crash
contagion between different assets is dependent on portfolio diversification, behaviours of algorithmic traders,
and network topology. It is also stressed that regulatory interventions are important during the propagation
of flash crash distress. Menkveld & Yueshen (2019) look at the flash crash event from the perspective of cross-
arbitrage. They find that the breakdown of cross-arbitrage activities between related markets plays an important
role in exacerbating the flash crash event. Kyle & Obižaeva (2020) analyse price impact during flash crash events in
their market microstructure invariance model. It is shown that the actual price declines in flash crash events are
larger than the predicted price impact. Madhavan (2012) argues that the flash crash episodes are linked directly
to the current market structure, mostly the pattern of volume and market fragmentation. He further suggests
that a lack of liquidity is the critical issue that requires the greatest policy attention to prevent future flash
crash events. Similarly, Borkovec et al. (2010) explicitly owe the flash crash in ETFs to an extreme deterioration
in liquidity. Their results are consistent with the liquidity provision behaviour in financial markets. Paddrik
et al. (2017) explore how the levels of information can be used to predict the occurrence of flash crash events.
Their findings suggest that some stability indicators derived from limit order book information are capable of
signalling a high likelihood of an imminent flash crash event. Golub et al. (2012) analyse mini flash crashes,
which are the scaled-down versions of the 2010 Flash Crash. It is shown that mini flash crashes also have an
adverse impact on market liquidity and are associated with the fleeting liquidity phenomenon.

2.9 The above provides various analyses for the occurrence of flash crash episodes. However, despite extensive
work on analysing the flash crash episodes, the exact causes of the flash crash episodes are still not clear.
In this paper, we investigate and analyse the flash crash episodes through the lens of agent-based financial
market simulation. In this sense, our work is similar to the work in Karvik et al. (2018), Paddrik et al. (2012)
and Vuorenmaa & Wang (2014). Nevertheless, we offer a much more extensive and detailed analysis of the
simulated flash crash event which, to the best of our knowledge, is the most fine-grained analysis in current
literature. Specifically, we realistically capture the 2010 Flash Crash event in our simulation, and divide the
simulated flash crash event to several phases. For each phase, detailed analyses about traders’ behaviours
and market dynamics are presented. To the best of our knowledge, this fine-grained simulation and analysis is
not reported before in literature. By dividing the whole flash crash event into different phases and examining
trader behaviours and market dynamics for each phase, we shed light on the cause for flash crash events. In
addition, controlled experiments under different model settings and traders’ behaviours are carried out in the
developed agent-based simulation framework, which provide insights about how to prevent the happening of
detrimental flash crash events. Specifically, the proposed methodology enables us to discover three important
conditions that significantly affect the amplitude of the 2010 Flash Crash: the percentage of volume (POV) of the
Sell Algorithm, market maker inventory limit, and the trading frequency of fundamental traders. The basis of
our agent-based model is the extended Chiarella model in Majewski et al. (2020), which comprises fundamental
traders, momentum traders, and noise traders. We further divide momentum traders into long-term momentum
traders and short-term momentum traders, and introduce market makers to the model. The motivation for
introducing these types of traders and their interactions will be presented in the next section. It is shown that
the proposed model is capable of generating realistic artificial financial time series. Within the framework of the
proposed realistic agent-based financial market simulation, special types of agents are introduced to trigger
flash crash episodes in the simulated financial market. In this way, simulated flash crash episodes are scrutinized
and analysed. Our focus in this paper is to provide a clear and thorough examination of what happens during
the whole process of a flash crash, and what conditions could impact the characteristics of a flash crash. This
is achieved by developing a realistic high-frequency agent-based financial market simulation model. Specific
regulatory interventions and their influences are not our focus here and are left as future work.

Model Structure

3.1 This section presents the set-up and components of the proposed agent-based high-frequency financial market
simulator.

Model set-up

3.2 The proposed model consists of various traders who submit limit orders or market orders to a central limit order
book, which functions according to a continuous double auction mechanism. All the orders submitted by these
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traders in one simulation period, including limit orders and market orders, constitute the aggregated virtual
"demand" and "supply" in that period. The aggregated virtual "demand" and "supply" depend on the trading
strategies of various types of market participants. The market participants are assumed to be heterogeneous
in their trading decisions. According to the Extended Chiarella model (Majewski et al. 2020), a popular set of
traders in an artificial financial market includes momentum traders, fundamental traders, and noise traders.
This composition of traders is capable of capturing the trend and value effects in financial markets. We further
extend the model by dividing momentum traders into two groups: short-term momentum traders and long-term
momentum traders. In this way, heterogeneity is introduced not only between groups of traders, but also inside
a specific group of traders. In addition, in an artificial financial market with full exchange protocols, the market
maker is an indispensable component to create realistic limit order book behaviours. To sum up, five types of
traders are included in our model: fundamental traders, short-term momentum traders, long-term momentum
traders, noise traders, and market makers. Each type of trader is associated with several parameters which
control the trading behaviours. Trading heuristics, specific parameters and the parameter calibration process
will be presented in subsequent sections.

Price formation process

3.3 As mentioned above, we use a continuous double auction mechanism to form the price in our model, which has
been adopted by most popular electronic exchanges around the world. The key element in continuous double
auction is the limit order book, which is a record of all outstanding limit orders maintained by the exchange.
The price dynamics in our proposed model are exactly the same as the price dynamics in a real-world stock
exchange – a limit order book is built to accept all limit orders and market orders. A trade occurs when a market
order is entered or a limit order whose price crosses the spread of best bid and best ask. This marketable order
transacts against the best opposing orders using a price-time priority, removing them from the order book until
this order is either fully or partially filled, leaving the rest of the quantity of the order to become the new best bid
or offer. All normal limit orders will join the limit order book according to price-time priority. For a complete
description for how continuous double auction works, refer to Smith et al. (2003).

3.4 We denote the price of a stock at time t as Pt. The simulated price in this work refers to mid-price, which is the
mean value of the best bid price and the best ask price from the limit order book at time t:

Pt := 0.5 ∗ b0t + 0.5 ∗ a0t (1)

where b0t and a0t denote best bid and best ask price at time t, respectively.

Common trader behaviours

3.5 Traders in our simulation model have some behaviours in common, for example submitting and cancelling
orders. We can assume that there is a certain type of agent called "Base Agent", and all traders in our model
inherit the functionalities of this base agent. Specifically, all traders in the model have common behaviours as
follows.

• Each trader has a parameter θ, which controls the probability of submitting a limit order. The value of θ
depends on the type of traders and also varies during simulation, but the behaviour given a θ value is
common for all types of traders. That is, for each simulation step, if p ∈ U(0, 1) < θ, the trader will place a
limit order, otherwise, no action is taken4. Note that the specific side of the order (buy or sell) depends on
the trader type and market conditions. The value of θ could be zero for some traders, which means that
the corresponding traders do not submit limit orders.

• Each trader has a parameter µ. The function of µ is identical to parameter θ, except that µ controls the
probability of sending a market order. Similar to θ, the value of µ is different for different types of traders
and varies for different timestamps. For each simulation step, if p ∈ U(0, 1) < µ, the trader will place
a market order, otherwise no action is taken. The specific side of the market order also depends on the
trader type and market conditions. Similar to θ, the value of µ can also be zero for some particular type of
traders.

• The side for all limit orders and market orders are determined by corresponding trader types and market
conditions. A market order is submitted directly to the exchange after the side is determined. For a limit
order, the price information is required. Given the order side, a buy limit order will have a price lower
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than the market mid-price at the corresponding timestamp, while a sell limit order will have a price higher
than the market mid-price. The distance between the limit order price and the market mid-price follows
a particular distribution, whose type is determined by the trader types. Specifically, the price distance
for limit orders from market makers is sampled from a uniform distribution with parameters 0 and pMM

edge ,
and the price distance for limit orders from other types of traders is sampled from a common log-normal
distribution with parameters µℓ and Σℓ. The parameters of these distributions are calibrated to historical
price time series stylised facts. The price for a limit order is calculated after the price distance is sampled
from the corresponding distribution.

• Each type of trader has a parameter δ. Regardless of the order price and side, each limit order has a
cancellation probability of δ at each simulation step. The value of δ is dependent on the type of trader
who places the order, and is calibrated using historical market data to create realistic limit order book
behaviours. In the presented model, all traders share the same value for δ except market makers, who
have a higher value of δ. This reflects the fact that orders submitted by market makers tend to have a
much higher cancellation / replacement rate.

• In the proposed model, short-term momentum traders, long-term momentum traders and noise traders
all have a parameter called ρ, which controls the ratio between the number of market orders and limit
orders placed by the same trader. That is, for each trader of these three types, there is a fixed relationship
between θ andµ: µ = θ∗ρ. This relationship enables a realistic ratio between the number of market orders
and limit orders in the simulated financial market and the value of ρ is selected according to historical
orders data.

• The volume V for each order is 100, regardless of limit order or market order.

3.6 Despite the common trader behaviours, each type of trader follows different trading heuristics and has different
values for the associated parameters. For example, fundamental traders only submit market orders. Market
makers submit limit orders in normal trading time. Only after the inventory limit is hit will market makers submit
market orders to reduce their inventory risk. The remaining types of traders submit both limit orders and market
orders during trading hours, aiming to maintain a fixed ratio between the number of limit orders and the number
of market orders. The remainder of the section describes the trading behaviour heuristics for each type of trader
in more detail. Descriptions for all the parameters involved in the proposed model are summarised in Appendix
A.

Fundamental Trader (FT)

3.7 Fundamental traders make their trading decisions based on the perceived fundamental value of the stock.
The fundamental value is denoted as Vt. A fundamentalist tends to buy a stock if the stock is under-priced
(Vt −Pt > 0), otherwise he will sell the stock. Following the convention in Majewski et al. (2020), in this work we
assume the aggregated demand of fundamental traders is polynomial to the level of mispricing. Specifically, the
aggregated demand of fundamentalists is:

DFT = κ1(Vt − Pt) + κ2(Vt − Pt)
3 (2)

whereκ1 andκ2 controls the overall demand generated by fundamental traders. Since we haveNFT fundamental
traders, each fundamental trader will contribute κ1|Vt−Pt|+κ2|Vt−Pt|3

NFT
to the aggregated demand. In our setup,

fundamental traders exclusively use market orders. This choice stems from their strategy of capitalizing on
significant disparities between market price and fundamental value. As predominantly low-frequency traders,
they show little concern for the marginal price distinctions between limit and market orders. Their primary focus
lies in promptly executing transactions when identifying distortions between market price and fundamental
value. Since the fundamental traders only submit market orders, the value of θ for each fundamental trader is
set to 0, while the value of µ for each fundamental trader is set to κ1|Vt−Pt|+κ2|Vt−Pt|3

NFT
. The fundamental value

Vt is an exogenous signal that is input to the model. Each fundamental trader is also associated with a parameter
SFT
interval. A fundamental trader only attempts to submit a market order once in every SFT

interval simulation steps.
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A detailed description of the fundamental trader’s logic is given in Algorithm 1.

Algorithm 1 Fundamental Trader Logic
1: for each simulation step do
2: θ ← 0
3: µ← κ1|Vt−Pt|+κ2|Vt−Pt|3

NFT

4: if (simulation_steps mod SFT
interval == 0) and (p ∈ U(0, 1) < µ) then

5: if Vt − Pt > 0 then Place a buy market order
6: else if Vt − Pt < 0 then Place a sell market order
7: end if
8: else No market order submitted
9: end if

10: end for

Momentum Trader (MT)

3.8 Momentum traders are also called "Chartists". This group of traders buy and sell financial assets after being
influenced by recent price trends. The assumption is to take advantage of an upward or downward trend in the
stock prices until the trend starts to fade. Instead of looking at the fundamental value of the stock, momentum
traders focus more on recent price action and price movement. If the stock price has been recently rising, a
long position is established; otherwise, momentum traders will enter a short position. In the proposed model,
momentum traders can submit both limit orders and market orders. The ratio between the number of limit
orders and market orders is fixed, which is denoted as ρ. The price information for a limit order is determined as
follows. A buy limit order will have a price lower than the market mid-price at the corresponding timestamp,
while a sell limit order will have a price higher than the market mid-price. The distance between the limit order
price and the market mid-price follows a log-normal distribution with parameters µℓ and Σℓ. The parameters of
the log-normal distribution are calibrated to historical price time series stylised facts. Price information for the
limit order is subsequently calculated after the price distance is sampled from the corresponding distribution.

3.9 There are lots of methods to estimate the momentum of stock prices. A common trend signal is the exponentially
weighted moving average of past returns with decay rate α. This trend signal is denoted by Mt:

Mt = (1− α)Mt−1 + α(pt − pt−1) (3)

where α is the decay rate. Given the trend signal Mt, the demand function of momentum traders is denoted as
f(Mt). The demand function f(Mt) must satisfy two conditions:

• f(Mt) is increasing.

• f ′′(Mt) ∗Mt < 0

where the first condition is consistent with the nature of momentum trading and the second condition imposes
the risk-averse assumption to momentum traders. Consistent with Majewski et al. (2020), here we choose
f(Mt) = β tanh(γMt) with the requirement that γ > 0. γ represents the saturation of momentum traders’ de-
mand when momentum signals are very large. This phenomenon is partly due to for example budget constraints
and risk aversion, which are prevalent in real momentum traders. β controls the overall demand generated by
momentum traders. β is also assumed to be positive, i.e., the demand of momentum traders is positive when
the momentum signal (Mt) is positive, otherwise the demand is negative. The choice of this demand function
for momentum traders strictly satisfies the two requirements.

3.10 According to the value of α, we further divide the group of momentum traders into two sub-groups: long-term
momentum traders (small α) and short-term momentum traders (large α). The two types of momentum traders
also have different values for β; however, they share the same γ value. The proposed model includes NLMT

long-term momentum traders and NSMT short-term momentum traders.

Long-term Momentum Trader (LMT)

3.11 Long-term momentum traders are associated with a small value for α. According to Equation 3, a small α
corresponds to slow changes in the momentum signal. Consequently, the momentum signal is smooth and
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reflects the trend on a longer time scale. In our intra-day simulation, we choose an α value of 0.01 for long-term
momentum traders. This would approximately correspond to an intra-day hourly trend. The group of long-term
momentum traders will focus on the relatively long-time price trend and calculate their demand function. For
limit orders, the virtual aggregated demand from long-term momentum traders is βL tanh(γML

t ), while for
market orders the virtual aggregated demand from long-term momentum traders is ρβL tanh(γML

t ). As there
are NLMT long-term momentum traders, the θ and µ for each trader are corresponding quantities divided
by NLMT . Trading decisions are made according to the common order submission rules. A full description of
long-term momentum traders’ logic is shown in Algorithm 2.

Algorithm 2 Long-term and Short-term Momentum Trader Logic*
1: for each simulation step do
2: for each outstanding limit orders submitted by this trader do
3: if p ∈ U(0, 1) < δ then Cancel this limit order
4: end if
5: end for
6: Mt = (1− α)Mt−1 + α(pt − pt−1)

7: θ ← β tanh(γMt)
N

8: µ← θ ∗ ρ
9: if p ∈ U(0, 1) < θ then

10: if Mt > 0 then Place a buy limit order with calculated price
11: else if Mt < 0 then Place a sell limit order with calculated price
12: end if
13: else No limit order submitted
14: end if
15: if p ∈ U(0, 1) < µ then
16: if Mt > 0 then Place a buy market order
17: else if Mt < 0 then Place a sell market order
18: end if
19: else No market order submitted
20: end if
21: end for
22:
23: *α : αL, β : βL, N : NLMT for Long-term Momentum Trader
24: *α : αS , β : βS , N : NSMT for Short-term Momentum Trader

Short-term Momentum Trader (SMT)

3.12 Compared to the long-term momentum traders, short-term momentum traders are associated with a much
larger α. Typically, α for short-term momentum trader would be a value close to 1. Following Equation 3, the
momentum signal is updated very fast when α has a large value. In this circumstance, Mt represents the trend
in an extremely short time scale, typical only several ticks in our intra-day simulation. The group of short-term
momentum traders aim at exploiting the price trend in a very short time scale, which mimics the behaviour of
some real-world high-frequency traders. There are NSMT short-term momentum traders in our agent-based
financial market simulation. We assign a value of 0.9 to α of short-term momentum traders.5 The trading
heuristics for short-term momentum traders are exactly the same as that for long-term momentum traders,
except that αL and βL are replaced by αS and βS , respectively. A full description of short-term momentum
traders’ logic is shown in Algorithm 2.

Noise Trader (NT)

3.13 Another group of market participants are noise traders. They are designed so as to capture other market activities
that are not reflected by trend-following and value investing. As a result, the cumulative demand of noise traders
can be described by a random walk, with each step having an equal probability of placing buy/sell orders.
Parameter σNT controls the aggregated demand level from noise traders. There are NNT noise traders in the
model, with each noise trader having value σNT

NNT
for θ. Similar to momentum traders, noise traders are also
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associated with a parameter ρ, which controls the ratio between the number of limit and market orders. Note
that unlike other traders whose θ and µ vary according to simulated market conditions, θ and µ for noise traders
are determined prior to simulation and remain fixed during the simulation process. When noise traders place
limit orders, the price determination process is identical to the process used by momentum traders - both involve
sampling a distance from an empirically calibrated log-normal distribution. Algorithm 3 gives a description of
noise traders’ logic in the simulated financial market.

Algorithm 3 Noise Trader Logic
1: θ ← σNT

NNT

2: µ← θ ∗ ρ
3: for each simulation step do
4: for each outstanding limit orders submitted by this trader do
5: if p ∈ U(0, 1) < δ then Cancel this limit order
6: end if
7: end for
8: if p ∈ U(0, 1) < θ then
9: if p ∈ U(0, 1) < 0.5 then Place a buy limit order with calculated price

10: else if p ∈ U(0, 1) > 0.5 then Place a sell limit order with calculated price
11: end if
12: else No limit order submitted
13: end if
14: if p ∈ U(0, 1) < µ then
15: if p ∈ U(0, 1) < 0.5 then Place a buy market order
16: else if p ∈ U(0, 1) > 0.5 then Place a sell market order
17: end if
18: else No market order submitted
19: end if
20: end for

Market Maker (MM)

3.14 The market makers are another group of traders in the model. The introduction of market makers in the proposed
model is aimed at creating realistic limit order book dynamics. Market makers in the proposed model are more
complex than previous traders. During normal trading time, market makers only submit quotes to the market. A
quote includes one buy limit order and one sell limit order. The simplification that market makers only submit
limit orders is motivated by Menkveld (2013), which finds that around 80% of market makers’ orders are passive.
The price of the sell (buy) order is calculated by adding (subtracting) a distance from the mid-price at the
corresponding timestamp, where the distance is sampled from a uniform distribution. (The price is rounded to
the closest multiple of tick size before being submitted to the exchange.) In alignment with the market making
behaviours during the 2010 Flash Crash event (SEC and CFTC 2010), market makers in the proposed model are
associated with a position limit. Specifically, once the inventory of a market maker reaches the position limit,
the market maker will stop all active quoting and actively submit market orders to reduce the inventory level.
This will continue until the inventory reduces to a certain safe level, which is also a parameter of the model. At
this stage, the market maker suspends trading for a certain time period. This resembles the real-world scenarios
that market makers tend to suspend trading to check their own trading systems and observe market conditions
after some unusual scenarios happen. After this time period, the market maker will restart the normal trading
heuristics. Table 1 presents the corresponding order types that market makers will submit in different trading
conditions.

Trading condi-
tion

Normal trading Stressed trading (after in-
ventory limit reached)

Trading suspension

Order type Limit order Market order None

Table 1: Order types submitted by market makers under different trading conditions

3.15 Since market makers only submit limit orders during the normal trading time, the µ for each market maker
is set to 0. Similar to the case in previous traders, δ and θ control the probability of order cancellation and
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limit order submission respectively, whose values are calibrated to historical price time series. Note that one
difference is that θ controls the probability of submitting a quote (buy and sell limit orders) for market makers.
In addition to δ, θ and µ, market makers are associated with several extra parameters that correspond to the
trading behaviours presented above. As mentioned, price information of the sell (buy) limit order is calculated
by adding (subtracting) a distance from the mid-price. This distance is the trading edge of market makers. The
trading edge is sampled from a uniform distribution, which controls the spread of the quotes submitted by
market makers. Specifically, the uniform distribution from which the price distance is sampled has a minimum
value of 0 and a maximum value of pMM

edge . εMM
limit represents the position limit for each market maker, while εMM

safe

denotes the safe position level. That is, market makers will actively reduce inventory once εMM
limit is reached, until

the position is reduced to εMM
safe level. εMM

rest represent the time length for the trading suspension. Algorithm 4
presents a full description of market makers’ trading heuristics in the proposed model.

Algorithm 4 Market Maker Logic
1: Before simulation starts:
2: θ ← θMM

3: µ← 0
4: δ ← δMM

5: Flag ← 0
6: Restart_step← 0
7:
8: for each simulation step do
9: Get current simulation step current_step

10: if |position| >= εMM
limit then

11: Flag ← 1
12: Restart_step = Current_step+ εMM

rest

13: end if
14:
15: if (Flag == 1) ∧ (|position| <= εMM

safe) then Flag ← 0
16: end if
17:
18: if Flag == 1 then
19: Cancel all active limit orders
20: if |position| < 0 then
21: Submit a buy market order
22: else
23: Submit a sell market order
24: end if
25:
26: else if Current_step > Restart_step then
27: if p ∈ U(0, 1) < δ then
28: Cancel existing quotes by this market maker
29: end if
30:
31: if p ∈ U(0, 1) < θ then
32: Submit a quote(one limit buy order and one limit sell order, with sampled trading edge.)
33: else
34: No limit order submitted
35: end if
36:
37: end if
38: end for

Simulation dynamics

3.16 The above are the five types of agents included in the proposed model. A fully functioning limit order book was
implemented, as is the case in most electronic financial markets. The simulation is run in pseudo-continuous
time. Specifically, each simulation step represents 100 milliseconds of trading time. Each trading day is divided
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into T = 324, 000 steps, corresponding to 9 hours of trading (8:00 to 17:00). The minimum time for execution
of transactions is 100 milliseconds, showing that the simulated financial market represents a high-frequency
trading environment. We remind here that the fundamental value Vt, which is extracted from the historical price
time series, is an exogenous signal that is input to the model.

3.17 The whole simulation runs as follows. For each step, each trader collects and processes market information.
Internal variables associated with each trader are calculated. According to agent type and values of internal
variables, actions are taken by the traders. These actions include limit order submission, market order submis-
sion, and order cancellation. The programmed matching engine matches these orders and updates the state of
the limit order book. Finally, transactions and limit order book status are published to all traders. The whole
simulation procedure is shown in Algorithm 5.

Algorithm 5 Simulation Procedure
1: Simulation Parameter Initialization
2: while timestamp < market close do
3: timestamp += ∆t
4:
5: for each trader do
6: Collect latest market information and update internal states
7: if fundamental trader then
8: Fundamental trader logic(Algorithm 1)
9: end if

10: if long-term momentum trader then
11: Long-term momentum trader logic(Algorithm 2)
12: end if
13: if short-term momentum trader then
14: Short-term momentum trader logic(Algorithm 2)
15: end if
16: if noise trader then
17: Noise trader logic(Algorithm 3)
18: end if
19: if market maker then
20: Market maker logic(Algorithm 4)
21: end if
22: end for
23:
24: for each limit order, market order, or order cancellation) do
25: Update limit order book and publish transactions
26: end for
27:
28: Publish latest limit order book status
29: end while

3.18 We suggest that the proposed five types of traders reflect a sufficiently realistic and diverse market environment.
According to O’Hara (1995), there are three major market-microstructure trader types: uninformed traders,
informed traders and market makers. The noise traders in our model correspond to uninformed traders, while
market makers in the proposed model obviously correspond to the market makers in literature. The remain-
ing three types of traders represent informed traders in our model. Specifically, fundamental traders utilise
exogenous information implied by the fundamental value, while the two types of momentum traders exploit
the endogenous technical indicator information. In addition, among the informed traders some perceived
trading opportunities are based only on an analysis of short-horizon returns, while others focus on market
information revealed by long-term return horizons. This is reflected by the division of momentum traders into
long-term and short-term momentum traders. Overall, a sea of different informed and uninformed traders in
the proposed model compete with each other, with market makers providing liquidity and ensuring realistic
limit order book behaviours. Note that in our model, traders’ strategies are fixed and traders cannot switch their
strategy according to market conditions. One may argue that in real-world financial markets, traders usually
choose and switch trading strategies according to market conditions. However, we can still argue that our model
captures this type of behaviour. Different types of traders in our model capture different types of real-world
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trading strategies. A real trader’s strategy is captured by one type of agent under one condition, and by another
type of agent under a different condition, should the real trader pick another trading strategy under the new
market condition. This is another strength of our approach: with the simplest model and the least number of
assumptions, complex financial market situations can be analysed. In conclusion, the proposed model with five
types of traders represents a complete range of micro-behaviours of real financial markets.

Fundamental value from kalman smoother

3.19 The only remaining unknown variable is the fundamental value of the stock. The simulation can proceed only if
the fundamental value is known and is exogenously input to the model. One difficulty is the non-observability
of the fundamental value. According to the economic literature, the fundamental value of a stock equals the
expected value of discounted dividends that the company will pay to the shareholders in the future. However,
this methodology requires extremely strong assumptions about the future dynamics of the stock dividends.
Furthermore, this approach can never reflect the intra-day change of fundamental value, while the consensus
fundamental value can indeed vary during the trading day due to the continuous feed of events and news.

3.20 In this paper, we propose a new method which is to apply Kalman Smoother (Ralaivola & d’Alche-Buc 2005)
directly to the stock price time series to get the hidden fundamental value. In accordance with Majewski et al.
(2020), we assume the fundamental value Vt is a hidden variable of a linear dynamical system. The observations
are the actual prices traded in real markets. The specific Kalman Smoothing algorithm used here can be found
in Byron et al. (2004). The algorithm is applied to the price time series for each trading day to extract the
corresponding fundamental value time series for that day.6

Model Calibration and Validation

4.1 In this section we present the methodology for calibrating the agent-based financial market. Calibration means
finding an optimal set of model parameters to make the model generate the most realistic simulated financial
market. Firstly, we describe the real data and the associated stylised facts in financial markets. Next we define
the distance between historical and simulated stylised facts, which acts as the loss function in the calibration
process. The parameter calibration workflow is presented, followed by detailed validation of the proposed
high-frequency financial market simulator.

Calibration target: Data and stylised facts for realistic simulation

4.2 In the model calibration process, real financial market data is essential for setting up the calibration target. We
collected high-frequency limit order book data of E-mini S&P 500 futures, from May 3rd, 2010 to May 6th, 20107.
The data are purchased from the official CME DataMine platform 8. We select the most liquid contract as the
calibration target, which is the contract expires in June 2010. Our dataset comprises high-frequency information
for 10 levels of limit order book update, both the buy side and sell side.

4.3 Financial price time series data display some interesting statistical characteristics that are commonly called
stylised facts. According to Sewell (2011), stylized facts refer to empirical findings that are so consistent (for
example, across a wide range of financial instruments and different time periods) that they are accepted as
truth. A stylized fact is a simplified presentation of an empirical finding in financial markets. A successful and
realistic financial market simulation is capable of reproducing various stylised facts. These stylised facts include
fat-tailed distribution of returns, autocorrelation of returns, and volatility clustering. The loss function used in
the calibration process is constructed by measuring the distance between historical and simulated stylised facts.

Fat-tailed distribution of returns

4.4 The distributions of price returns have been found to be fat-tailed across all timescales. In other words, the
return distributions exhibit positive excess kurtosis. Understanding positively kurtotic return distributions is
important for risk management since large price movements are much more likely to occur than in commonly
assumed normal distributions.

4.5 Following the convention in literature, in this paper we investigate the stylised fact of fat-tailed returns by
examining second-level intra-day price returns. Both millisecond-level historical and simulated mid-price
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time series are resampled into second-level frequency and we examine the mid-price returns for each second.
Specifically, the last price snapshot is taken as the price for that specific second. Second-level price returns
are calculated accordingly. Our experiments show that different time scales have no significant influence on
the final results. The main metric used for evaluating the fat-tail characteristic is the Hill Estimator of the tail
index (Hill 2010). A lower value of the Hill Estimator implies that the return distribution has a fatter tail. Table 2
illustrates the Hill Estimator values for all trading days in our dataset9.

Date 20100503 20100504 20100505 20100506
Hill Estimator 0.019 0.046 0.061 0.095

Table 2: Hill Estimator values for all trading days

Autocorrelation of returns

4.6 Autocorrelation is defined to be a mathematical representation of the degree of similarity between a time series
and a lagged version of the same time series. It measures the relationship between a variable’s past values
and its current value. Take first-order autocorrelation for example. A positive first-order autocorrelation of
returns indicates that a positive (negative) return in one period is prone to be followed by a positive (negative)
return in the subsequent period. Instead, if the first-order autocorrelation of returns is negative, a positive
(negative) return will usually be followed by a negative (positive) return in the next period. It is observed that the
returns series lack significant autocorrelation, except for weak, negative autocorrelation on very short timescales.
McGroarty et al. (2019) show that the negative autocorrelation of returns is significantly stronger at a smaller
time horizon and disappears at a longer time horizon. Examination of our data also reveals this stylised fact.
Figure 1 shows the autocorrelation function of second-level return time series for E-mini S&P 500 futures on
two days. We can see that the autocorrelation is significantly negative for very small lags (1 and 2), and the
negative autocorrelation disappears for larger lags. This reflects the "bid ask bounce" phenomenon in market
microstructure.

Figure 1: Autocorrelation function of second-level returns for E-mini S&P 500 futures on two days

Volatility clustering

4.7 Financial price returns often exhibit the volatility clustering property: large changes in prices tend to be followed
by large changes, while small changes in prices tend to be followed by small changes. This property results in
the persistence of the amplitudes of price changes (Cont 2007). It is found that the volatility clustering property
exists on timescales varying from minutes to days and weeks. Volatility clustering also refers to the long memory
of square price returns (McGroarty et al. 2019). Consequently, volatility clustering can be manifested by the
slow decaying pattern in the autocorrelation of squared returns. Specifically, for short lags, the autocorrelation
function of squared returns is significantly positive, and the autocorrelation slowly decays with the lags increasing.
Figure 2 shows the autocorrelation patterns for squared second-level returns for E-mini S&P 500 futures on two
days. It is shown that the volatility clustering stylised fact clearly exists in our collected E-mini S&P 500 futures
price dataset.
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Figure 2: Autocorrelation function of squared second-level returns for E-mini S&P 500 futures on two days

Stylised facts: Distance as loss function

4.8 The target for agent-based model calibration is to find an optimal set of model parameters to make the model
generate a realistic simulated financial market. To solve this optimization problem, it is essential to have a metric
that is able to quantify the "realism" of a simulated financial market. First of all, a realistic simulated financial
market must exhibit similar characteristics to real financial markets, such as the fat-tailed return distribution and
volatility level. In addition, realistic simulated financial data are also required to reproduce other stylised facts
such as the autocorrelation patterns in returns and squared returns. Here we design a stylised facts distance to
quantify the similarities between simulated and historical financial data. Four metrics are considered in the
stylised facts distance: Hill Estimator of the tail index for absolute return distributions, volatility, autocorrelation
of returns and autocorrelation of squared returns. For each metric, the differential quantity between simulated
value and historical value is calculated. The stylised facts distance is then calculated as the weighted sum of the
four differential quantities:

D = w1 ∗∆Hill + w2 ∗∆V + w3 ∗∆ACF 1 + w4 ∗∆ACF 2 (4)

4.9 Detailed calculations of the four quantities in the stylised facts distance are presented below.
4.10 The Hill Estimator is famous for inferring the power behaviour in the tails of experimental distribution functions.

Following Franke & Westerhoff (2012), we use the Hill Estimator of the tail index to estimate the degree of fat-tail
in the distribution of absolute returns on the mid-price. Note that the absolute return distribution is considered
since there is no need to distinguish between extreme positive and negative returns. In our experiments, the
Hill Estimator for simulated absolute returns and historical absolute returns are calculated, respectively. The
absolute difference between the two Hill Estimators constitutes the first part of the stylised facts distance:

∆Hill = |Hills −Hillh| (5)

where Hills and Hillh are the Hill Estimator for simulated absolute return distribution and historical absolute
return distribution, respectively. Intuitively, this part of the stylised facts distance quantifies the distance between
simulated and historical return distribution, in terms of the heavy-tailedness. It addresses the requirement that
the simulated return distribution exhibits the fat tail property, as is the case in historical return distribution.

4.11 The second part of the stylised facts distance is the absolute volatility difference between simulated returns and
historical returns:

∆V = |Vs − Vh| (6)

where Vs and Vh denote simulated volatility and historical volatility, respectively. The volatility measure is
annualized after being computed from intra-day returns. This part addresses the requirement that a simulated
financial market should be similar to real markets in terms of volatility.

4.12 The third part of the stylised facts distance is the difference between simulated and historical autocorrelations
of returns. This part in the stylised distance measures the model’s ability to reproduce autocorrelation patterns
commonly found in historical returns. It is shown that financial price return time series lack significant autocor-
relation, except for short time scales, where significantly negative autocorrelations exist. This phenomenon is
backed by our empirical data. For very small lags the autocorrelations are negative, while for larger lags the
autocorrelations become insignificant. To measure the distance in autocorrelation patterns between simulated
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data and historical data, we invoke the autocorrelation function of returns and calculate the average absolute
difference between autocorrelations of simulated return time series and historical return time series for various
lags:

∆ACF 1 =

∑
l in lags

|ACFs(l, r)−ACFh(l, r)|

|lags|
(7)

where ACFs(l, r), ACFh(l, r) are the autocorrelation function of lag l for simulated returns and historical
returns, respectively. |lags| denotes the number of lags used in the calculation. Because the empirical autocor-
relations are negative for very small lags and close to zero for larger lags, it is not necessary to consider all of the
autocorrelation coefficients. Empirical evidence suggests that the autocorrelation pattern is well represented by
the coefficients for three lags: 30, 60, and 90. Also, to reduce the effects of accidental outliers, the autocorrelation
function is smoothed by calculating the three-lag average. That is, the lag 30 autocorrelation is calculated as the
average autocorrelation of lag 30, 31, 32, and so is the calculation for lag 60 and lag 90. In total, autocorrelations
of 9 lags (30, 31, 32, 60, 61, 62, 90, 91, 92) are considered and included in the calculation.

4.13 The last part of the stylised facts distance is the difference between simulated and historical autocorrelations of
squared returns. The replication of autocorrelation patterns in squared returns indicates the model’s capability
to reproduce the volatility clustering stylised fact. It is shown empirically that large price changes tend to be
followed by other large price changes, known as the volatility clustering phenomenon. Consequently, though
there are generally no significant patterns in autocorrelations of returns, the autocorrelations of squared returns
are significantly positive, especially for small time lags. Also, as time lag increases, the autocorrelation of
squared returns displays a slowly decaying pattern, as shown in Figure 2. Similar to the difference between
autocorrelations of returns ∆ACF 1 , the difference between autocorrelations of squared returns is calculated as
follows:

∆ACF 2 =

∑
l in lags

|ACFs(l, r
2)−ACFh(l, r

2)|

|lags|
(8)

where ACFs(l, r
2), ACFh(l, r

2) are the autocorrelation function of lag l for simulated squared returns and
historical squared returns, respectively. |lags| denotes the number of lags used in the calculation. Here we use a
slightly different lags from the case for autocorrelations of returns calculation. Since empirical autocorrelations
of squared returns are significantly positive and slowly decaying, we consider the autocorrelations of squared
returns for four lags: 1, 30, 60, and 90. The three-lag average smoothing is also applied in the calculation. In
total, the autocorrelations of 12 lags (1, 2, 3, 30, 31, 32, 60, 61, 62, 90, 91, 92) are considered and included in the
calculation.

4.14 The above four parts, along with the corresponding weights, constitute the stylised facts distance in Equation (4).
The next question is how to determine the associated weight for each part of the stylised facts distance. The basic
guiding idea is that the higher the sampling variability of a given part in historical data, the larger the difference
between simulated value and historical value that can still be deemed insignificant. A natural candidate for each
weight is the inverse of the sampling variance for the corresponding part in the stylised facts distance:

wi =
1

σ2
i

(9)

4.15 Following Franke & Westerhoff (2012), the sampling variance σ2
i for each part in the stylised facts distance is

estimated by applying the block bootstrap method on the historical return time series. The choice of weighting
is inspired by the Method of Moments estimation, where the inverse of the covariance matrix is used. Interested
readers are referred to Wooldridge (2001) and Fuhrer et al. (1995).

4.16 Note that the stylised facts distance is a function of model parameters. In other words, given a set of model
parameters, there is a unique stylised facts distance calculated from the simulated time series, which corresponds
to that particular set of model parameters. Letθ denote the vector of model parameters to be estimated, Equation
4 can be rewritten as:

D(θ) = w1 ∗∆Hill(θ) + w2 ∗∆V (θ) + w3 ∗∆ACF 1(θ) + w4 ∗∆ACF 2(θ) (10)

4.17 The smallerD(θ) is, the more realistic the simulation is. ThusD(θ) serves as the loss function that the calibration
method aims to minimize by finding an optimal set of model parameters. Let Θ denote the admissible set for
model parameter vector θ, the calibration target is to find the optimal model parameter vector θ̂ that minimizes
the stylised facts distance:

θ̂ = arg min
θ∈Θ

D(θ) (11)
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Calibration workflow and results

4.18 The model is calibrated by choosing values for the model parameters so that the dynamics of the simulated price
time series match those observed empirical price time series. Specifically, the aim of the calibration process is
to find θ̂ that minimizes the stylised facts distance, as specified in Equation 11. As mentioned, the data used in
the calibration are the price time series data of the most liquid contract of E-mini S&P 500 futures, from May
3rd, 2010 to May 6th, 2010. The model parameters are calibrated for every trading day10. After a large-scale trial
and error, seven model parameters are selected to be calibrated. The seven parameters are: µℓ, σNT , κ1, κ2, βL,
βS , θMM . Specific meanings of these seven parameters are presented in the previous section. In terms of the
replication of stylised facts, our experiments show that the simulation results are less sensitive to the values for
other parameters. As a result, it is reasonable to keep other parameters fixed. This choice significantly reduces
the computational complexity of the calibration process. These parameters and corresponding descriptions, as
well as specific values, are presented in Appendix A and Appendix B.

4.19 The focus of this paper is not on specific methods for calibration; instead, we will pay more attention to the
validation part. Here we briefly present the calibration process. The calibration workflow has two stages in our
experiments. The main calibration technique in the first stage is the surrogate modelling approach, proposed
by Lamperti et al. (2018). Specifically, an XGBoost surrogate model is built to approximate the agent-based
model simulation. The surrogate model is capable of intelligently guiding the exploration of the parameter space.
Estimated parameter values are those that give rise to smaller stylised facts distance, indicating that simulated
moments match those observed empirically. After the first stage of the calibration, optimal parameters are given
by the surrogate model. Even though global optimum is not guaranteed, it is shown in our experiments that the
obtained parameter combination yields small stylised facts distance and is capable of reproducing realistic price
dynamics. It is likely that the global optimal parameters are located close to the parameters generated by the
first stage. Taking this into consideration, a numerical grid search over a feasible bounded set of parameters is
carried out. The feasible set of parameters is centered around the optimal parameters given by the surrogate
modelling approach in stage one. The parameter combination that yields the smallest stylised facts distance
is selected as the final calibrated model parameter combination. Calibrated model parameter values for each
trading day, as well as the yielded stylised facts distance, are presented in Table 3.

Date µℓ σNT κ1 κ2 βL βS θMM D(θ̂)
20100503 0.9093 0.7895 0.1632 0.0235 0.0924 0.0252 0.7805 0.2259
20100504 1.2717 0.6732 0.0933 0.3402 0.6964 0.681 0.8998 0.2269
20100505 1.7396 0.6176 0.2844 0.2098 0.5935 0.055 0.8291 0.2191
20100506 1.0098 0.0107 0.3697 0.1649 0.7494 0.9877 0.3265 0.1666

Table 3: Calibrated values for the seven model parameters and the yielded stylised facts distances

4.20 Figure 3 compares the empirical time series of mid-price on May 5th to the simulated mid-price time series.
Visual inspection shows that the model produces price time series whose dynamics are very similar to those in
empirical data. Nevertheless, a quantitative assessment is required to validate the proposed simulation model,
which is presented in the subsequent section.

Figure 3: Comparison between empirical mid-price time series on May 5th and simulated mid-price time series
on May 5th
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Model validation

4.21 Table 3 shows the stylised facts distance of the calibrated model. However, the value itself does not present an
intuitive description of how well the simulated data fit empirical data. A cross-check on the validity of our model
topology and calibration strategy is needed. Following Franke & Westerhoff (2012), two metrics are used for
assessing the quality of the moment matching and the validity of the model simulation: the moment-specific
p-value and the moment coverage ratio.

Statistical hypothesis testing: Moment-specific p-value

4.22 The stylised facts distance provides us with numerical values for the realism of the simulation. However, one more
elementary question needs to be addressed: whether the data generated by model calibration and simulation
would be rejected by the empirical data. The question is answered by calculating a moment-specific p-value as a
statistical hypothesis test.

4.23 Recall that in previous sections, the weights are calculated by the block bootstrapping method proposed in
Franke & Westerhoff (2012). While the variance of block bootstrapping samples is the corresponding weight for
each part of the loss function, the large number of samples obtained in this procedure can also be used to apply
the loss function D to them. In this way, an entire frequency distribution of values of D is available, which can
subsequently be contrasted with the simulated distribution of values of D. The fundamental idea is that the
set of bootstrapped samples of return time series is a proxy of the set of different return time series samples
that could be produced if the hypothetical real-world data generation process exists. Accordingly, if a simulated
return time series yields a value of D within the range of the bootstrapped values of D, this simulated return
time series is difficult to be distinguished from a real-world series.

4.24 Note that a Monte Carlo experiment is undertaken and the simulation is repeated many times to create a
distribution of model-generated D values. In total, two distributions of D values are obtained: bootstrapped
distribution and Monte Carlo simulated distribution. Let N denote the number of bootstrapped samples. For
consistency, we also select N Monte Carlo samples to create the simulated distribution. Let Db and Dm(θ̂)
denote the bootstrapped sample and Monte Carlo sample, respectively11. The distributions of the following two
sets of D-values are then compared:

Bootstrap : {Db}Nb=1

Simulated : {Dm(θ̂)}Nm=1

(12)

4.25 The p-value is obtained as follows. A critical value ofD is established from the bootstrapped distribution of values
of D. Taking account of the rare extreme events with a significance level of 5%, the critical value is defined to be
the 95% percentile D0.95 of the bootstrapped D. In this way, a simulated return time series will be considered
to be inconsistent with the real-world data, and therefore be rejected, if the corresponding D-value is larger
than D0.95. Take the May 3rd trading day as an example. Here D = 0.2114 is obtained as the critical value of the
bootstrapped distance function. As for the Monte Carlo simulation, the model-generated distribution of D is
prominently wider to the right. The detailed calculation yields that D0.95 corresponds to the 18.33% percentile
of the simulated distribution of values of D. Following the general moment matching convention in Franke &
Westerhoff (2012), the model is said to have a p-value of 0.1833, with respect to the estimated parameter vector
θ̂, the historical data for May 3rd, and the specific moments that we have chosen. According to the conventional
significance criteria, for this trading day the model will not be rejected as being obviously inconsistent with the
empirical data. Following Franke & Westerhoff (2012), a p-value of 0.1833 is actually believed to be a fairly good
performance for an agent-based financial market simulator. The p-values for the calibrated model for all trading
days are shown in Table 4.

Date 20100503 20100504 20100505 20100506
p-value 0.1833 0.4167 0.0833 0.6167

Table 4: P-values for the calibrated model for all trading days

4.26 From Table 4 we can see that for all trading days in the collected dataset, the moment-specific p-values are
greater than 0.05. Consequently, we cannot reject the null hypothesis which specifies that the simulated return
time series belongs to the same distribution as the empirical return time series. This statistical hypothesis testing
gives evidence that the calibrated model is capable of generating realistic financial price time series.
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Moment coverage ratio

4.27 The previous evaluation of the model was based on the values of the stylised facts distance function D. While
statistical testing enables us to evaluate the validity of the model simulation, the quality of moment matching
for each specific moment is still unknown. Another potential issue is that the stylised facts distance function
D is the optimisation target during the calibration process. Thus the evaluation metric involving the distance
D may be biased because of the potential overfitting problem. To address the above problems, the "moment
coverage ratio" (MCR) metric is adopted to assess the degree of moment matching, taking into account each
specific moment. The moment coverage ratio is originally proposed in Franke & Westerhoff (2012). The basis for
moment coverage ratio calculation is the concept of a confidence interval of the empirical moments. Consistent
with Franke & Westerhoff (2012), the 95% confidence interval of a moment is considered, which is defined to be
the interval with boundaries±1.96 times the standard deviation around the empirical value of this moment. The
next step is to determine the standard deviation for each empirical moment. Franke & Westerhoff (2012) apply
the delta method to the autocorrelation coefficients to calculate the standard deviation. In this paper, we use a
more direct way to obtain the empirical standard deviation, which is based on the block bootstrapping method.
Recall that large quantities of return time series are obtained by the block bootstrapping method. For each
specific moment, a moment value can be calculated out of every sampled return series. In total there will be B
values for each moment, where B is the bootstrapping sample number. The standard deviation of those values
is considered to be the standard deviation for the corresponding empirical moment. One may feel uneasy about
the bootstrapping of the autocorrelation functions at longer lags since the method alters the temporal order
of the return series. However, the block size in our block bootstrapping method is 1800, which is significantly
larger than the longest lag (90) in the autocorrelation functions. Consequently, the impact of bootstrapped block
re-ordering on the autocorrelation functions is negligible.

4.28 With the standard deviation on hand, the corresponding confidence interval for each specific moment is im-
mediately available. In this way an intuitive criterion for assessing a simulated return series is obtained: if
all of its moments are contained in the confidence intervals, the simulated return series cannot be rejected
as being incompatible with empirical data. Nonetheless, one single simulation is not sufficient to evaluate a
model as a whole due to the sample variability. In addition, it is likely that for one simulated return series some
moments are contained in the confidence interval while others are not. It goes without saying that considering
multiple simulation runs of the model will provide a more exhaustive assessment of the model’s performance.
Specifically, for each simulation run the confidence interval check is repeated. We count the number of Monte
Carlo simulation runs in which the single moments are contained in the corresponding confidence intervals. The
corresponding percentage numbers out of all Monte Carlo runs are defined as the moment coverage ratio.

4.29 Since the model is calibrated by each trading day, a Monte Carlo simulation is run for each trading day and the
corresponding moment coverage ratios are calculated to evaluate the calibrated model. Table 5 presents the
results of the moment coverage ratios calculation. Except for the volatility moment on May 3rd and the 90-lag
squared return autocorrelation moment on May 4th, all other moment coverage ratios are higher than 50%.
According to the analysis in Franke & Westerhoff (2012), the higher than 50% moment coverage ratio represents
a terrific performance of the model. In addition, almost half of the moment coverage ratios are even higher
than 90%, which indicates that our calibrated model has an excellent ability to reproduce realistic stylised facts.
Overall, with respect to the selected moments, the calibrated model’s capability of matching empirical moments
and reproducing realistic stylised facts is highly remarkable.
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Moment/Date 20100503 20100504 20100505 20100506
Hill estimator (inverse) 98.3% 66.7% 98.3% 100.0%
Volatility 0.0% 85.0% 100.0% 56.7%
Return autocorrelation
(30 lags)

85.0% 78.3% 50.0% 90.0%

Return autocorrelation
(60 lags)

100.0% 98.3% 96.7% 96.7%

Return autocorrelation
(90 lags)

98.3% 60.0% 100.0% 58.3%

Squared return autocor-
relation (1 lag)

100.0% 98.3% 95.0% 93.3%

Squared return autocor-
relation (30 lags)

78.3% 51.7% 71.7% 98.3%

Squared return autocor-
relation (60 lags)

88.3% 10.0% 80.0% 73.3%

Squared return autocor-
relation (90 lags)

91.7% 46.7% 76.7% 51.7%

Table 5: Moment coverage ratios of the calibrated model

2010 Flash Crash Scenarios

5.1 As a real-world application, the proposed model is used to investigate market dynamics during flash crash events
and the conditions for the occurrence of flash crash scenarios. This section will present the reproduction and
investigation of a famous historical flash crash event - the flash crash on May 6th, 2010. In the next section, we
will investigate conditions for the occurrence of mini flash crash events.

Simulating historical flash crash

5.2 We simulate the 2010 Flash Crash within the framework of our high-frequency financial market simulator. The
flash crash happened in the afternoon trading session on May 6th, 2010, starting at around 14:30. As mentioned
before, the model parameters are calibrated to the data in the morning trading session (8:00-12:30) to avoid
overfitting12. According to the CFTC-SEC staff report, an automated execution algorithm, which aimed at selling a
large number of contracts, was identified as one important trigger for the flash crash. Consistent with this report,
an institutional trader is introduced in the simulator to mimic the automatic Sell Algorithm. The institutional
trader will initiate a Sell Algorithm that intends to sell a large quantity of contracts at 14:30 in our simulator. The
parameters associated with the institutional traders are tuned to reproduce realistic flash crash behaviours as
in historical data. We present the trading configuration of the institutional trader in the subsequent session,
followed by a detailed analysis of the market dynamics during the simulated flash crash event.

Introduction of Institutional Trader (INS)

5.3 The institutional trader is specially designed to replicate the behaviour of the large institutional trader who
initiated the sell program to sell a large quantity of E-mini contracts on May 6th, 2010. In the beginning, the
institutional trader has a large inventory of Q E-mini contracts. The institutional trader will start a sell program
to sell the inventory at 14:30 in the simulation. Consistent with the historical scenarios, the sell program in the
simulation is executed via an automated execution algorithm that is programmed to submit orders into the
market to target a certain execution rate, which is a percentage of the market trading volume calculated over
the previous minute. The execution rate is denoted as r, which is set to 9% in our simulation according to SEC
and CFTC (2010). Note that the Sell Algorithm only considers the total trading volume in the market, taking no
account of the market price or time. This procyclical behaviour is potentially one causal factor in the occurrence
of flash crash events. As for specific trading behaviours, the institutional trader always keeps count of the total
trading volume V of the last minute, and submits a market sell order every n seconds. For each market order,
the volume would be V ∗ r ∗ n

60 , where n
60 is a scaling factor ensuring the target execution rate r is achieved
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by the sell program. The institutional trader continues trading until all the inventory is cleared. Algorithm 6
describes the trading behaviours of the institutional trader in detail.

Algorithm 6 Institutional Trader Logic
1: Initialise n, r, Q
2: for each simulation step do
3: V ← total trading volume in the market for the last minute
4: if (simulation timestamp > 14 : 30 )∧(Q > 0) then
5: vol← V ∗ r ∗ n

60 ;
6: if (step_seconds† mod n) == 0 then
7: Submit a market sell order with volume vol
8: Q← Q− vol
9: else

10: No action taken
11: end if
12: else
13: No action taken
14: end if
15: end for
16:
17: †step_seconds is the number of seconds since the beginning of the simulation

Market behaviours during Flash Crash

5.4 To generate a realistic flash crash event, we fine-tune the parameters of the newly introduced institutional trader.
According to SEC and CFTC (2010), the flash crash event is potentially caused by the "hot-potato" effect among
high-frequency market makers and the mismatch of the trading frequency between different types of traders.
Consequently, we also tune the market maker inventory limit and the trading frequency of fundamental traders.
The effect of these parameters on the flash crash event will be presented in subsequent sessions. All other model
parameters are fixed and are given exactly the same values that are calibrated to the morning trading session
data on May 6th, 2010. This configuration helps to reduce the degree of freedom. In addition, the potential
problem of overfitting is avoided since the morning trading session data used for calibration is not included
in simulating the flash crash event. The resulting simulation of the price time series mimics the real-world
flash crash event. Figure 4 presents such a single simulation of the price trajectory that undergoes a flash crash
scenario. The corresponding parameter configuration is shown in Appendix C. Figure 5 presents a comparison
between simulated trading volume and historical trading volume during the whole day. Carefully examining
such a single simulation provides useful insights into how the trading behaviour of different types of traders
interact to bring about a flash crash scenario.

Figure 4: One single simulation of the 2010 Flash Crash event. Red line is the historical price; green line is the
simulated price; blue line is the fundamental value extracted by Kalman Smoother
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Figure 5: Comparison between simulated volume and historical volume on May 6th, 2010

5.5 By visual inspection, the simulation accurately replicated the defining characteristics of a flash crash. Figure
6 presents the total inventory level for each type of trader around the simulated flash crash event, and the
market sell order volume of the institutional trader. To assist with detailed inventory analysis during the flash
crash event, Figure 7 presents the inventory level for each type of trader against simulated price during the time
interval from 14:30 to 14:50. Figure 8 displays the market depth for both sides of the simulated limit order book,
and the comparison between simulated bid-ask spread and historical bid-ask spread. Detailed examination
shows that the simulated flash crash accurately matches the market dynamics during the historical 2010 Flash
Crash. The dynamics around the simulated flash crash event are as follows.

• The overall market sentiment in the simulation is negative, as we can see that the fundamental value is
broadly decreasing before 14:00. At 14:00, according to Figure 6 the fundamental traders accumulate a
negative inventory due to continuously decreasing fundamental value, while market makers accumulate a
positive inventory. Before the flash crash event, the market depth for both sides of the limit order book is
relatively stable, while the simulated bid-ask spread is at a relatively low level.

• At 14:30 in the simulated market, the market price has already dropped by 2.63% compared to the opening
price level. Regardless of the downward market trend, the institutional trader initiates a sell program to
sell a large number of inventories, which is 120,000 in our simulation. The institutional trader decides to
execute the sell program via an automated execution algorithm, which is set to feed market selling orders
into the market to target an execution rate of 9%. That is, for each minute the institutional traders aim
to sell 9% of the market trading volume calculated over the previous minute. Neither price nor time is
considered by the Sell Algorithm. Refer to Algorithm 6 for specific trading logic of the institutional trader.

• In our simulation, market makers correspond to the high-frequency traders in the real market. The above
selling pressure is initially absorbed by market makers in our simulated market, which is consistent with
the dynamics in the historical market (SEC and CFTC 2010). This is shown by the inventory change for
each type of trader in Figure 7. From 14:30:00 to 14:40:50, the total inventory for market makers rapidly
increased, while the total inventory for low-frequency fundamental traders barely changed. During this
approximately 11-minute time period, the price undergoes a further 2.61% drop. At 14:40:50, the market
depth in the limit order book has slightly decreased and the bid-ask spread has slightly increased. The
scale of change for the market depth and bid-ask spread is restricted because of the existence of market
makers.

• In addition to the above observations, the market transacted volume is continuously increasing during
the above 11-minute time interval due to the trading activities of the Sell Algorithm, as shown in Figure
5. Because of its procyclical nature, the Sell Algorithm used by the institutional trader responds to the
increased volume by increasing the volume of sell orders that it is feeding into the market, even though
the orders that it already submitted to the market were not yet fully absorbed and have caused non-trivial
market turbulence. The increasing order volume of the institutional trader is shown in panel (b) of Figure
6.

• As market makers are the buyers of the initial batch of orders sent by the institutional trader, they have
accumulated massive temporary long positions of the contracts. Nevertheless, the inventory of market
makers cannot accumulate infinitely. At 14:40:50, the inventory limits for many market makers are ex-
ceeded. At this point, a dramatic and significant market crash starts. Those market makers, who have
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accumulated excessive positions than their inventory limits, stop providing liquidity and begin to aggres-
sively sell their inventories in order to reduce their temporary long positions. This is consistent with the
typical trading practice that a market maker tends to maintain a relatively small aggregate inventory for
the purpose of risk management. Consequently, these market makers contribute further selling pressure
to the market in addition to the Sell Algorithm. Still lacking sufficient demand from fundamental traders,
the aggregate sell volume is consumed by remaining market makers who are still quoting in the market.
As a result, more market makers accumulate excessive positions than their inventory limits, which in
turn forces them to sell their long positions to the market. The same positions rapidly pass among all
market makers. Such so-called "hot-potato" effect quickly sweep almost all market makers in the market,
resulting in a dramatic price drop and quoting suspension of almost all market makers.

• The combined selling pressure from the Sell Algorithm and market makers drove the price down by more
than 4.16% in less than two minutes from 14:40:50 to 14:42:20, with the price reaching its intra-day low of
1053.5. Along with the price plunge, the market suffers from great liquidity loss. The liquidity loss can be
reflected by the sharp decrease in market depth during the simulated flash crash event. In the simulated
morning trading session, the average market depth for both bid and ask sides is around 5000. In contrast,
during the simulated large price plunge that starts at around 14:40, the market depth for both the bid
and ask sides is less than 1000, even reaching 0 on the bid side for more than 1 minute. The significant
liquidity loss in our simulation is mostly because of the withdrawal of market makers from the market.
The withdrawal of market makers in our simulation is consistent with empirical findings in SEC and CFTC
(2010), which states that real market makers did stop trading during the 2010 Flash Crash event. According
to Figure 8, the market depth for both sides of the limit order book dropped dramatically during this time
period. There is less than 1% of bid-side market depth observed during normal trading hours, with even
zero bid-side market depth for around 30 seconds in the middle of 14:41. The bid-ask spread widens
dramatically, reaching more than 20 ticks at this short time interval.

• As price drops quickly, the demand from fundamental traders gradually increases according to Equation 2.
Figure 7 shows that fundamental traders do absorb a portion of selling volume during the sharpest price
drop. However, the sudden decline in both price and liquidity indicates that the price was moving so fast
that fundamental traders were incapable of providing enough buying support.

• After the price hits the intra-day low level, the demand from fundamental traders finally increases to a level
that is able to counteract the selling pressure from the institutional trader. Starting at 14:42:20, the price
hovers at the lower level for approximately one minute and then starts to bounce back quickly towards
the fundamental value. The Sell Algorithm continues to feed sell orders to the market until about 14:47, at
which point the inventory of the institutional trader has been emptied.

5.6 The above is a detailed analysis of the market dynamics of a simulated flash crash event. The simulated dynamics
accurately match the dynamics of the historical 2010 Flash Crash event. Both simulated flash crash and historical
flash crash have an amplitude of around 7% (starting from 14:30:00), and both prices undergo a similar "flash
crash" shape. A large Sell Algorithm is replicated to trigger the simulated flash crash, and is executed for around
17 minutes, which is close to the 20-minute execution time of the historical Sell Algorithm. The overall liquidity
loss during the flash crash is replicated accurately, with decreased market depth and enlarged bid-ask spread as
emergent properties of the simulation. We also reproduce realistic patterns in the simulated market trading
volume. The detailed progress of the simulated flash crash also matches the empirical analysis of the historical
flash crash event.

5.7 In the subsequent section, we will explore the conditions that influence the severity of the flash crash event.
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Figure 6: (a): Total inventory level for each type of trader, around the simulated flash crash event (14:00 - 15:15).
(b): The volume change for the selling orders of the institutional trader, during the time when the institutional
trader is active

Figure 7: Detailed simulated mid-price against the inventories of each category of trader from 14:30 to 14:50. (a):
Simulated and historical price from 14:30 to 14:50. (b): Total inventory level for each type of trader during time
period from 14:30 to 14:50
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Figure 8: (a): Simulated market depth (total resting volume) of bid-side limit order book. (b): Simulated market
depth (total resting volume) of ask-side limit order book. (c): Bid-ask spread in the simulated limit order book.
(d): Bid-ask spread in the historical limit order book. All four panels display time period spanning from 12:30 to
16:15

Flash crash under different conditions

5.8 The above presents an analysis of the market dynamics during the simulated flash crash event. A natural question
to follow is what factors contribute to the sharp price drop. One significant advantage of the agent-based model
is the ability to be simulated multiple times under different conditions to reproduce realistic market events,
while the historical event only happens once. This makes the agent-based model a perfect testbed for exploring
the conditions that lead to various rare market events, such as the flash crash. In this section, we explore the
conditions that would influence the severity of flash crash events.

5.9 To measure the severity of flash crash events, we define the amplitude of the flash crash event in our simulation
as the maximum percentage price drop after 14:00. Specifically, the flash crash amplitude Amp is calculated as
below:

Amp = |TWAP14:00−14:05 − Pmin

TWAP14:00−14:05
| (13)

where TWAP14:00−14:05 is the time-weighted average price of time interval between 14:00 and 14:05, while
Pmin is the lowest price during the flash crash simulation.

5.10 The main methodology applied here is Monte Carlo simulation experiments under controlled conditions. The
conditions are represented by model parameters. Each combination of model parameters corresponds to a
specific market condition configuration. For each combination of model parameters, multiple simulations
are carried out. For each simulation, the amplitude of the simulated flash crash is calculated. In this way, a
distribution of flash crash amplitudes is obtained. To reduce the influence of extreme values, the 50% quantile of
all the Monte Carlo simulated amplitudes is defined as the flash crash amplitude associated with the condition
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that is represented by the specific combination of model parameters. The 40% and 60% quantiles of the simulated
flash crash amplitudes are also recorded. The 40% and 60% quantiles are chosen to reflect the rough variation
of the mean simulated flash crash amplitudes.

5.11 To explore how one specific condition affects the severity of flash crash events, we change the corresponding
model parameter and repeat the above Monte Carlo simulation to get the associated flash crash amplitude. The
other model parameters are given the previous calibrated values and are kept fixed during this experimental
process. This allows us to observe how the flash crash amplitude changes when only one specific model
parameter changes. In particular, we are interested in three model parameters that relate closely to the flash
crash amplitude: the percentage of volume for the Sell Algorithm (r), the inventory limit for each market maker
(εMM

limit), and the trading frequency for fundamental traders (FTfreq). Figure 9 presents the relationships between
these model parameters and the simulated flash crash amplitude. Detailed analysis is as follows.

Figure 9: (a): Relationship between the amplitude of simulated flash crashes and the inventory limit of market
makers. (b): Relationship between the amplitude of simulated flash crashes and the percentage of volume r for
the Sell Algorithm (Institutional Trader). (c): Relationship between the amplitude of simulated flash crashes and
the trading frequency of fundamental traders.

Percentage of volume for the Sell Algorithm

5.12 One important parameter that characterises the Sell Algorithm is the percentage of volume r, which determines
the target execution rate of the Sell Algorithm. Specifically, r is the percentage of the market trading volume
calculated over the previous minute that the Sell Algorithm aims to execute. Monte Carlo simulation is carried
out with different values for r, while other model parameters are given the previous calibrated values and are
strictly kept constant. Panel (a) in Figure 9 shows the relationship between the simulated flash crash amplitude
and the percentage of volume r.

5.13 It is shown that when r is small, the amplitude of the flash crash is limited. When r is increased, the flash
crash amplitude is also enlarged. Within a certain range, the more aggressive the Sell Algorithm (larger r), the
more severe the flash crash event (larger amplitude). This phenomenon is consistent with our intuition. One
interesting phenomenon is that after r exceeds 5%, the flash crash amplitude barely changes even though we
continue to increase the value of r. The reason is that as long as the price reaches a certain lower level, the
demand generated from fundamental traders is large enough to digest the inventory of the institutional trader.
Since the total inventory of the institutional trader is fixed, the lowest price that could be reached during the
simulation barely changed. Consequently, the flash crash amplitude stops increasing despite larger values for r.

5.14 The lessons learned from this experiment mainly involve the choice of algorithmic trading strategies for large
institutional traders. The market impact of an algorithmic trading strategy may contradict our intuition, as is the
case here when r is larger than 5%. Instead, the complex interaction between an algorithmic trading strategy
and other market participants is likely to cause unexpected consequences. It is strongly recommended that
institutional traders deploy agent-based financial market simulation to explore potential consequences before
choosing a specific algorithmic trading strategy.

Inventory limit for market makers

5.15 Both empirical and simulation analyses indicate that high-frequency market makers play an important role in
the flash crash event. Though market makers initially absorb lots of selling pressure from the institutional trader,
they quickly turn into aggressive sellers after their inventory limits are exceeded, creating the "hot-potato" effect
that exacerbates the crash. The inventory limit εMM

limit plays an important role in controlling the significance
of the "hot-potato" effect. Consequently, the value of εMM

limit also influences the flash crash amplitude. We run
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Monte Carlo simulations with different values for εMM
limit. Other parameters are given the previous calibrated

values and are kept constant. Panel (b) in Figure 9 presents the relationship between the simulated flash crash
amplitude and the inventory limit for each market maker εMM

limit.
5.16 It is shown that the functional relationship between flash crash amplitude and market maker inventory limit

is not monotonous. When the εMM
limit is relatively small (smaller than 8000 in our simulation), the flash crash

amplitude is an increasing function with regard to εMM
limit. This is because the larger the εMM

limit, the more inventory
that the market makers will accumulate. With more accumulated inventory, the market makers will create
much more selling pressure at the point when their inventory limits are exceeded, resulting in a more severe
crash. However, the flash crash amplitude decreases on increasing the value of εMM

limit if the εMM
limit is larger than

a certain level (around 8000 in our simulation). This is because the large enough εMM
limit makes it possible for

market makers to absorb a larger portion of selling pressure from the Sell Algorithm. As a result, there are fewer
market makers whose inventory limits are reached, curtailing the "hot-potato" effect during the flash crash. In
extreme cases when inventory limits for market makers are infinite, the market makers will absorb all selling
pressure in the market and there will be no flash crash event.

5.17 The analysis here emphasizes the importance of risk management for high-frequency market makers. Since all
market makers have some sort of inventory control, the decreasing part of panel (b) in Figure 9 is hardly feasible
in the real-world trading environment. Instead, most real-world market makers have inventory limits that lie on
the increasing part of the curve. An individual market maker may consider his own inventory limit to be proper;
however, multiple "proper" inventory limits combined may lead to a significant crash under stressed scenarios
due to the "hot-potato" effect. In order to foster a smooth and stable market, experimental results suggest that
policymakers could impose certain inventory limits on all high-frequency market makers.

Trading frequency for fundamental traders

5.18 According to Karvik et al. (2018), the mismatch of trading frequency between different types of traders is an
important factor that leads to flash crash scenarios. The flash crash happens when the market is dominated by
the procyclical behaviours of high-frequency market participants. The price moves so fast that lower frequency
fundamental traders are unable to supply enough buy-side liquidity. So what will happen if we change the
relative frequency between the market makers and fundamental traders in our simulation? Experiments are
carried out with different trading frequencies for fundamental traders. The trading frequency of fundamental
traders is changed by changing SFT

interval, which is the interval between actions from the same fundamental
traders. Specifically, once a fundamental trader submits an order to the market, the same fundamental trader is
not able to participate in the simulated market within the subsequent SFT

interval steps. Only after SFT
interval step

can this fundamental trader submit another order to the market. In the default calibrated simulation SFT
interval is

100, while the same interval for market makers is 1. In other words, market makers can act in every simulation
step, while a fundamental trader can only act once in every 100 steps. The smaller the SFT

interval is, the higher
the trading frequency for fundamental traders. If SFT

interval has value 1, the fundamental traders would have
the same trading frequency as market makers, creating the imaginary "high-frequency fundamental traders".
Panel (c) in Figure 9 presents how the flash crash amplitude changes when the trading frequency of fundamental
traders changes.

5.19 The figure indicates that there is a monotonous relationship between flash crash amplitude and the trading
frequency of fundamental traders. Note that the larger the interval is, the lower the trading frequency is. Thus
the flash crash amplitude decreases when we increase the trading frequency of fundamental traders. If the
fundamental traders have the same trading frequency as the market makers, the flash crash amplitude becomes
small enough that the flash crash turns into a small shock in the market.

5.20 The analysis here supports the argument that the mismatch of trading frequency between different types of
traders potentially leads to flash crash events. There is hardly an imaginary "high-frequency fundamental
trader" in the real-world trading environment. Thus practical trading environment corresponds to the right-hand
part of the functional relationship in Panel (c) of Figure 9, where fundamental traders act at a lower frequency.
The results indirectly show that high-frequency trader is an important factor in the occurrence of flash crash
scenarios.

Simulating other Flash Crash events

5.21 The proposed model effectively simulates the 2010 Flash Crash, demonstrating its realistic representation.
Furthermore, its adaptability allows for extensive application in simulating various flash crash events. By fine-
tuning model parameters, we successfully extend its capabilities to replicate other notable instances, such as
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the 2013 Flash Crash in American markets and the 2016 Flash Crash of the British Pound. While constrained
by the absence of order book level data, our simulations are able to capture the specific shapes of these flash
crash events. The results are not presented here as they are not the primary focus of this paper. Nevertheless,
these simulations showcase the generalisability of the proposed high-frequency agent-based financial market
simulator.

Mini Flash Crash Scenarios

6.1 The above section provides an analysis of the occurrence of flash crash events. The 2010 Flash Crash is so large
that no following events have rivalled its depth, breadth, and speed of price movement (Paddrik et al. 2017).
However, flash crashes on a smaller scale do occur more frequently. Johnson et al. (2012) identify more than
18,000 mini flash crash incidents between 2006 and 2011 in US equity markets. Those mini flash crashes are
characterised to be abrupt and severe price changes over a short period of time. One natural question is how
those mini flash crashes happened. As a second application for the proposed agent-based model, we investigate
and analyse the causes of mini flash crashes in the framework of our agent-based financial market simulation.
An innovative "Spiking Trader" is introduced to the market to mimic the trigger of mini flash crash events. A
typical mini flash crash event in our simulation is analysed in detail, followed by experiments for exploring the
conditions for mini flash crash events.

Introduction of Spiking Trader (ST)

6.2 In the current literature, there is a growing consensus that the mini flash crashes result from interactions between
various trading algorithms that operate at or beyond the limits of human response times, such as the procyclical
behaviours of high-frequency market participants. However, there are various triggers for mini flash crash events.
According to Karvik et al. (2018), one specific trigger could be orders that are large relative to the supply of
available limit orders, which bring price shocks to the market. To mimic the occasional price shock in the market,
a type of trader agent called "Spiking Trader" is introduced to our agent-based artificial financial market.

6.3 The proposed spiking trader mainly creates price shocks to the market, either upward or downward. Initially, the
spiking trader is inactive. For each simulation step, there is a small probability that a spiking trader is activated.
Once activated, the spiking trader will submit market orders of the same direction for several consecutive
simulation steps, creating price shocks in one direction. A spiking trader is associated with three parameters:
Nspike, µspike, and Vspike. Nspike represents the number of consecutive orders to be submitted after the spiking
trader is activated. µspike is the probability of being activated in a certain simulation step. Vspike is the volume
of the orders from spiking traders. Detailed trading logic for spiking traders is shown in Algorithm 7. Note that
NST spiking traders are introduced to the agent-based simulation model. In our experiments, NST has value 2.

Algorithm 7 Spiking Trader Logic
1: Initialise Nspike, µspike, Vspike

2: Status← 0; D ← Sell
3: for each simulation step do
4: if Status > 0 then
5: Submit a market order with volume Vspike, direction D
6: Status← Status− 1
7: else
8: if p ∈ U(0, 1) < µspike then
9: if p ∈ U(0, 1) < 0.5 then D ← Sell else D ← Buy end if

10: Status← Nspike

11: else
12: No action taken
13: end if
14: end if
15: end for
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Mini Flash Crash analysis

6.4 To investigate mini flash crash events, there are some modifications to the simulation configuration. The number
of market makers in the simulation is reduced. Our experiments show that this increases the probability of
the occurrence of mini flash crash events. The reason is that fewer market makers will lead to thinner market
depth, generating more mini flash crash events for scrutiny. The institutional trader is removed from the market;
while two spiking traders are introduced to the market simulation. Other model parameters are the same as the
simulation for the 2010 Flash Crash. Detailed model parameters for mini flash crash simulation are shown in
Appendix D.

6.5 Figure 10 presents a typical mini flash crash scenario in our simulation. The price drops nearly 80 basis points in
just several seconds, and then bounces back towards the fundamental value. Figure 11 shows the inventory
level for each type of trader against simulated price during the mini flash crash scenario. According to Figure 11,
the trigger and dynamics for that specific simulated mini flash crash are very straightforward:

• At 12:08:38, a spiking trader is activated to bring downward shocks to the market. The spiking trader
submits sell orders to the market in the next 2 seconds. The sell pressure in the 2-second interval is mainly
absorbed by market makers.

• Having absorbed the sell orders from spiking trader, one market maker accumulates a relatively large
inventory at 12:08:40 and the inventory limit is reached. For risk management purposes, the market maker
decides to reduce the position and then temporarily withdraw from the market. The sell orders from this
market maker are digested by other market makers.

• The same high-frequency dynamic happens between 12:08:40 and 12:08:42. During this small time period,
the same positions transfer between different market makers, creating the "hot-potato" effect on a smaller
scale. Several market makers withdraw from the market temporarily after emptying their inventory.

• At 12:08:42, only 4 seconds after the spiking trader is activated, the market suffers from liquidity loss
because of the withdrawal of some market makers. The sell orders from the remaining market makers
create dramatic market impacts due to thin liquidity, dragging the price down for more than 60 basis
points in 5 seconds.

• At 12:08:47, the price has dropped 80 basis points compared to the price level at 12:08:38. The price then
stops dropping and then gradually bounces back to the original level.

6.6 Note that in the above simulation, the fundamental traders are configured to have a trading interval of 100 steps,
which is the calibrated value from Section 4. The specific simulated mini flash crash event happens in a time
horizon that is shorter than the horizon over which lower frequency fundamental traders observe the market.
This is shown in Figure 11, where the inventory for fundamental traders hardly changed during the mini flash
crash event. The analysis shows that the mini flash crash events result from the procyclical behaviours among
high-frequency market makers, precipitated by price shocks that are created by spiking traders or other market
participants.

Figure 10: One typical simulated mini flash crash event. Red line is the historical price; green line is the simulated
price; blue line is the fundamental value
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Figure 11: Detailed simulated price against the inventories of each type of trader during the simulated mini flash
crash event. (a): Simulated and historical price from 12:08:30 to 12:09:00. (b): Total inventory level for each type
of trader during time period from 12:08:30 to 12:09:00

Conditions for mini Flash Crash scenarios

6.7 In previous sections, we explore how different conditions influence the amplitude of large flash crash events. Here
we address the question that how those conditions influence the characteristics of mini flash crash events. Since
the institutional trader is removed from the simulation, two conditions that are unrelated to the institutional
trader are considered: market makers inventory limit and trading frequency of fundamental traders. Unlike
the colossal flash crashes that happen extremely rarely, mini flash crashes occur more frequently in modern
financial markets where high-frequency trading contributes to a vast portion of transactions. Consequently, the
characteristic of mini flash crash events are twofold: the frequency of the occurrence of mini flash crash events
and the crash severity once a mini flash crash occurs.

6.8 To explore the characteristics of mini flash crashes under different conditions, Monte Carlo simulation is carried
out. For the purpose of consistency, the simulation also mimics the E-mini futures market on May 6th. The
simulation spans from 8:00 to 12:30 on May 6th, 2010, excluding the afternoon trading session to reduce the
influence of the large historical flash crash event. Except for the two model parameters that represent the two
conditions that are of interest, other model parameters are assigned the same value as the calibration results
and are strictly kept fixed13. For each parameter combination, which represents a specific condition, we run 60
simulations and calculate the average frequency for the occurrence of mini flash crash events and the average
amplitude for the mini flash crash events.

6.9 The only remaining question to solve is how to count the mini flash crashes and how to measure the amplitude
of a mini flash crash. Following Karvik et al. (2018), a mini flash crash is classified as a k standard deviation
move in price, which reverses over a horizon that is less than certain time periods. The k has value 2, 3, 4 in our
experiments. Note that because the spiking trader can create both upward and downward price shock, we also
consider the upward "flare up" event as another form of mini flash crash14. Specifically, in our experiments, a
k-sd mini flash crash is defined to be the peak or trough price behaviour inside a 10-minute interval, where the
price moves more than k standard deviations and then bounces back. The k standard deviation is calculated
by reference to the minute-level return. Inspired by topography, the amplitude of the mini flash crash event is
then defined to be the prominence of the peak or trough price trajectory. A specific method to calculate the
prominence can be found in Virtanen et al. (2020).

6.10 We calculate the average number of occurrences of mini flash crash and the average amplitude for the mini flash
crash events under different conditions. The results are shown in Figure 12 and Figure 13.

6.11 Figure 12 presents how the average number of mini flash crashes per simulation changes when the inventory
limit of market makers and trading frequency of fundamental traders vary. As shown in panel (a), increasing
the inventory limit will decrease the average number of mini flash crashes in our simulation, indicating a lower
frequency for the occurrence of mini flash crash events. This result is consistent with our intuition. The larger
the inventory limit for market makers, the more selling pressure market makers are able to absorb. Thus the
"hot-potato" effect is less likely to appear with a larger inventory limit for market makers, resulting in fewer mini
flash crashes. As for the trading frequency of fundamental traders, however, the frequency of the occurrence of
mini flash crash events barely changes when we vary the trading frequency parameter of fundamental traders.
This is presented in panel (b) of Figure 12. One possible explanation is that mini flash crash events happen in an
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extremely short time scale and the amplitude is relatively small. Consequently, fundamental traders are hardly
able to nor willing to participate during the course of the mini flash crash events.

6.12 Figure 13 presents how the average amplitude of mini flash crashes changes when the inventory limit of market
makers and trading frequency of fundamental traders vary. As demonstrated by Panel (a) in Figure 13, the
functional relationship between mini flash crash amplitude and market maker inventory limit is not monotonous.
The average mini flash crash amplitude is an increasing function with regard to market maker inventory limit
when the inventory limit is small, while it turns into a decreasing function when the market maker inventory
limit is large enough. The logic here is very similar to the previous analysis. While the market maker inventory
limit is small, increasing the inventory limit will result in more selling pressure when the inventory limit is hit,
leading to a larger crash amplitude. However, a large enough market maker inventory limit would absorb most
shocks in the market, restricting the scale of the mini flash crash events. Moving on to panel (b) in Figure 13, we
observe no obvious influence of fundamental traders’ trading frequency on the amplitude of mini flash crash
events. This phenomenon once again demonstrates that fundamental traders hardly participate during the
course of mini flash crash events.

Figure 12: (a): Relationship between the average number of mini flash crashes per simulation and the inventory
limit of market maker. (b): Relationship between the average number of mini flash crashes per simulation and
the trading frequency of fundamental traders.

Figure 13: (a): Relationship between the average amplitude of simulated mini flash crashes and the inventory
limit of market maker. (b): Relationship between the average amplitude of simulated mini flash crashes and the
trading frequency of fundamental traders.

Comparison with large Flash Crash events

6.13 Generally speaking, mini flash crash scenarios can be viewed as scaled-down versions of larger flash crash
events, with the latter occurring less frequently than the former. In our simulation, both scenarios share a similar
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underlying mechanism. In both cases, the initiation involves relatively large orders, followed by exacerbation
from high-frequency market makers.

6.14 The primary distinction between a large flash crash event and mini flash crash scenarios lies in the scale and
magnitude of the market disruption. A "large flash crash event" typically refers to a significant and abrupt
decline in asset prices across various markets, often involving major financial instruments. These events are
characterized by a rapid and substantial market downturn, resulting in a sharp drop in prices and high volatility.
Large flash crashes can have widespread implications for the financial system and are often associated with
systemic risks.

6.15 On the other hand, "mini flash crash scenarios" refer to smaller-scale disruptions that share similarities with
large flash crashes but are less extensive in their impact. These events may involve specific stocks, sectors,
or asset classes rather than affecting the entire market. While still characterized by sudden and sharp price
movements, mini flash crashes tend to have a more localized effect and may not pose the same level of systemic
risk as their larger counterparts.

Conclusions and Future Work

Summary of achievements

7.1 A novel high-frequency agent-based financial market simulator is implemented to generate a realistic high-
frequency simulated financial market. Each simulation step corresponds to 100 milliseconds in the real-world
trading environment. Full exchange protocols (limit order books) are implemented to simulate the order match-
ing process. In this way, we provide a microstructure model of a single security traded on a central limit order book
in which market participants follow fixed behavioural rules. The model is calibrated using the machine learning
surrogate modelling approach. Statistical test and moment coverage ratio results show that the simulation is
capable of reproducing realistic stylised facts in financial markets.

7.2 The simulator is then employed to explore the dynamics during flash crash episodes and the conditions that
affect flash crash episodes. Under the framework of the proposed high-frequency agent-based financial market
simulator, the 2010 Flash Crash is realistically simulated by introducing an institutional trader that mimics the
real-world Sell Algorithm on May 6th, 2010. We investigate the market dynamics during the simulated flash crash
and show that the simulated dynamics are consistent with what happened in historical flash crash scenarios. We
then explore the conditions that could influence the characteristics of the 2010 Flash Crash. It is found that three
conditions significantly affected the amplitude of the 2010 Flash Crash: the percentage of volume of the Sell
Algorithm, the market maker inventory limit, and the trading frequency of fundamental traders. In particular, we
found that the relationship between the amplitude of the simulated 2010 Flash Crash and the POV of the Sell
Algorithm is not monotonous, and so is the relationship between the amplitude and the market maker inventory
limit. For the trading frequency of fundamental traders, the higher the frequency, the smaller the amplitude of
the simulated 2010 Flash Crash.

7.3 A similar analysis is carried out for mini flash crash events. An innovative type of trader called "Spiking Trader" is
introduced to the agent-based financial market simulator, creating more price shock and precipitating more
mini flash crash events. Market dynamics for a typical simulated mini flash crash event are analysed. We also
explore the conditions that could influence the characteristics of mini flash crash events. Experimental results
show that market maker inventory limit significantly affects both the frequency and amplitude of mini flash
crash events. However, the trading frequency of fundamental traders shows no obvious influence on mini flash
crash events in our experiments.

Current limitations

7.4 While the approach proposed in this paper offers valuable insights into flash crash events, it is not without its
limitations. A primary concern lies in the model calibration process. Our methodology involves calibrating the
model on a daily basis using data segmented into individual trading days. This calibration strategy allows for
each day’s calibrated model parameters to effectively replicate realistic financial market scenarios. However, it
encounters challenges with parameter stability. The calibrated parameter values in Table 3 show that most fitted
parameters have relatively stable values, exhibiting small variations across different trading days. Nevertheless,
there are some parameters that have very different values on certain trading days. For instance, the parameter
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σNT demonstrates significant variability, particularly deviating on 6th May. Such inconsistencies could indicate
underlying issues like market anomalies, data quality concerns, or model constraints. These issues will be
addressed by further enhancing the calibration process.

7.5 Additionally, the generalisability of our model is somewhat constrained by the limited temporal scope of our data.
The dataset covers a relatively brief period, during which market dynamics might not exhibit significant variations.
This raises questions about the model’s effectiveness in scenarios with radically different market conditions.
While Section 5.3 outlines similarities in the overall trends of various flash crashes, such as the 2013 Flash
Crash in American markets and the 2016 Flash Crash of the British Pound, our analysis falls short in replicating
high-frequency market dynamics due to data limitations. Consequently, the adaptability and robustness of the
proposed model under diverse and evolving market conditions might require further investigation in the future.

Future work

7.6 During the 2010 Flash Crash, there were lots of cross-market arbitrageurs who transferred the selling pressure
to the equities markets by opportunistically buying E-Mini contracts and simultaneously selling products like
SPY. This cross-market mechanism has not yet been implemented in our agent-based modelling framework.
Therefore, the first possibility of future work is to implement simulated markets for two correlated securities
and explore the contagion during stressed scenarios.

7.7 A second potential direction for future work is to use the proposed agent-based financial market simulation
framework for examining how regulatory policy interventions could influence the characteristics of flash crashes.
For example, our experimental results indicate that the severity of flash crash event is affected by the percentage
of volume of the Sell Algorithm, market maker inventory limit, and the trading frequency of fundamental traders.
Consequently, policymakers could consider introducing finer rules on parameters of algorithmic trading and
implementing possible limitations on inventory levels of high-frequency market participants to mitigate the
detrimental effect of flash crashes. There are also other possible policy interventions that could be of use. For
example, whether a circuit breaker in the market would help stabilize financial markets and curb the severity of
flash crash scenarios. Lots of policy suggestions have been raised in literature to mitigate the impact of flash
crashes, such as minimum order resting times, circuit breakers, introducing cancellation fees and transaction
taxes, and more control over high-frequency market makers. However, these policies need to be thoroughly
evaluated before being employed in the real market. Based on the proposed agent-based flash crash simulation
framework, we will test the effectiveness of these policies in our future work.

7.8 Thirdly, the examination of possible indicators of an imminent flash crash event is an interesting extension of
this work. Paddrik et al. (2017) already suggest that some stability indicators derived from limit order book
information are able to signal a high likelihood of an imminent flash crash event. Based on our proposed model,
we will investigate whether there exist some special patterns in the simulated limit order book that could indicate
an imminent flash crash event.

7.9 Finally, our model can also be used as a test-bed for trading algorithms before these algorithms are put into
production. With the rise of algorithmic trading, regulators worldwide are paying increasing attention to trading
algorithms employed by traders. For example, in some countries trading firms participating in algorithmic
trading are required to have their algorithms verified and validated by regulators. Capable of generating realistic
market dynamics, our proposed agent-based financial market simulation offers a useful tool for regulators to
test trading algorithms. In addition, trading firms can also use the proposed model to test the profitability of
their proprietary trading algorithms and identify potential risks, such as detrimental feedback loop systems. Our
planned future work includes implementing various popular trading algorithms and testing their profitability
based on the proposed model. With thousands of Monte Carlo simulations, we could set up a profitability
benchmark for those popular trading strategies, which could be of interest to practitioners.
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Appendix A: Descriptions for All Model Parameters

Parameter Description Parameter Description
κ1 FT: Coefficient for linear demand com-

ponent
κ2 FT: Coefficient for polynomial demand

component
NFT FT: Number of FT SFT

interval FT: Interval between fundamental trad-
ing activities.

βL LMT: Coefficient for demand calculation αL LMT: Coefficient for demand calculation
NLMT LMT: Number of LMT βS SMT: Coefficient for demand calculation
NSMT SMT: Number of SMT αS SMT: Coefficient for demand calculation
σNT NT: Coefficient for demand calculation NNT NT: Number of NT
γ LMT & SMT: Coefficient for demand cal-

culation
δ NT, LMT & SMT: Limit order cancellation

rate
ρ NT, LMT & SMT: Ratio between proba-

bility of submitting a market order and
probability of submitting a limit order

V NT, FT, LMT, SMT, MM: Order volume

µℓ NT, LMT & SMT: Mean of the log-normal
distribution from which limit order price
distance is sampled

Σℓ NT, LMT & SMT: Standard deviation of
the log-normal distribution from which
limit order price distance is sampled

NMM MM: Number of MM δMM MM: Limit order cancellation rate
θMM MM: Probability of submitting a quote pMM

edge MM: Maximum price distance of submit-
ted order

εMM
limit MM: Position limit εMM

safe MM: Safe position level
εMM
rest MM: Time length for the trading suspen-

sion
NST ST: Number of ST

Nspike ST: Number of consecutive orders to be
submitted after ST is activated

µspike ST: Probability of being activated in a
certain simulation step

Vspike ST: Order volume r INS: Target execution rate
Q INS: Number of initial inventory n INS: Number of seconds between con-

secutive market sell orders

Table 6: Descriptions for All Parameters involved in the proposed agent-based model

Appendix B: Values for Fixed Model Parameters in Calibration

Parameter κ1 κ2 NFT SFT
interval

Value N.A. N.A. 30 100
Parameter βL αL NLMT βS

Value N.A. 0.001 30 N.A.
Parameter NSMT αS σNT NNT

Value 30 0.9 N.A. 30
Parameter γ δ ρ V
Value 10 0.005 0.2 100
Parameter µℓ Σℓ NMM δMM

Value N.A. 0.3 20 0.05
Parameter θMM pMM

edge εMM
limit εMM

safe

Value N.A. 4 5000 101
Parameter εMM

rest NST Nspike µspike

Value 12000 N.A. N.A. N.A.
Parameter Vspike r Q n
Value N.A. N.A. N.A. N.A.

Table 7: Values for fixed model parameters in calibration
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Appendix C: Values for Model Parameters in 2010 Flash Crash Simulation

Parameter κ1 κ2 NFT SFT
interval

Value 0.1390 0.4562 30 100
Parameter βL αL NLMT βS

Value 0.3017 0.001 30 0.1273
Parameter NSMT αS σNT NNT

Value 30 0.9 0.3403 30
Parameter γ δ ρ V
Value 10 0.005 0.2 100
Parameter µℓ Σℓ NMM δMM

Value 1.9349 0.3 20 0.05
Parameter θMM pMM

edge εMM
limit εMM

safe

Value 0.6624 4 7000 101
Parameter εMM

rest NST Nspike µspike

Value 12000 N.A. N.A. N.A.
Parameter Vspike r Q n
Value N.A. 9% 120,000 12

Table 8: Values for model parameters in 2010 Flash Crash simulation

Appendix D: Values for Model Parameters in Mini Flash Crash Simulation

Parameter κ1 κ2 NFT SFT
interval

Value 0.1390 0.4562 30 100
Parameter βL αL NLMT βS

Value 0.3017 0.001 30 0.1273
Parameter NSMT αS σNT NNT

Value 30 0.9 0.3403 30
Parameter γ δ ρ V
Value 10 0.005 0.2 100
Parameter µℓ Σℓ NMM δMM

Value 1.9349 0.3 5 0.05
Parameter θMM pMM

edge εMM
limit εMM

safe

Value 0.6624 4 4000 101
Parameter εMM

rest NST Nspike µspike

Value 12000 2 4 0.005
Parameter Vspike r Q n
Value 100 N.A. N.A. N.A.

Table 9: Values for model parameters in Mini Flash Crash simulation

Notes

1We use "flash crashes", "flash crash episodes" and "flash crash scenarios" interchangeably in this article.
2See SEC and CFTC (2010) for detailed description.
3Electronic contagion refers to the contagion phenomenon in financial markets that results from interactions

between trading algorithms, instead of human traders.
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4The expression p ∈ U(0, 1) denotes that p is a random variable uniformly distributed between 0 and 1.
5We also run simulation experiments with α having value 0.95 and 0.99. Similar experimental results are

obtained in these settings, showing that minor changes in α value will not significantly affect the results.
6The algorithm is already implemented in Python package "pykalman".
7Evening trading sessions are excluded. That is, the data span from 8:00 in the morning to 5:00 in the afternoon

for each day.
8https://datamine.cmegroup.com
9To mitigate the impact of the flash crash event and prevent overfitting, the Hill Estimator for May 6th is

computed exclusively using morning trading data (8:00 - 12:30).
10Due to the flash crash event in the afternoon trading session on May 6th, 2010, only the first half of the

trading data (8:00-12:30) is used to calibrate the model parameters for this trading day.
11The Monte Carlo simulated distance value D is dependent on the estimated set of parameters θ̂.
12Except for market maker inventory limit and fundamental trader trading frequency, which are key to gener-

ating realistic flash crashes.
13Due to no calibration results, the model parameters for the newly introduced spiking trader are given values

heuristically.
14The definition for "flare up" and "flash crash" are symmetrical: "flare up" is a rapid price rise followed by a

price drop.
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