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Abstract

Medical	innovations,	in	the	form	of	new	medication	or	other	clinical	practices,	evolve	and	spread	through	health	care	systems,	impacting	on
the	quality	and	standards	of	health	care	provision,	which	is	demonstrably	heterogeneous	by	geography.	Our	aim	is	to	investigate	the
potential	for	the	diffusion	of	innovation	to	influence	health	inequality	and	overall	levels	of	recommended	care.	We	extend	existing	diffusion
of	innovation	models	to	produce	agent-based	simulations	that	mimic	population-wide	adoption	of	new	practices	by	doctors	within	a	network
of	influence.	Using	a	computational	model	of	network	construction	in	lieu	of	empirical	data	about	a	network,	we	simulate	the	diffusion	of
competing	innovations	as	they	enter	and	proliferate	through	a	state	system	comprising	24	geo-political	regions,	216	facilities	and	over
77,000	individuals.	Results	show	that	stronger	clustering	within	hospitals	or	geo-political	regions	is	associated	with	slower	adoption
amongst	smaller	and	rural	facilities.	Results	of	repeated	simulation	show	how	the	nature	of	uptake	and	competition	can	contribute	to	low
average	levels	of	recommended	care	within	a	system	that	relies	on	diffusive	adoption.	We	conclude	that	an	increased	disparity	in	adoption
rates	is	associated	with	high	levels	of	clustering	in	the	network,	and	the	social	phenomena	of	competitive	diffusion	of	innovation	potentially
contributes	to	low	levels	of	recommended	care.

Innovation	Diffusion,	Scale-Free	Networks,	Health	Policy,	Agent-Based	Modelling

	Background

Studies	of	healthcare	practice	suggest	that	recommended	care	is	rarely	provided	ubiquitously.	In	a	US-based	study	it	was	found	that
between	10.5%	and	78.7%	of	patients	received	recommended	care,	depending	on	the	disease	or	condition	(McGlynn	et	al.	2003).	Given
that	these	levels	are	deemed	unacceptable	(Braithwaite	et	al.	2009 ;Moszynski	2010;Runciman	et	al.	2007),	there	is	value	in	better
understanding	how	new	recommended	practices	diffuse	through	populations	of	clinicians,	especially	at	state	and	national	scales.

Geographically-based	disparities	of	health	for	populations	are	measured	empirically	at	scales	ranging	from	within	cities	( Lovett	et	al.	2002),
across	states	(Subramanian	et	al.	2001),	to	between	rural	and	urban	regions	within	a	nation	( Liu	et	al.	1999;	Verheij	1996;	Verheij	et	al.
1998).	The	results	of	these	studies	show	that	inequalities	in	healthcare	provision	are	apparent	within	and	across	cities,	and	between	rural
and	urban	regions.	Other	factors	influencing	healthcare	inequality	include	socioeconomic	status	and	ethnicity	(Haynes	et	al.	2008 ;
Wilkinson	and	Pickett	2006 ).	The	range	and	scope	of	these	studies	suggests	that	healthcare	inequality	is	an	issue	of	global	concern.

Clinicians	take	up	new	practices	at	different	rates	( Coleman	et	al.	1957 ,	1966;Menzel	1960).	Studies	in	both	primary	(general	practice)	and
acute	care	(inside	hospitals)	provide	detailed	samples	of	how	doctors	decide	to	adopt	new	medication	practices	and	the	ways	in	which	they
receive	information	(Groves	et	al.	2002 ;	Peay	and	Peay	1984 ,	1988,	1990;	Prosser	et	al.	2003 ;	Prosser	and	Walley	2006 ).	Sources	of
information	reported	in	these	studies	include	clinicians'	colleagues,	pharmaceutical	company	representatives,	imposed	constraints	by
administrators	via	formularies,	published	clinical	trials,	reviews	and	guidelines.

Diffusion	of	innovation

Diffusion	of	innovation	(Rogers	2003)	has	been	examined	in	the	context	of	healthcare	( Achilladelis	and	Antonakis	2001 ;	Atun	et	al.	2007 ;
Fitzgerald	et	al.	2002 ;	Greenhalgh	et	al.	2008 )	and	medication	practices	(Cohen	2006;	Coleman	et	al.	1957 ).	One	of	the	purposes	for
studying	diffusion	of	innovation	is	to	identify	characteristics	of	individuals,	organisations	or	the	innovations	that	are	correlated	with	faster	or
slower	adoption	times.	In	the	seminal	study	on	the	diffusion	of	a	new	medication	practice	(Coleman	et	al.	1957 ,	1966),	the	proximity	of
doctors	in	regards	to	office	space	and	hospital	affiliation	were	tested	amongst	a	set	of	possible	ways	to	account	for	the	differences	in
adoption	times.

Models	using	empirical	information	(Bass	1969;Bulte	and	Stremersch	2004 )	have	shown	that	there	is	a	consistent	pattern	to	the	adoption
of	individual	innovations	over	time.	From	these	examples,	time	series	representing	the	cumulative	number	of	individuals	adopting	an
innovation	typically	follow	a	sigmoid	shape.	The	Gompertz	function	(see	Winsor	1932)	and	variants	have	been	used	to	model	observed
adoptions	(Bemmaor	and	Lee	2002 ;	Bulte	and	Stremersch	2004 ),	as	have	other	functions	that	produce	similar	shapes	( Bass	1969,Bass
2004).

Some	studies	have	been	conducted	to	extend	diffusion	of	innovation	models	to	include	more	than	one	innovation.	Norton	and	Bass	( 1987)
developed	a	model	of	sequential	technological	innovations	and	validated	their	model	using	empirical	sales	data	of	memory	and	logic
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circuits.	Others	have	investigated	the	effects	of	timing	and	competition	amongst	innovators	and	followers	using	a	variety	of	methods
(Bohlmann	et	al.	2002;	Cohen	2006;	Corrocher	and	Fontana	2006 ;	Fitzgerald	et	al.	2002 ;	Jensen	1983).

Network-based	models	are	of	interest	to	diffusion	of	innovations	research	because	they	consider	diffusion	of	innovations	as	a	process	of
social	contagion,	which	accounts	for	the	heterogeneity	of	networks	of	observed	social	interaction.	Amongst	the	examples	of	network-based
investigations	into	diffusion	of	innovations	or	standards	we	encountered	(Abrahamson	and	Rosenkopf	1997 ;	Beck	et	al.	2008 ;	Choi	et	al.
2010;	Coleman	et	al.	1966 ;	Ratna	et	al.	2008 ;	Strang	and	Nancy	Brandon	1993 ;	Valente	2005;	Weitzel	et	al.	2006 ),	the	network	sizes
range	from	21	to	1000	and	include	discussions	of	random,	small-world	and	clustered	structures.	To	our	knowledge,	there	have	not	been
any	studies	done	on	the	behaviour	of	competing	innovations	on	large	(at	least	an	order	of	magnitude	larger	than	the	existing	examples),
scale-free	networks	that	span	many	locations,	organisations	or	groups.

Network	structures	of	information	diffusion	and	influence	amongst	people

Networks	of	advice-giving	and	information	exchange	in	healthcare	settings	are	observed	using	a	variety	of	methods	within	the	social
network	paradigm	(Creswick	et	al.	2009 ;	Creswick	and	Westbrook	2010 ;	Fattore	et	al.	2009 ;	Harris	et	al.	2008 ;	Keating	et	al.	2007 ;	Lewis
et	al.	2008;	Lurie	et	al.	2009 ).	However,	the	size	of	each	of	the	networks	studied	is	relatively	small	-	most	within	a	single	geographical
location,	department	or	hospital.	The	networks	observed	in	each	of	these	examples	have	non-uniform	degree	distributions.	Outside	of	the
healthcare	domain,	there	are	limited	numbers	of	empirical	studies	concerned	with	the	structure	of	large	networks	of	individuals	exchanging
information	or	exerting	influence,	with	sizes	in	the	order	of	tens	of	thousands	to	millions	(Kosmidis	and	Bunde	2007 ;	Leskovec	and	Horvitz
2008;	Leskovec	et	al.	2008 ).	Characteristics	that	are	consistently	reported	in	empirical	studies	of	larger	networks	include	scale-free	degree
distributions,	shrinking	diameters	and	various	levels	of	clustering.

Aims	and	contributions

Our	aim	is	to	identify	how	social	processes	related	to	the	diffusion	of	innovation	may	lead	to	inequality	of	care	in	real	healthcare	systems.
We	hypothesise	that	increases	in	network	clustering	can	significantly	increase	the	disparity	of	healthcare	provision.	Given	the	lack	of	data
needed	to	test	this	hypothesis	empirically,	we	construct	a	computational	model	using	information	about	hospital	locations	and	sizes,	and	a
range	of	network	constructions	whose	properties	are	established	in	existing	models	of	influence	in	large	social	networks.

	Methods

Network	construction

Networks	were	constructed	using	publicly	available	information	on	the	staff	numbers	associated	with	healthcare	facilities	in	New	South
Wales	(NSW),	Australia.	NSW	has	nine	Area	Health	Services	(AHS)	and	indexes	facilities	within	each	AHS	using	one	of	five	remoteness
codes	(from	0	to	4,	representing	major	metropolitan	facilities	to	very	remote	facilities,	respectively).	Using	data	acquired	the	NSW	Health
Services	Comparison	Data	Book	(2009),	we	compiled	a	list	of	216	facilities	in	which	the	number	of	staff	varied	between	4	and	5020,	for	a
total	of	77,473.	The	216	facilities	are	classified	into	24	geo-political	regions	according	to	AHS	and	remoteness.	Amongst	the	24	regions,	we
have	included	the	Justice	Health	AHS,	for	which	facilities	are	not	distributed	within	a	contiguous	geographical	area	and	we	model	it	in	the
same	way.	In	Fig.	1,	the	size	and	remoteness	classification	for	each	of	the	hospitals	are	illustrated,	indicating	the	distribution	of	acute	care
services	across	NSW.
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Figure	1.	Healthcare	facilities	in	New	South	Wales	(NSW)	Australia,	differentiated	by	categories	of	size	(radius,
class-transformed)	and	remoteness	code	(colour).	Colours	blue,	aqua,	green,	orange	and	red	represent

metropolitan,	inner	regional,	outer	regional,	remote	and	very	remote	facilities,	respectively.	The	local	statistical
areas	are	shown	for	context.

Each	network	used	in	the	simulations	comprises	the	individuals	associated	with	each	facility	and	region,	and	the	connections	representing
influence	amongst	the	individuals.	Connections	are	defined	according	to	models	for	random	(Erdös	and	Rényi	1959)	or	scale-free
networks,	the	latter	of	which	we	implement	using	preferential	attachment	(Barabási	and	Albert	1999;	Newman	2001),	which	is	modified	to
incorporate	constraints	based	on	locality.	The	preferential	attachment	algorithm	is	extended	to	constrain	a	proportion	of	connections	within
a	facility	or	geo-political	region	whilst	maintaining	the	scale-free	distribution.	The	construction	algorithm	is	specified	in	the	Appendix.

Clustering	is	measured	using	a	mean	clustering	coefficient	(Wasserman	and	Faust	1994).	The	core	of	the	network	is	defined	by	the	largest
strongly-connected	component	(Cormen	et	al.	1990).	A	breadth-first	search	from	any	one	node	within	the	core	to	all	other	nodes	within
reach	defines	the	range	of	influence	from	the	core.	The	scale-free	degree	distribution	is	confirmed	by	measuring	the	goodness	of	fit	for	the
function	P(k)	=	k-γ	(where	P(k)	is	the	probability	that	an	individual	in	the	network	will	influence	k	other	individuals),	as	well	as	the	value	of
the	fitted	exponent.

Diffusion	mechanism

The	diffusion	mechanism	is	a	model	of	the	individual	decision-making	process	enacted	by	individuals	during	an	interaction	with	a
neighbour.	Clinicians	decide	on	the	adoption	of	a	new	practice	using	one	or	more	sources	of	information	(discussed	in	the	introduction)	and
based	on	perceived	benefits	versus	risks,	the	ability	to	try	without	commitment	or	cost,	and	the	capacity	to	observe	and	measure	results
(Cain	and	Mittman	2002 ).	The	diffusion	mechanism	used	here	condenses	most	of	these	factors	into	two,	namely	relative	advantage	Δ new,
which	includes	all	relative	benefits	of	using	the	new	practice	over	the	old	practice,	and	a	cost	coefficient,	c	new,	representing	the	initial	cost
(resistance)	of	the	implementation	of	a	new	practice.	Given	the	lack	of	an	empirical	basis	from	which	to	base	the	micro-scale	decision-
making	process,	we	make	a	series	of	assumptions	about	the	decision-making	process	and	the	impact	of	benefits	versus	costs.	We
assume	that	the	cost	has	a	larger	(exponential)	effect	on	the	decision-making	process	compared	to	the	(linear)	effect	of	the	relative
advantage.

Each	time	an	individual	is	given	the	opportunity	to	interact	with	a	neighbour	that	has	a	different	practice	from	his	or	her	own,	the	probability
of	switching	to	the	new	practice	is	given	as	follows:

P(	p	new)	=	e-cnew	(1	+	Δ	new)/2

The	relative	advantage	is	given	by	the	difference	between	the	values	of	the	old	and	new	practice,	both	of	which	are	on	the	interval	zero	to
one.	The	resulting	relative	advantage	modifies	the	probability	of	adopting	a	new	practice	linearly.	The	cost	of	implementation	can	take	any
value	greater	than	or	equal	to	zero	and	decreases	the	probability	of	adoption	exponentially	such	that	any	combination	of	values	and	costs
produces	a	probability	between	zero	and	one.	In	the	absence	of	relative	advantage	between	two	competing	practices	and	when
resistances	are	equal,	the	probability	of	changing	from	either	practice	to	the	alternative	is	equal.	The	expectation	is	that	practices	with
equal	costs	and	values	will	tend	towards	equal	use	in	the	system	over	time	(more	slowly	with	higher	resistance	to	change),	assuming	both
are	given	initial	opportunities	to	disperse.

The	important	simplifying	assumptions	made	in	the	model	of	decision-making	are	as	follows:

1.	 All	individuals	in	the	network	have	the	same	perception	of	relative	advantage	and	resistance	for	each	practice	and	these	values	are
constant	in	time.	In	the	real	system,	new	evidence	about	old	practices	can	influence	perceptions.

2.	 Each	new	practice	is	in	direct	competition	with	all	existing	practices.	In	real	healthcare	systems	new	practices	are	not	always	direct
substitutions.	For	example,	new	medication	practices	might	be	prescribed	for	a	subset,	superset	or	in	addition	to	existing
medications.

3.	 Individuals	in	the	network	hold	only	one	practice	at	a	time.	In	practice,	a	doctor	has	the	ability	to	decide	on	a	case-by-case	basis	and
may	therefore	not	perform	an	immediate	and	sustained	switch	to	a	higher-valued	practice.

4.	 A	change	in	practice	takes	place	only	through	influence	from	a	peer	or	an	exogenous	event.	This	implies	that	active	dissemination
such	as	visits	from	pharmaceutical	company	representatives	are	implicit	to	exogenous	events	and	other	information	sources	such	as
changes	in	guidelines	and	formularies	are	modelled	by	individuals	in	the	network	with	high	levels	of	influence	(very	high	out-degree).
Recall	that	high-degree	nodes	are	equally	as	fickle	as	other	nodes	(equal	number	of	incoming	connections),	drawing	their	advice
from	peers	and	exogenous	events	in	the	same	manner.	The	choice	is	a	consequence	of	choosing	simplicity	in	the	absence	of	an
empirical	basis.

Simulations

A	simulation	is	represented	by	a	sequential	series	of	time	steps	that	are	internally	synchronous	(see	the	Appendix).	In	each	time	step,	each
individual	in	the	simulation	is	given	an	opportunity	to	change	practices	if	any	of	the	neighbours	that	influence	them	hold	a	different	practice.
If	there	is	more	than	one	alternative	practice,	an	individual	will	choose	one	of	those	practices	with	a	probability	directly	related	to	the
proportions	of	each	alternative	practice	in	their	neighbourhood.	The	individual	will	then	apply	a	probability	test	as	described	in	the	previous
section.	The	time	steps	in	the	simulations	are	arbitrarily	defined	to	be	weekly.

Every	simulation	is	instantiated	with	all	individuals	practicing	a	single	initial	practice.	New	practices	enter	the	system	via	exogenous	events,
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which	are	defined	as	an	input	to	the	simulation.	Exogenous	events	defined	for	this	model	are	analogous	to	the	way	in	which	Norton	and
Bass	(1987)	implement	successive	generations	of	innovations	in	their	analytical	model.	In	the	case	of	these	simulations,	exogenous	events
are	defined	by	a	practice	and	a	time,	in	weeks,	relative	to	the	start	of	the	simulation.	Each	time	an	exogenous	event	is	triggered,	an
individual	is	chosen	at	random	and	the	practice	the	individual	holds	is	changed	to	the	practice	specified	in	the	exogenous	event.	For
example,	a	series	of	events	distributed	over	a	long	period	of	time	might	describe	a	marketing	scenario,	whereas	a	single	large	shock	in
which	a	large	number	of	individuals	change	practice	might	describe	the	withdrawal	of	a	drug	or	a	high-impact	media	shock.

To	test	for	disparity	in	adoption	times	as	a	consequence	of	greater	clustering,	we	use	repeated	simulations	with	the	same	cost	schedule,
value	schedule	and	set	of	exogenous	events,	and	vary	the	configuration	of	the	network	each	time.	The	output	is	a	time	series	of	practices
for	each	individual.	This	is	abstracted	to	produce	the	average	time	taken	within	each	facility	and	then	the	facility-based	timings	are
evaluated	for	disparity	by	size	or	remoteness.

To	look	for	behavioural	patterns	in	recommended	care,	we	run	repeated	random	simulations	in	which	the	configuration	of	the	network	has
equal	constraints	but	the	cost	schedule,	value	schedule	and	set	of	exogenous	events	are	modified.	The	output	is	used	to	capture	the
trajectory	of	each	practice,	as	the	proportion	of	the	population	practicing	each	practice	at	each	point	in	time.	The	trajectories	are	used	to
classify	individual	practices	in	terms	of	failure	or	success,	slow	or	fast	adoption.

	Results

We	firstly	describe	the	networks	used	in	the	simulations	in	regards	to	their	clustering,	average	separation	and	scale-free	nature.	Secondly,
we	provide	the	results	of	experiments	designed	to	find	disparity	in	adoption	times	that	are	a	consequence	of	clustering	by	region	or	facility.
Finally,	we	demonstrate	the	range	of	behaviours	that	result	from	changes	in	the	properties	of	the	competing	innovations	and	examine	its
effect	on	levels	of	recommended	care.

Network	structures

The	networks	produced	by	the	constrained	preferential	attachment	algorithm	are	observed	to	have	scale-free	degree	distributions,
clustering	coefficients	that	increase	in	concordance	with	increasingly	constrained	inter-region	and	inter-facility	connectivity,	and	reach	of
influence	from	the	network	core	that	exceeds	95%	in	all	scenarios	(Table	1).	For	networks	we	constructed	with	an	average	degree	of	4,	the
degree	distributions	follow	a	power	law	(with	exponent	around	1.80),	which	is	within	the	range	of	other	large	information-exchange
networks	such	as	scientific	collaboration,	email-based	communication	and	other	social	networks	(Ebel	et	al.	2002 ).

Table	1:	Network	structure	summary	statistics	offer	a	comparison	between	different	network	constructions	in
regards	to	clustering,	scale-free	degree	distribution	and	reach	of	influence.

Network clustering
coefficient

γ	from	P(k)	=	k-γ	(R2

for	fit)
reach	from	core
(percentage)

median	distance
(steps)

Random 2.24	×	10-5 N/A 100.0 8
Barabási-Albert 1.72	×	10-5 1.80	(0.995) 100.0 3
-with	90%	internal	to
region

2.31	×	10-4 1.81	(0.994) 99.99 6

-with	90%	internal	to
facility

2.93	×	10-3 1.80	(0.994) 99.99 9

-with	99%	internal	to
region

3.51	×	10-4 1.81	(0.995) 99.85 12

-with	99%	internal	to
facility

3.95	×	10-3 1.79	(0.994) 96.00 18

Network	effects	on	healthcare	inequalities

The	effect	of	clustering	on	healthcare	inequality	is	tested	by	running	repeated	simulations	over	networks	that	vary	in	clustering	-	networks
where	connections	between	individuals	are	increasingly	constrained	within	geo-political	regions	or	facilities.	Using	a	consistent	set	of	costs
and	values,	the	simulations	demonstrate	how	the	time	taken	to	adopt	a	new	practice	varies	with	size	of	facility	and	remoteness	code.	The
hypothesis	is	that	an	increase	in	clustering	is	associated	with	an	increase	in	the	time	taken	to	adopt	a	new	practice	by	smaller	facilities	in
comparison	to	larger	facilities.

The	adoption	time	for	a	facility	is	taken	to	be	the	mean	adoption	time	for	each	of	the	individuals	in	the	facility	(those	unreachable	from	the
core	are	not	included).	Results	of	these	simulations	show	that	there	is	a	significant	increase	in	the	disparity	of	adoption	times	as	clustering
is	increased	by	region	or	facility.	Note	that	because	size	and	remoteness	are	highly	correlated,	it	is	not	appropriate	to	perform	a	multiple
linear	regression	using	both	variables.	The	coefficient	of	determination	produced	would	be	artificially	high	as	a	consequence	of	the	co-
linearity.

Facility	size	(log-transformed)	and	remoteness	are	used	as	explanatory	variables	in	two	separate	linear	regressions	for	the	response,
which	is	the	adoption	time	in	each	facility.	For	random	and	preferential	attachment	constructions	that	are	not	constrained	by	region	or
facility,	the	variance	in	size	or	remoteness	do	not	explain	the	variance	in	adoption.	When	clustering	is	introduced	and	increases,	both
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3.6

3.7

3.8

remoteness	and	size	exhibit	significant	disparity	in	adoption	times	(Fig.	2).	Longer	adoption	times	are	correlated	with	smaller	sizes	and
greater	remoteness.	Fig.	2	is	interpreted	to	mean	that,	for	example,	a	network	that	is	constrained	such	that	90%	of	connections	are	internal
to	facilities	results	in	a	7	to	8	week	difference	in	mean	adoption	times	for	each	step	increase	in	remoteness.

Figure	2.	The	coefficients	of	linear	regressions	for	fifty	simulations	of	the	six	scenarios,	with	means	(circles)	and
confidence	intervals	for	the	mean	(bars).	Coefficients	for	log-transformed	size	and	ordinal	remoteness	are	given

in	red	and	blue	respectively.

More	specifically,	clustering	by	region	produces	a	disparity	that	increases	with	increasing	clustering	and	is	significant	for	both	explanatory
variables	beyond	a	99%	level	of	clustering.	Similarly,	increasing	clustering	by	facility	increases	the	disparity	in	adoption	times	-	however
the	effect	is	more	dramatic,	reaching	significant	levels	at	lower	levels	of	clustering	and	producing	greater	disparity.	It	is	therefore	evident
that	clustering	influences	disparity	in	a	manner	that	depends	on	the	severity	of	the	clustering	as	well	as	the	dimensions	along	which	the
connections	are	constrained.

Diffusion	and	competition	effects	on	levels	of	recommended	care

By	repeated	simulations,	we	describe	the	average	level	of	recommended	care	for	a	highly-clustered	network.	Recommended	care	is
defined	as	a	time	series	-	the	proportion	of	individuals	that	practice	the	most	valuable	practice	available	at	the	given	time	in	the	simulation.
The	500	simulations	are	instantiated	with	a	number	of	new	practices,	which	is	drawn	from	a	uniform	distribution	(1	to	10).	The	number	and
timing	of	exogenous	events	is	taken	from	a	Poisson	distribution	(λ=0.05),	uniformly	distributed	amongst	the	set	of	new	practices.	Practice
values	are	taken	from	a	uniform	random	distribution	(0.00	to	1.00)	and	costs	values	are	taken	from	a	lognormal	distribution	(the	associated
normal	distribution	has	μ=0,	σ=1).	All	networks	used	in	the	simulations	feature	90%	of	links	internal	to	facilities	and	99%	of	links	internal	to
geo-political	regions.	The	time	period	represented	by	each	of	the	simulations	is	10	years,	with	every	individual	in	the	network	given	the
opportunity	to	change	practice	once	a	week.

The	level	of	recommended	care	is	taken	to	be	the	proportion	of	doctors	practicing	the	highest-valued	practice	available	in	the	system	at
any	time.	Using	this	definition,	a	trajectory	representing	recommended	care	in	the	system	is	defined,	as	illustrated	in	Fig.	4	for	randomly-
generated	systems.	Of	the	500	randomly-generated	simulations,	the	highest-valued	practice	failed	to	propagate	beyond	1%	in	148	of	the
simulations	as	a	result	of	the	vagaries	of	network	interactions	or	prohibitively	high	costs	in	comparison	to	the	competing	practices.	Of	the

http://jasss.soc.surrey.ac.uk/13/4/8.html 5 07/10/2015



293	simulations	in	which	recommended	care	practices	reached	at	least	50%	of	the	individuals	in	the	network,	the	median	time	taken	to
reach	that	level	was	80	weeks	(with	an	inter-quartile	range	of	35.8	to	212	weeks)	and	the	mean	level	of	recommended	care	during	the	ten
years	for	this	subset	is	61.8%	(with	an	inter-quartile	range	of	43.0%	to	93.2%).	Our	interpretation	is	that	patterns	of	recommended	care	are
sensitive	to	the	values	and	costs	of	competing	practices	as	well	as	the	timing	and	location	of	exogenous	events.	This	is	in	line	with
empirical	research	showing	that	entry	order	does	not	predict	majority	share	of	sales	for	medications	(Cohen	2006).
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4.5

4.6

4.7

Figure	4.	Example	simulations	of	randomly-generated	systems	of	competing	practices	over	ten	years.	The
highest-valued	practice	is	indicated	by	a	black	curve	and	the	individual	competing	practices	are	given	by	the

other	coloured	curves.	The	four	scenarios	represent	different	values,	costs	and	number	of	practices,	but	always
for	networks	where	90%	of	links	are	intra-facility	and	99%	are	intra-region.

	Discussion	and	Conclusions

The	dynamics	of	competing	innovations

In	networks	where	a	large	proportion	of	individuals	influence	very	few	and	a	small	proportion	influence	a	very	large	proportion,	the
dynamics	of	influence	and	information-exchange	are	significantly	different	to	the	dynamics	produced	under	the	assumption	of
homogeneous	mixing	(as	in	a	random	network).	Under	the	assumption	that	the	networks	produced	here	are	adequate	models	of	influence
about	medical	practices	in	the	real	world,	it	is	shown	that	the	different	dynamics	lead	to	different	adoption	dynamics.

By	introducing	a	bias	towards	connecting	co-located	individuals	in	the	network,	while	maintaining	the	overall	number	of	connections,	it	is
possible	to	show	that	stronger	clustering	leads	to	slower	adoption	in	smaller	and	less	well-connected	facilities	and	regions.	The	effect	of
clustering	is	significant,	producing	an	average	of	two	weeks	difference	per	ordinal	remoteness	category	under	moderate	clustering	by
facility,	and	eleven	weeks	difference	under	high	levels	of	clustering	by	facility.	The	nature	of	interactions	amongst	the	network	of	clinicians
and	the	administrators	that	support	their	work	is	rarely	discussed	in	research	on	healthcare	inequality	-	the	results	from	the	simulations
presented	here	demonstrate	the	possibility	of	network-mediated	inequalities,	which	we	believe	warrant	further	investigation.

Levels	of	recommended	care	depend	on	each	of	the	factors	relating	to	the	introduction	and	uptake	of	new	practices,	namely	the	number	of
competing	practices,	differences	in	values	and	costs,	and	the	vagaries	of	the	network	structure.	For	the	vast	majority	of	network	structures
we	tested,	as	well	as	the	different	scenarios	of	cost,	value	and	exogenous	events,	we	found	that	levels	of	recommended	care	were	well
below	one	hundred	percent	and	the	results	are	highly	variable.	The	conclusion	that	may	be	drawn	from	these	experiments	is	that	the
nature	of	adoption	in	a	large	network	of	influence	can	contribute	to	low	levels	of	recommended	care.	This	has	implications	for	the	study	of
research	translation	in	medicine	and	the	sporadic	measurement	of	recommended	care,	namely	that	it	is	important	to	consider	the
unexpected	consequences	of	social	phenomena	associated	with	the	adoption	of	new	standards	of	recommended	care	amongst	clinicians.

Limitations

The	results	are	not	calibrated	to	real-world	examples	of	healthcare	practices	because	we	lack	spatially-explicit	data	describing	changing
practices	at	a	state	or	national	level.	Further	investigation	into	the	perceived	costs	and	values	of	individual	practices	may	also	be	required
to	empirically	validate	the	model.	Population-wide	sales	data	(which	is	available	for	the	subset	of	practices	relating	to	medications	and
some	diagnostic	procedures)	has	been	shown	to	be	affected	in	ways	that	make	it	difficult	to	determine	the	level	of	imitation	versus
innovation	in	analytical	models	of	diffusion	(Bemmaor	and	Lee	2002 ;	Bulte	and	Stremersch	2004 )	and	thus	may	not	be	appropriate	for
validating	the	analogous	network-based	computational	model.

The	manner	in	which	we	have	chosen	to	construct	the	network	on	a	large	scale	introduces	a	bias	towards	the	disconnection	of	small
facilities	at	very	high	levels	of	clustering	(at	99%	by	facility,	4%	of	individuals	are	unreachable	from	the	main	core)	-	meaning	that	only
exogenous	events	occurring	within	the	smaller	facility	can	begin	a	facility-wide	change	in	practice	within	a	disconnected	facility.	In	the
model,	we	assume	a	uniform	in-degree	for	each	individual	(under	the	basic	assumption	that	individuals	have	a	consistent	capacity	for
absorbing	information	from	others	within	the	system).	However,	we	do	not	know	of	any	empirical	studies	that	compare	rural	facilities	and
major	metropolitan	facilities	in	regards	to	how	well	they	are	connected	to	exogenous	sources	of	information	such	as	geographically-distant
colleagues,	pharmaceutical	company	representatives,	and	administrative	and	journal	publications.

While	the	categories	of	influence	are	known,	the	magnitude	of	the	influence	from	the	various	sources	of	influence	on	doctors	is	not	known
and	variability	in	influence	may	change	the	shape	of	the	network.	Anecdotally,	medication	practices	are	understood	to	be	influenced
heavily	by	marketing	practices	employed	by	pharmaceutical	companies	(Angell	2008;Prosser	and	Walley	2006 ),	in	addition	to	published
research	and	the	regulatory	systems	that	define	formularies.	For	example,	a	strong	regulatory	system	might	result	in	a	highly	centralised	or
hierarchical	network	where	information	spreads	from	a	central	point	via	dedicated	communication	channels.	Alternatively,	a	system
regulated	by	price	and	competition	might	result	in	a	highly-clustered	network	that	depends	critically	on	exogenous	events	for	the	equitable
adoption	of	new	practices.	Since	the	exact	configuration	of	the	network	is	not	known,	we	have	tested	models	of	the	network,	using	a	range
of	clustering	and	other	properties	exhibited	by	other	networks	of	influence	and	information	exchange.

Summary	of	contributions

Our	contribution	here	is	threefold.	Firstly,	we	describe	the	construction	and	simulation	of	a	computational	model	of	competing	innovations
in	which	the	characteristics	of	the	innovations	and	the	topology	of	the	network	through	which	the	innovations	diffuse	may	be	modified.
Secondly,	we	demonstrate	that	changes	in	network	clustering	results	in	significant	disparity	in	adoption	times	within	a	population,	implying
a	possible	causal	link	between	communication	patterns	and	inequality	of	healthcare	provision	in	large	populations.	Thirdly,	we	show	that
there	are	an	abundance	of	scenarios	in	which	average	levels	of	recommended	care	are	maintained	at	levels	well	below	one	hundred
percent	as	a	consequence	of	competition	and	diffusion	modifying	adoption	rates	in	concert,	suggesting	that	the	mechanisms	associated
with	competition	and	diffusion	may	partially	explain	the	low	levels	of	recommended	care	observed	in	real-world	healthcare	systems.

	Appendix

Specification	for	the	modified	preferential	attachment	routine

GET Facility, an index of length n representing the facilities
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5.1

GET Region, an index of length n representing the regions
GET k, the expected in-degree for each node
GET f, the proportion of connections allowed to be external to facilities
GET r, the proportion of connections allowed to be external to regions
SET Pool to [1..n], a pool of nodes in the network
SET Degree, an all-zero vector of length n 
SET A, the adjacency matrix to an all-zero matrix of size n by n
SET K, k elements removed at random from Pool
FOR each element ki in K
 SET A(ki,kj) to 1, for all j not equal to i
 INCREMENT Degree(ki) by k-1
ENDFOR
REPEAT remove target, an element from Pool
 FOR each new connection from 1 to k
  SET neighbours, the pre-existing connections in A, directed at target
  IF the next random value is less than r, THEN
   SET Source, the set [1..n]
  ELSEIF random is less than f, THEN
   SET Source, the indices of Region equal to the target's region 
  ELSE
   SET Source, the indices of Facility equal to the target's facility 
  ENDIF
  SET Source, remove any instances of target or neighbours
  IF Source is empty, THEN
   SET Source, the set [1..n]
   SET Source, remove any instances of target or neighbours
  ELSE
   IF the sum of the elements in Degree indexed in Source is zero, THEN
    SET index, one element of Source chosen at random
   ELSE
    SET index, the index of the first element surpassed by the next 
    random value in a vector comprised of the normalised cumulative sum of
    Degree for only elements in Source
   ENDIF
  ENDIF
  SET A(index,target) equal to one
  INCREMENT Degree(index)
  INCREMENT Degree(target)
 ENDFOR
UNTIL there are no more elements left in Pool

Note	that	the	facility	and	region	constraints	take	precedence	over	the	preferential	attachment	and	there	is	no	strict	chronology	of	nodes.
For	example,	if	a	connection	is	constrained	within	a	facility	and	no	node	can	be	found	with	an	existing	connection	(in	or	out),	then	another
node	is	selected	from	within	the	facility	at	random	to	be	the	source,	rather	than	selecting	preferentially	by	degree	outside	of	the	facility.	If
the	two	variables	associated	with	the	constraints	(	f	and	r)	are	set	to	zero,	then	the	algorithm	becomes	the	typical	form	of	preferential
attachment	(see	main	text).	Note	also	that	it	is	necessary	to	count	connections	in	both	directions	as	increases	in	degree	for	a	node	in	a
directed	network	as	an	extension	to	preferential	attachment	algorithms	that	are	designed	for	undirected	networks.

Specification	for	a	simulation	of	diffusing	and	competing	practices

GET A the n by n adjacency matrix representing the network
GET T the vector containing exogenous events as indices of practices
GET V the value schedule of length x, the number of practices
GET C the cost schedule of length x, the number of practices
SET R an all zero matrix of size n by the length of T
FOR each time step t in a finite simulation
 IF T(t) is not empty THEN
  FOR each element Tk in T(t)
   SELECT i, an individual
   SET R(i,t) as the practice specified by Tk
  ENDFOR
 ENDIF
 FOR each individual, i
  SET N to be the non-zero elements of row i in A
  SELECT Ns the subset of N such that R(Ns,t)≠R(i,t)
  IF Ns is not empty THEN
   SELECT Nk, one element of Ns
   IF a random value is greater than P(R(Nk,t),R(i,t))* THEN
    SET R(i,t+1) to R(Nk,t)
   ELSE
    SET R(i,t+1) to R(i,t)
   ENDIF
  ENDIF
 ENDFOR
ENDFOR 
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5.2 The	simulation	of	diffusion	for	competing	practices	uses	the	probability	function	specified	in	the	main	text	(at	the	location	specified	by	the
asterisk)	that	takes	the	value	difference	between	the	current	and	replacement	practices	and	the	cost	of	implementation	of	the	replacement
practice	from	the	cost	schedule	and	the	value	schedule	to	determine	the	likelihood	of	changing	practice.	As	discussed	in	the	main	text,
positive	value	differences	and	lower	costs	are	both	associated	with	a	higher	probability	of	change.	While	it	is	a	simple	model	of	the
decision-making	process	of	an	individual,	it	produces	the	sigmoid	shape	of	diffusion	in	the	base	case	and	additionally	represents	more
complicated	behaviours	expected	of	competing	practices.
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