
©Copyright	JASSS

Stuart	Rossiter	(2015)

Simulation	Design:	Trans-Paradigm	Best-Practice	from	Software	Engineering

Journal	of	Artificial	Societies	and	Social	Simulation 	18	(3)	9
<http://jasss.soc.surrey.ac.uk/18/3/9.html>

Received:	14-Apr-2014				Accepted:	15-Apr-2015				Published:	30-Jun-2015

Abstract

There	are	growing	initiatives	to	apply	software	engineering	(SE)	best-practice	to	computational	science,	which	includes	simulation.	One	area	where	the	simulation	literature	appears	to	be	particularly	light	is	in	the
overall	structural	design	of	simulations,	and	what	architectures	and	features	are	valuable	for	what	reasons.	(Part	of	the	problem	is	that	parts	of	this	knowledge	are	abstracted	away	in	simulation	toolkits	which	are
often	not	easily	comparable,	and	have	different	conceptual	aims.)	To	address	this,	I	outline	three	key	software	properties	which	embody	SE	best-practices,	and	then	define	an	'idealised'	software	architecture	for
simulation—what	SE	would	call	a	reference	architecture—which	strongly	exhibits	them.	I	show	that	this	is	universal	to	all	simulations	(largely	because	modelling-paradigm-specific	detail	is	encapsulated	into	a
'single	black	box'	layer	of	functionality)	but	that	simulation	toolkits	tend	to	differ	in	how	they	map	to	them;	this	relates	to	the	aims	of	the	toolkits,	which	I	provide	a	useful	categorisation	of.	I	show	that,	interestingly,
there	are	several	core	features	of	this	architecture	that	are	not	fully	represented	in	any	simulation	toolkit	that	I	am	aware	of.	I	present	a	library—JSIT—which	provides	some	proof-of-concept	implementations	of
them	for	Java-based	toolkits.	This	library,	and	other	ideas	in	the	reference	architecture,	are	put	into	practice	on	a	published,	multi-paradigm	model	of	health	and	social	care	which	uses	the	AnyLogic	toolkit.	I
conclude	with	some	thoughts	on	why	this	area	receives	so	little	focus,	how	to	take	it	forwards,	and	some	of	the	related	cultural	issues.

Keywords:
Software-Engineering,	Simulation-Toolkits,,	Reference-Architecture,	Best-Practice

Introduction

1.1 	As	much	of	science	becomes	more	and	more	dependent	on	software,	there	has	been	increasing	interest	in	promoting	the	development	of	scientific	software	which	is	reliable	(well-tested),	reusable,	well-maintained

(sustainable),	and	can	be	used	in	ways	which	provides	open,	reproducible	research.	Such	initiatives	have	been	championed	by	groups	such	as	the	UK's	research-council-funded	Software	Sustainability	Institute[1];

the	Science	Code	Manifesto[2]	and	related	authors	(Stodden	et	al.	2010;	2013);	and	the	Software	Carpentry	movement[3]	(Wilson	et	al.	2014;	Wilson	2014).	By	definition,	these	aims	involve	selectively	applying
software	engineering	(SE)	best-practice	ideas	to	the	development	of	scientific	software,	including	simulation.

1.2 	If	we	restrict	ourselves	to	simulation	software,	and	to	simulation	design	(ignoring	aspects	of	development	process	and	code	access),	there	are	three	main	strongly-related	areas	of	best-practice	which	I	would
regard	as	universal	to	all	simulation	(precisely	because	they	are	universal	to	all	software),	and	which	are	echoed	in	computational	science	best-practice	papers	(Sandve	et	al.	2013;	Wilson	et	al.	2014),	software

engineering	textbooks	(Sommerville	2011),	and	practitioner	best-practice	handbooks	(McConnell	2004);	all	backed	by	empirical	research	(Oram	&	Wilson	2010)[4]:

Automated	Reproducibility
Being	able	to	recreate	any	run	of	the	software—for	testing	purposes	and	to	check	claims	about	its	outputs—in	an	automated	way	(not	just	via	manual	recreation	from	documentation).	This	includes	provenance	(and
perhaps	automated	recreation)	of	the	entire	computational	environment	(since	results	can	vary	based	on	things	like	the	versions	of	external	libraries	used).

Cohesive,	Loosely-Coupled	Design	
A	design	separated	into	components	with	well-defined	(cohesive)	functions,	and	minimised	dependencies	on	other	components	(loose-coupling).	This	massively	aids	the	debugging,	maintenance	and	reusability	of
the	code.	This	often	involves	reusing	recurring	structural	and	behavioural	forms	that	have	been	shown	to	help	solve	common	design	issues:	SE	calls	such	forms	design	patterns	(Gamma	et	al.	1995;	Buschmann
1996).	Such	forms	help	establish	a	shared	software	design	vocabulary	at	a	higher	level	of	abstraction.

Testability	
Being	designed	in	a	way	that	facilitates	testing	at	different	levels	(e.g.,	single	class,	component	or	whole	system)	and,	where	possible,	includes	automated	tests	as	part	of	the	software	deliverable.	In	particular,
automated	tests	provide	a	bank	of	regression	tests	which	can	be	continually	re-run	to	check	that	changes	have	not	caused	bugs	elsewhere	(i.e.,	caused	previously	successful	tests	to	fail).	Such	tests	become	the
central	driver	of	the	development	process	in	the	increasingly-used	Test-Driven	Development	(TDD)	approach	(Jeffries	&	Melnik	2007).

1.3 	Software	exhibiting	these	properties	is	highly	reusable	(given	access	to	it)	and	its	implementation	will	typically	involve	reuse	of	existing	software	where	it	exists.	In	the	simulation	domain,	there	are	many	toolkits
which	provide	reusable,	well-tested	software	for	simulation	development	which	include	(a)	templates	for	model	elements	relating	to	one	or	more	modelling	paradigms—such	as	agent-based	modelling	(ABM),

discrete-event	simulation	(DES)	or	system	dynamics	(SD);	and	(b)	supporting	infrastructure	code	to	create	and	run	models,	such	as	for	visualisations,	simulation	control	interfaces,	and	input/output	handling.[5]

1.4 	There	has	been	some	emerging	work	which	tries	to	define	new	simulation	frameworks	and	abstractions	which	better	embody	some	of	these	principles;	e.g.,	the	modular	architecture	and	best-practice	of	JAMES	II

(Uhrmacher	2012;	Himmelspach	&	Uhrmacher	2007),	or	test	and	experiment	specifications	which	are	model-based	(Djanatliev	et	al.	2011)	or	domain-language-based	(Ewald	&	Uhrmacher	2014).[6]

However,	there	appears	to	be	virtually	no	discussion	of	these	issues	more	generally	for	'mainstream'	simulation	using	widely-used	toolkits	such	as,	in	the	ABM	case,	NetLogo	(Tisue	&	Wilensky	2004),	Repast
Simphony	(North	et	al.	2013),	MASON	(Luke	et	al.	2005),	or	AnyLogic	(Borshchev	&	Filippov	2004).	In	particular,	there	is	nothing	which	allows	simulation	practitioners	to	understand	how	these	ideas	might	be
embodied	in	some	best-practice	simulation	design,	and	to	therefore	have	some	frame	to	assess	existing	toolkits	and	make	more	informed	decisions	on	their	choice	of	simulation	platform	(and	thus	understand	the

strengths	and	weaknesses	of	their	simulation	software	design	with	respect	to	this	best-practice).[7]

1.5 	If	we	restrict	ourselves	to	the	ABM	domain	for	now,	literature	which	does	not	really	discuss	this	best-practice	includes	(a)	textbooks	(Railsback	&	Grimm	2012;	Gilbert	&	Troitzsch	2005;	Miller	&	Page	2007;	Grimm	&
Railsback	2005);	(b)	toolkit	comparisons	(Allan	2010;	Nikolai	&	Madey	2009;	Railsback	et	al.	2006);	(c)	toolkit	description	papers	(Tisue	&	Wilensky	2004;	Luke	et	al.	2005;	North	et	al.	2013;	Borshchev	&	Filippov
2004);	and	(d)	best-practice	papers	(Ropella	et	al.	2002;	North	&	Macal	2014).	Grimm	&	Railsback	(2005,	§8)	and	North	&	Macal	(2014)	get	closest,	mentioning	such	things	as	automated	testing,	design	patterns
and	separation	of	model	from	visualisation.	However,	none	of	them	really	discuss	how	this	relates	to	concrete	design	principles.	Toolkit	description	papers	discuss	some	features	which	embody	some	of	these	best-
practices,	but	do	not	explicitly	make	the	connections	or	discuss	alternatives.	There	are	also	a	few	recent	papers	focusing	on	automated	testing	and	TDD	(Gürcan	et	al.	2013;	Collier	&	Ozik	2013),	but	not	on	how	to

architect	simulations	for	testability.[8]

1.6 	Outside	of	ABM	(but	from	a	less	rigorous	exploration),	it	appears	to	be	a	similar	situation.	The	practical	operational	research	literature	(which	includes	some	of	the	ABM	references	above)	is	reasonably	interested
in	simulation	software	development	but,	again,	typically	in	process,	and	in	paradigm-specific	conceptual	design.

Aims

1.7 	This	paper	aims	to	do	several	things:	(1)	draw	attention	to	this	gap	and	provide	(indirectly)	a	rough	guide	to	relevant	SE	and	simulation	literature;	(2)	provide	a	frame	which	captures	some	best-practice	simulation
architecture	and	can	be	used	to	generically	understand	how	simulations	are/can	be	constructed	(section	2);	(3)	use	this	frame	for	a	better	understanding	of	simulation	toolkits	and,	in	particular,	highlight	some
consistent	omissions	(section	3);	(4)	develop	a	software	library	which	begins	to	address	the	omissions	for	a	broad	family	of	toolkits	(section	4);	and	(5)	provide	a	case	study	where	the	frame	and	library	are	used	on
a	published,	multi-paradigm	simulation	model	using	the	AnyLogic	toolkit	(section	5),	where	AnyLogic	was	chosen	for	particular	reasons.

1.8 	To	make	these	ideas	relevant	for	all	(dynamic)	simulations,	the	abstraction	of	the	real-world	system	is	cleanly	separated	from	the	rest	of	the	simulation	(see	section	2)	and	not	'opened	up';	we	shall	see	that	there	is
still	lots	of	detail	to	work	with	in	the	remainder.

1.9 	In	the	final	conclusions	(section	6),	I	draw	back	to	consider	why	this	knowledge	gap	seems	to	exist,	and	some	of	the	more	general	cultural	barriers	in	applying	this	SE-oriented	thinking.	I	also	discuss	where	this
work	fits	with	respect	to	the	emerging	ideas	mentioned	earlier.	Although	I	believe	that	the	ideas	here	are	largely	universal,	I	focus	mostly	on	ABM	modelling	in	this	paper,	so	the	conclusions	also	reflect	briefly	on	this
broader	applicability.

	A	Best-Practice	Paradigm-Independent	Frame

2.1 	There	are	some	recurring,	generic	SE	design	patterns	which	are	known	to	strongly	assist	in	creating	software	which	exhibits	the	properties	in	section	1;	these	still	need	applying	to	a	simulation	domain	using
domain	understanding,	and	many	interpretations	are	possible.	Equally,	there	are	also	some	simulation-specific	features	which	I	believe	are	also	important	for	simulations	to	exhibit	the	best-practice	properties,	and
are	less	directly	related	to	generic	SE	design	patterns.

http://jasss.soc.surrey.ac.uk/18/3/9.html 1 21/10/2015

/admin/copyright.html
../../JASSS.html
http://jasss.soc.surrey.ac.uk/18/3/9/rossiter.html

2.2 	I	develop	these	ideas	to	create	a	kind	of	'idealised'	software	architecture	for	simulations.	In	SE	terms,	this	is	known	as	a	reference	architecture:	“[they]	capture	important	features	of	system	architectures	in	a
domain.	Essentially,	they	include	everything	that	might	be	in	an	application	architecture	[...]	The	main	purpose	[...]	is	to	evaluate	and	compare	design	proposals,	and	to	educate	people	about	architectural
characteristics	in	that	domain”	(Sommerville	2011,	§6.4).	'Software	architecture'	is	a	slightly	contentious	term,	but	I	like	Fowler's	take	(Fowler	et	al.	2003,	p.1):

“'Architecture'	is	a	term	that	lots	of	people	try	to	define,	with	little	agreement.	There	are	two	common	elements:	One	is	the	highest-level	breakdown	of	a	system	into	its	parts;	the	other,	[design]
decisions	that	are	hard	to	change.”

2.3 	The	second	part	of	Fowler's	quote	is	important	here:	modellers	should	think	about	these	issues	up-front,	because	it	is	difficult	to	retrospectively	re-design	a	model	to	match	this	architecture	and,	perhaps	more
relevantly,	the	choice	of	simulation	toolkit	will	affect	how	possible	this	is	and	how	much	work	is	involved.	Toolkits	typically	also	present	themselves	conceptually	in	a	particular	way,	dependent	on	their	design	goals,

which	will	cause	differing	degrees	of	'dissonance'	with	the	reference	architecture	even	if,	underneath,	the	toolkit	code	is	directly	mappable	to	it.[9]

2.4 	The	reference	architecture	is	cumulatively	built-up	in	the	sub-sections	which	follow	(and	in	figures	1–3).	We	will	see	concrete	examples	of	the	architecture	in	practice	in	sections	3	and	5.

Layered	Functionality

2.5 	A	key	SE	best-practice	is	to	separate	domain	model	code—the	code	which	represents	the	concepts	of	the	domain	which	the	software	relates	to	(e.g.,	banking,	aircraft-control)—from	non-domain-model	code	as

part	of	a	layered	architecture	(Evans	2004;	Fowler	et	al.	2003):	functionality	is	split	into	layers,	where	each	layer	has	a	well-defined	role	and	is	dependent	only	on	layers	'below'	it.[10]	This	directly	forms	a	cohesive,
loosely-coupled	design,	but	also	aids	testability	(in	more	easily	being	able	to	compose	parts	of	the	application	needed	for	different	levels	of	testing)	and	automated	reproducibility	(in	terms	of	isolating	the	core	part—
the	domain	model—whose	behaviour	needs	to	be	reproduced).

2.6 	In	the	case	of	simulation,	the	domain	model	is	the	abstraction	of	the	relevant	real-world	system	(simuland)	as	some	set	of	behavioural	entities	acting	and	interacting	over	simulated	time,	each	with	their	own	state.
This	thus	includes	the	overall	handling	of	space	and	time.	(Time,	for	example,	is	typically	handled	via	fixed	time	steps	or	a	discrete-event	schedule.)	Modelling	paradigms	are	encapsulated	in	this	layer:	they	define
what	these	entities	can	or	should	be,	how	they	may	act	or	interact,	and	how	space	and	time	are	represented.

2.7 	How	this	architecture	works	is	best	understood	by	describing	the	full	set	of	layers	from	the	bottom	upwards,	summarised	in	figure	1.	(I	do	not	always	explicitly	state	it,	but	the	descriptions	should	make	clear	how
each	layer	will	only	need	the	services	of	layers	beneath	it.)

Figure:	Layered	functionality	for	simulation	code,	which	defines	a	generic
layered	architecture.	This	is	extended	in	figures	2	and	3.

Utilities.	
General	utilities	(not	specific	to	the	domain	model	or	upper	layers)	for	(a)	data	types	(e.g.,	linked	lists);	(b)	input/output	capabilities,	such	as	to/from	different	file	formats;	and	(c)	general	algorithmic	facilities	such	as

random	number	generators,	probability	distributions	or	differential	equation	numerical	solvers.[11]	These	can	interact;	e.g.,	probability	distributions	could	be	initialised	from	external	files.

Domain	Model.	
The	code	representing	the	abstraction	of	the	real-world	system,	including	the	representation	of	space	and	time.

Execution	Control.	
How	the	domain	model	is	actually	executed,	which	typically	amounts	to	instantiating	a	'root'	object	and	stepping	through	a	schedule	of	actions	(provided	by	a	domain	model	component)	to	'unfold'	time	dynamically.
Because	non-domain-model	objects	also	need	to	interleave	their	actions	in	simulated	time,	this	layer	includes	that	capability.	This	is	a	'thin'	layer,	but	nevertheless	a	well-defined	one.

Meta-Data	Capture.	

Code	(scheduled	in	simulation	time)	to	capture	and	calculate	meta-data;	i.e.,	derived	model	state	(possibly	held	as	a	time	series	to	capture	changes	over	time)	or	atomic	model	state	captured	over	time.[12]

This	layer	includes	any	writing	of	outputs	to	file	(or	database)	because	this	can	be	tightly	coupled	with	meta-data	capture;	in	larger-scale	simulations,	time	series	data	may	be	captured	in	a	rolling	window	for
storage	reasons	(perhaps	with	this	window	used	for	visualisation),	with	outputs	written	to	file	as	they	'drop	out	of'	the	window	(or	via	some	other	buffering	strategy).

State	&	Control	Presentation.	
The	parts	of	the	user	interface	which	present	model	state	and	controls	as	part	of	a	user	interface.	The	presentation	may	be	visual	or	textual.	Where	current	model	state	is	being	presented,	this	directly	uses	the
Domain	Model	layer.	If	meta-data	is	being	presented,	this	uses	the	Meta-Data	Capture	layer.

http://jasss.soc.surrey.ac.uk/18/3/9.html 2 21/10/2015

In	particular,	note	that	a	given	domain	model	might	have	multiple	presentations,	with	multiple	alternative	visualisations	per	component;	such	solutions	require	a	layered	domain	model	separation.

Experiments	Definition.	
The	parts	of	the	user	interface	which	support	the	definition	of	simulation	runs	(experiments),	possibly	including	multi-run	experiments.	This	mainly	consists	of	how	model	inputs	are	defined	and	passed	on	to	the
model,	and	any	automated	manipulation	of	them	across	multiple	runs	for	things	like	sensitivity	analysis.	Because	this	tends	to	be	particularly	generic	to	any	simulation	(and	modellers	using	multiple	toolkits	may
want	a	vendor-neutral	solution),	separate	experimental	platforms	exist	(Gulyás	et	al.	2011),	and	I	am	aware	of	simulation	consultancies	who	develop	their	own	in-house.

Relevant	Cross-Cutting	Concerns

2.8 	There	are	some	capabilities	that	require	code	across	most	or	all	layers;	i.e.,	the	functionality	cannot	be	isolated	into	a	single	layer.	In	SE,	these	are	called	cross-cutting	concerns.	A	good	example	outside	of	our
reference	architecture	is	the	capability	to	'freeze'	simulation	state	to	file,	and	'reload'	a	simulation	later	to	run	from	that	point,	which	many	simulation	toolkits	support.	This	typically	relies	on	serialisation	technologies
in	the	underlying	programming	language,	but	requires	that	all	the	objects	that	are	going	to	be	serialised	are	coded	in	a	particular	way.	In	some	cases,	one	might	just	want	to	freeze	the	state	of	the	domain	model	but,
in	others,	there	might	also	be	a	need	to	capture	the	state	of	the	model	presentation	(so	higher	layers	also	need	to	be	coded	to	support	serialisation).

Figure	2:	Figure	1,	with	three	important	cross-cutting	concerns	added.

2.9 	In	relation	to	our	three	best-practice	properties,	there	are	three	specific	cross-cutting	concerns	that	need	adding	to	our	reference	architecture	(see	figure	2):

Logging.	
Logging	frameworks	are	a	common	tool	in	virtually	all	programming	languages.	They	allow	messages	to	be	logged	from	applications,	and	support	useful	features	such	as	multiple	levels	of	logging	detail	which	can
be	switched	to	as	needed	(including	turning	on	more	detailed	logging	only	for	certain	areas	of	code);	separation	of	messages	per	thread	(for	multi-threaded	applications);	and	the	automatic	addition	of	fields	(such
as	timestamp	headers).	Even	where	a	debugger	is	available,	the	'global'	(full	history	of	the	run)	and	user-defined	nature	of	log	messages	makes	them	complementary	and	perceived	by	many	as	preferable:	“The
most	effective	debugging	tool	is	still	careful	thought,	coupled	with	judiciously	placed	print	statements”	(Kernighan	1979).	Such	logs	can	also	be	used	to	automate	model	tests	(see	later).

In	simulation	terms,	we	typically	want	diagnostic	logs	of	what	the	domain	model	is	doing,	with	the	ability	to	vary	detail	level	per	component	at	run-time.	Such	logs	should	be	separated	per	simulation	run,	and	with
message	headers	useful	for	the	simulation	context	(e.g.,	with	the	current	simulated	time	in	them).	Even	when	simulation	tools	allow	for	visual,	run-time	navigation	through	the	model	and	its	state,	this	is	still	just	an
immediate	snapshot	view	(compared	to	a	full	history	in	logs),	has	a	fixed	level	of	detail,	and	focuses	on	state,	not	the	(algorithmic)	details	of	entity	behaviour.

Event-Driven	Separation.	
In	a	layered	architecture,	upper	layers	often	need	to	know	when	particular	events	(in	the	general	sense)	occur	in	lower	layers;	the	classic	example	being	when	a	visualisation	of	some	data	needs	to	know	when	the

data	has	changed	(to	update	itself).[13]	But	lower	layers	should	be	unaware	of	the	existence	of	upper	layers	(i.e.,	be	independent	of	them	in	their	operation).	More	generally,	this	applies	when	any	object	want	to
know	about	changes	in	state	of	another	object	without	the	latter	having	to	explicitly	know	about	the	former.

The	normal	design	pattern	to	achieve	this	is	to	use	a	publish-subscribe	design	(Gamma	et	al.	1995,	p.293),	also	known	as	an	observer	pattern.	Objects	publish	events	when	they	occur	(to	some	events	manager),

and	observers	subscribe	to	events	that	they	are	interested	in,	being	notified	when	they	occur.[14]

In	simulation	terms,	this	is	clearly	useful	in	separating	the	State	&	Control	Presentation	and	Meta-Data	Capture	layers	from	the	Domain	Model	one	in	certain	circumstances.	(If	some	meta-data	is	captured	daily,
then	the	capture	process	can	just	run	daily	and	derive	the	state	directly;	no	publish-subscribe	design	is	needed.	Compare	that	with	needing	to	display	every	time	some	specific	random	change	happens	to	a	model
entity.)

However,	this	can	also	be	very	useful	within	the	Domain	Model	layer.	Most	state	changes	that	happen	there	have	meaning	in	the	domain	model	in	terms	of	a	causal	event;	e.g.,	'Agent	A	sold	6	widgets	to	Agent	B
on	market	day	1'.	(I	call	these	domain	events	to	distinguish	them.)	In	this	example,	other	agents	might	be	interested	in	what	transactions	occurred	so	as	to	change	their	trading	strategies	for	future	days.	We	do	not
want	each	agent	to	explicitly	call	every	other	agent	to	communicate	this;	the	publish-subscribe	design	is	a	much	cleaner	solution.	This	is	also	advantageous	in	aligning	the	model	implementation	with	its	conceptual
design:	often	we	are	modelling	the	indirect	receipt	of	such	information	(possibly	with	imperfect	transmission)	in	real-life,	which	is	much	more	well-represented	in	the	publish-subscribe	design	(given	that	we	are
abstracting	this	transmission	process).

In	fact,	these	domain	events	are	also	typically	the	events	that	the	upper	layers	are	interested	in	anyway:	we	want	to	present	or	output	about	the	domain-contextual	'things	that	are	happening'.	Thus,	one	does	not
typically	end	up	publishing	two	different	'styles'	of	event.	Finally,	the	domain	events	(perhaps	with	some	filtering)	naturally	provide	a	narrative	for	what	is	happening	in	the	model	which	is	very	useful	for
communicating	with	a	model	audience,	in	testing,	and	in	understanding	how	a	model	achieves	the	outputs	it	does	(Millington	et	al.	2012).	Outputting	such	a	narrative	naturally	combines	with	the	previous	logging
feature	(as	another	type	of	log	to	diagnostic	ones).

Visual	Interactive	Execution.	
Being	able	to	observe	the	simulation	unfolding	in	a	suitable	graphical	user	interface	(GUI)	is	very	useful	for	detecting	both	coding	and	conceptual	errors	(Grimm	&	Railsback	2005,	§8.5.1),	and	thus	enhancing
testability.	This	does	not	have	to	be	a	cross-cutting	concern	if	this	view	is	just	'read-only'.	However,	what	is	additionally	useful	is	to	be	able	to	invasively	interact	with	the	model	at	run-time,	typically	to	change	model
parameters	or	state	on-the-fly	so	as	to	be	able	to	experiment	more	dynamically	(often	cued	by	information	from	the	model	visualisation).	This	is	a	form	of	computational	steering	for	model	exploration,	though	that
term	is	normally	reserved	for	large-scale	mathematical	computations	(Mulder	et	al.	1999,	§1).	This	does	require	support	across	the	layers	since,	for	example,	domain	model	components	should	expose	their	state	in
a	given	way	so	that	there	exist	'built-in'	visualisations	that	allow	them	to	be	changed;	the	components	also	need	to	code	how	they	react	to	the	change,	depending	on	the	function	of	the	state	or	model	parameter
changed.

Some	Layer-Specific	Features

2.10 	To	complete	our	full	reference	architecture	(figure	3),	there	are	two	simulation-specific	features	which	sit	in	particular	layers.

http://jasss.soc.surrey.ac.uk/18/3/9.html 3 21/10/2015

Figure	3:	Figure	2	extended	to	form	the	full	reference	architecture	by	adding	some	specific	in-layer	features.

Run-Reproducibility	Support.	
If	we	want	to	be	able	to	reproduce	simulation	runs	in	an	automated	way,	we	need	features	which	can	record	(a)	details	of	the	model	code	(e.g.,	its	location	in	a	version	control	system—see	Wilson	et	al.	(2014));	(b)
details	of	all	domain-model-specific	parameters;	and	(c)	details	of	the	environment	(e.g.,	name	and	version	of	all	toolkits	used,	Java	virtual	machine	details,	operating	system).	Ideally	we	also	want	features	which
can	reconstitute	the	model	and	its	environment	from	this	data,	though	that	is	significantly	harder	to	automate.

This	naturally	falls	into	the	Meta-Data	Capture	layer.

Test-Oriented	Stochasticity	Control.	
When	testing	or	exploring	a	stochastic	simulation,	we	often	want	to	adjust	the	stochasticity	so	that	we	can	'better	see	what's	going	on'.	For	example,	we	might	want	to	turn	off	randomness	in	some	areas	(typically
by	reverting	to	mean	values)	and/or	accentuate	it	in	others	in	the	same	functional	direction	so	that	we	can	see	the	effect	of	a	particular	sub-component	(area	of	functionality)	more	clearly.	In	all	cases,	it	is	much
more	preferable	if	we	can	do	this	without	having	to	manually	change	original	model	parameters	or,	worse,	model	code.	(It	is	very	common	for	particular	stochastic	elements	to	be	hardcoded	into	the	model,	either

for	ease	of	coding	or	because	the	modeller	does	not	expect	users	to	need	to	change	them.[15])

Thus,	functionality	which	allows	us	to	make	these	temporary	adjustments	external	to	the	model	code	and	parameters	would	be	very	useful.	This	requires	support	both	at	the	Utilities	layer	(to	have	probability
distributions	coded	in	such	a	way	that	they	support	this	dynamic	stochasticity	control)	and	at	the	Experiments	Definition	layer	(to	be	able	to	specify	the	particular	'overrides'	one	wants	for	this	run).

2.11 	As	mentioned	at	the	start	of	this	section,	there	are	other	possible	reference	architectures	and,	in	particular,	JAMES	II	(Himmelspach	&	Uhrmacher	2007)	treads	similar	ground	but	for	a	different	purpose.	To	set	the
reference	architecture	in	better	context,	I	make	some	brief	comparisons	in	appendix	A.

	Understanding	Simulation	Toolkits

3.1 	I	want	to	show	how	the	reference	architecture	can	help	provide	insight	into	toolkit	design	by	showing	how	some	toolkits	map	to	it.	However,	a	particular	toolkit	classification	is	needed	first	to	help	set	things	in	some
useful	context.	(It	is	based	on	my	own	assessment	of	what	makes	most	difference	in	the	nature	of	the	toolkit.)	Figure	4	provides	a	visual	summary	for	a	number	of	popular	toolkits:	primarily	ABM-oriented-ones,

though	Simul8[16]	is	a	DES-specific	toolkit	and	AnyLogic	supports	ABM,	DES	and	SD.[17]

Figure	4:	A	rough	but	useful	categorisation	of	selected	simulation	toolkits	by	two	axes.

3.2 	The	axes	represent	two	strong	(and	somewhat	correlated)	distinguishing	'positions':

Visual	vs.	Non-Visual	Development.	
Some	toolkits,	to	a	greater	or	lesser	degree,	permit	code	to	be	designed	visually,	typically	by	dragging	and	dropping	configurable	'widgets'	and	(where	appropriate)	linking	them	together.	Some	form	of	textual	code
is	normally	required	in	addition	to	provide	logic	which	cannot	easily	be	represented	visually,	but	a	visually-oriented	toolkit	will	normally	attempt	to	minimise	this.	There	is	still	considerable	debate	in	computer
science	over	when	such	visual	programming	languages	provide	benefits	(both	in	terms	of	the	type	of	code	they	are	best	for	and	what	types	of	users	most	benefit),	and	when	there	are	trade-offs	(e.g.,	in	the
expressivity	of	the	language).	Authors	such	as	Green	&	Petre	(1996)	and	Whitley	&	Blackwell	(2001)	give	a	flavour	of	this.

Visual	coding	has	long	been	the	norm	in	commercial	operational	research	(OR)	oriented	offerings,	such	as	Simul8	for	DES,	iThink	for	SD[18],	and	the	multi-paradigm	tool	AnyLogic.	Elements	of	visual	coding	are

http://jasss.soc.surrey.ac.uk/18/3/9.html 4 21/10/2015

becoming	more	prominent	in	ABM—e.g.,	Repast	Simphony's	visual	statechart	construction,	and	the	ABM	components	of	AnyLogic.	When	the	code	is	designed	visually,	this	also	normally	provides	a	run-time
visualisation	of	the	code	as	it	executes,	thus	providing	a	particular	fixed	form	of	visualisation	'for	free'.

Although	NetLogo	is	coded	non-visually,	it	takes	an	alternative	route	towards	conceptual	abstraction:	providing	a	paradigm-specific	simulation	language	(as	most	DES	toolkits	historically	did).

Library–	vs.	Integrated–Tool–Like.	
Some	toolkits	exist	'just'	as	a	set	of	core	libraries	which	provide	a	framework	for	constructing	simulations,	such	as	MASON.	Others	integrate	this	framework	together	with	related	GUI	tools	to	aid	code	construction
and	testing,	such	as	those	for	debugging,	version	control,	and	code	navigation.	(The	visual	GUI	nature	of	the	IDE	should	not	be	confused	with	visual	programming	of	the	actual	model	components.)	In	general,	such
integrated	tools	are	referred	to	as	integrated	development	environments	(IDEs)	in	SE.

When	using	a	more	library-like	toolkit	written	in	a	general-purpose	programming	language,	the	modeller	can	use	third-party	general	IDEs	(such	as	Eclipse[19]	for	Java).	However,	a	simulation-toolkit-specific	IDE	will
also	typically	integrate	'helper'	tools	tailored	to	the	simulation-specific	reusable	components	provided	by	the	framework,	and	the	way	that	simulations	are	used	via	experiments.	Visual	coding	will	tend	to	lead	to	this
form	of	IDE,	since	most	elements	of	it	are	needed	to	do	the	visual	coding.

This	continuum	normally	goes	hand-in-hand	with	another	distinction:	integrated	tools	tend	to	be	object-based	rather	than	object-oriented	(Joines	&	Roberts	1999,	§4).	Whilst	all	modern	toolkits	are	written	in	an
object-oriented	programming	language,	an	object-based	one	presents	an	abstraction	to	the	user	of	a	fixed	set	of	paradigm-specific	components	(or,	in	NetLogo's	case,	a	fixed	syntax),	which	can	only	be	extended
via	composition.	An	object-oriented	one	exposes	a	set	of	classes	that	can	be	extended	via	standard	object-oriented	techniques,	which	is	typically	more	flexible	at	the	expense	of	complexity.

Less	formally,	I	think	that	the	two	ends	of	the	spectrum	are	closely	linked	to	cultures	of	software	use,	and	reuse	the	terms	user	and	programmer	cultures	used	by	Guo.[20]	Library-like	toolkits	lean	towards	a
programmer	culture,	which	focuses	on	the	qualities	of	good	software	espoused	by	SE.	Thus,	things	like	expressive	power,	flexibility	and	reusability	are	important.	There	is	also	an	understanding	that	best-of-breed
external	libraries	would	be	used	as	needed	by	the	programmer,	with	the	flexibility	in	this	choice	outweighing	the	need	to	pick	one	and	strongly	integrate	it	into	the	toolkit.	Integrated-tool-like	toolkits	lean	towards	a
user	culture,	where	the	focus	is	on	providing	integrated	tools	for	the	task	in-hand.	Such	tools	typically	provide	their	own	conceptual	models	which	try	to	hide	the	underlying	implementation	complexity	and	provide
convenient	high-level	abstractions	(which	also	steer	the	user	towards	a	particular	way	of	thinking	about	the	task).	In	simulation	terms,	this	is	also	related	to	ideas	that	domain	experts	(scientists)	should	be	able	to
create	models	without	also	being	programmers	(Borshchev	&	Filippov	2004,	§6),	and	that	SE	skills	are	potentially	too	difficult,	intimidating	and/or	time-consuming	to	learn	(Brailsford	2014,	§2).

Both	types	of	toolkit	may	also	support	extensibility	via	other	mechanisms:	either	'hook	points'	where	snippets	in	a	textual	programming	language	can	be	inserted	(e.g.,	Simul8[21])	or	being	able	to	extend	the	syntax
of	the	domain-specific	language	via	lower-level	code	(e.g.,	NetLogo).	AnyLogic	is	a	good	example	of	a	'halfway	house'	which	provides	an	object-oriented	platform	(but	with	some	restrictions)	and	lots	of	object-
based	components	with	configuration	and	extensibility	via	Java	snippets.

3.3 	We	will	now	have	a	look	at	how	MASON	and	AnyLogic	map	to	the	layered	aspects	of	our	reference	architecture.	(We	will	come	on	to	the	cross-cutting	concerns	for	all	toolkits	afterwards.)	This	is	a	good	pair	to
choose	because	they	are	relatively	far	apart	in	our	classification,	whilst	both	still	being	object-oriented	(or	largely	so	in	AnyLogic's	case)	which	tends	to	expose	the	internal	code	architecture	more	clearly.	In	both
cases,	I	do	not	explain	the	exact	function	of	all	the	components	shown	for	space	purposes;	where	they	are	not	self-explanatory,	the	interested	reader	can	look	them	up	in	the	toolkits'	documentation	(which	is
publically	available	for	both	toolkits).

MASON	Reference	Architecture	Mapping

3.4 	The	mapping	is	summarised	in	figure	5.	There	are	three	main	things	to	notice.

Figure	5:	How	core	components	of	the	MASON	toolkit	map	onto	the	reference	architecture.	The	dotted	border	sections	of	some	multi-layer	components	indicate
layers	that	they	do	not	cover.	An	RNG	is	a	random	number	generator.

http://jasss.soc.surrey.ac.uk/18/3/9.html 5 21/10/2015

3.5 	Firstly,	despite	being	very	library-like	and	'programmer	friendly',	MASON	still	diverges	from	the	reference	architecture	in	some	areas	(see	the	three	layer-spanning	components).	Having	said	that,	these	divergences

are	largely	pragmatic	decisions:	(i)	There	is	a	sharp	layered	distinction	between	model	and	presentation	(SimState	and	GUIState)[22],	but	meta-data	capture	components	can	just	be	included	in	one	or	the	other,
depending	on	whether	the	modeller	considers	them	part	of	the	model	'core'	or	not.	If	one	thinks	of	the	model	as	an	input-output	converter,	it	makes	sense	to	put	any	meta-data	capture	used	for	writing	permanent
outputs	into	the	core	model.	(ii)	Steppable	is	a	generalised	interface	for	something	that	performs	actions	in	the	simulation,	and	so	applies	to	any	model	component	doing	things	in	simulated	time.	However,	domain
model	components	are	still	strongly	partitioned	by	being	part	of	the	SimState.	(iii)	The	class-level	(Java	static)	SimState	code	which	spans	two	layers	(the	doLoop	method)	is	really	just	a	helper	function	to
instantiate	and	launch	models,	running	them	a	given	number	of	times	for	a	given	time	window.	It	would	be	overkill	to	separate	that	code	into	layers.	(iv)	Similarly,	GUIState	primarily	covers	the	'thin'	Execution
Control	functionality,	but	also	serves	as	a	container	('root'	object)	for	all	the	presentation	components,	as	well	as	the	domain	model	which	it	'wraps'.

3.6 	Secondly,	MASON	gives	the	modeller	transparent,	fairly	low-level	access	to	the	building	blocks,	particularly	for	model	user	interfaces.	The	main	GUI	Console	is	augmented	with	user-defined	displays	which	contain
inspectors	(agent	state	presentation),	portrayals	(presentation	of	spatial	or	topological	fields),	or	charts	and	plots.	The	underlying	Java	Swing	GUI	components	are	'visible'	and	accessible	in	many	places.

3.7 	Thirdly,	though	it	is	not	clear	from	the	figure,	MASON	does	have	a	very	clean	separation	of	the	Execution	Control	layer,	in	that	there	is	a	separate	schedule	for	non-domain-model	objects,	with	the	Execution
Control	logic	stepping	through	the	domain-model	schedule	and,	after	all	processing	for	a	given	simulation	time,	processing	any	on	the	non-domain-model	schedule.

AnyLogic	Reference	Architecture	Mapping

3.8 	The	mapping	is	summarised	in	figure	6.

Figure	6:	How	core	components	of	the	AnyLogic	toolkit	map	onto	the	reference	architecture.	The	dotted	border	sections	of	some	multi-layer	components	indicate	layers	that	they	do	not
cover.

3.9 	Firstly	notice	how,	compared	to	MASON,	the	components	are	more	spread	across	the	layers.	This	is	primarily	because	all	the	domain	model	components	(agent	and	DES/SD	components)	have	built-in	run-time
visualisations,	and	thus	they	have	'vertical'	functionality.	This	is	misleading	in	the	sense	that	user	presentation	code	can	still	make	the	layered	separation	if	it	wishes	to	(though	AnyLogic	does	not	tend	to	encourage

this),	which	we	will	see	in	the	case	study.[23]	Since	AnyLogic	focuses	more	on	being	an	integrated	tool,	it	wants	a	lot	of	its	components	to	provide	'useful'	default	functionality	where	the	user	does	not	typically	make
distinctions	between	model	and	visualisation.	(There	are	also	commercial	reasons	to	make	model	components	not	reusable	outside	of	the	AnyLogic	ecosystem.)

3.10 	Secondly,	unlike	MASON,	there	is	an	explicit	Meta-Data	Capture	layer	component	(Data	Set).	This	is	primarily	to	capture	some	standard	functionality	in	a	visually-developed	widget:	maintain	a	time	series	of	real
numbers	(floating-point	values),	with	an	event	to	periodically	populate	it	(where	the	'interleaving'	of	this	event	with	others	is	hidden	from	the	user).	In	fact,	AnyLogic	merges	the	Execution	Control	and	Domain	Model
layers	in	having	non-domain-model	objects	sharing	a	single	master	schedule	with	domain	model	ones.	With	the	current	implementation,	this	means	that	these	meta-data	capture	events	are	not	robust:	they	can	end

up	occurring	before	domain	model	actions	have	finished	at	a	given	simulation	time.[24]AnyLogic	charts	can	also	use	this	data	type	explicitly	as	the	source	for	their	visualisation.

3.11 	MASON	essentially	allows	the	same	thing,	but	the	modeller	creates	the	parts	explicitly,	using	whatever	data	structure	they	want.	(They	may	not	want	to	capture	a	numeric	value,	for	example.)	An	AnyLogic	modeller
can	also	take	this	approach	if	desired,	since	AnyLogic	also	exposes	low-level	Java	features.

Consistent	Omissions	in	all	Toolkits

3.12 	What	is	perhaps	surprising	is	that	I	know	of	no	simulation	toolkit	(including	several	outside	of	those	in	figure	4)	which	makes	any	of	the	features	in	sections	2.2	or	2.3	(except	for	visual	interactive	execution)
available	to	the	modeller	in	its	full	form.	That	is,	all	the	following	are	either	absent	or	partially	present:

logging;

event-driven	separation;

run-reproducibility	support;

test-oriented	stochasticity	control.

3.13 	For	logging,	Simul8	provides	logging	automatically,	but	only	for	its	own	components	and	with	fixed	content.	Most	tools	provide	the	capability	for	user	code	to	write	messages	to	the	console,	but	with	no	switchable

detail	level,	no	per-run	separation	for	multi-run	experiments,	and	no	permanent	file	capture.[25]

3.14 	For	event-driven	separation,	features	such	as	Repast	Simphony	“watchers”	and	AnyLogic	message	passing	can	be	used	to	do	similar	things.	However,	neither	centralises	the	idea	of	domain	events	(with	a	related
narrative),	with	both	focusing	on	specifying	senders	(or	sources)	and	receivers	without	decoupling	them.

3.15 	For	run-reproducibility,	some	toolkits	(e.g.,	AnyLogic)	allow	experiment	settings	to	be	defined	and	retained,	so	experiments	can	be	reproduced	by	re-running	with	those	saved	settings.	However,	this	captures
nothing	about	the	environment	(e.g.,	the	version	of	the	toolkit	used)	and	relies	on	user	discipline	and	effort	to	maintain	a	proper	traceable	link	between	run	and	experiment.	(Ideally,	one	should	create	a	new
AnyLogic	experiment	for	every	run	that	needs	to	be	reproducible,	and	there	is	nothing	to	stop	the	user	inadvertantly	changing	such	experiments.)

3.16 	For	test-oriented	stochasticity	control,	Simul8	effectively	has	probability	distributions	defined	as	separate	object	instances	(unlike	many	other	toolkits,	including	MASON	and	AnyLogic).	Thus,	these	objects	can	be
changed	to	a	simpler	distribution	as	needed	for	testing	purposes	(e.g.,	an	exponential	distribution	with	mean	of	2	can	be	replaced	with	a	fixed	distribution	returning	2	so	as	to	'collapse	the	exponential	to	its	mean').
However,	this	still	requires	the	user	to	determine	a	relevant	alternative	distribution	(i.e.,	the	operation	the	user	wants	to	perform—e.g.,	collapse	to	mean—is	not	explicit)	and	this	still	involves	changing	the	'real'
parameters	of	the	model	(and	remembering	to	change	them	back	afterwards!),	rather	than	applying	per-run	override	settings.

3.17 	Even	where	the	capabilities	partially	exist,	the	lack	of	consistency	across	toolkits	is	problematic.	In	terms	of	why	these	are	not	included,	I	think	this	is	largely	just	a	question	of	toolkit	focus	and	style	(see	section	3).
They	are	not	included	in	user-culture-oriented	toolkits	because	they	tend	to	present	a	programmer-oriented	way	of	thinking	about	how	to	develop	and	test	simulation	software	which	is	not	consistent	with	the	user-
oriented	view;	instead,	limited	user-centric	versions	of	them	are	sometimes	included,	and	users	that	might	want	them	would	be	expected	to	develop	those	facilities	themselves.	I	expected	them	to	be	more	likely	to
exist	in	programmer-culture-oriented	toolkits,	and	I	can	only	think	they	are	missing	because	(a)	the	toolkit	focuses	on	the	simulation	core	and	not	the	overall	modelling	process	(which	these	aspects	strongly	relate
to);	(b)	they	are	areas	where	programmers	might	prefer	the	flexibility	of	defining	their	own	approach—all	the	aspects	have	a	few	different	ways	to	approach	them	(some	more	heavyweight	than	others),	plus	logging
and	event-driven	separation	are	standard	SE	design	patterns,	with	the	former	having	widespread	library	implementations.

3.18 	I	do	not	think	that	any	of	these	reasons	are	suitable	justification	not	to	look	at	developing	standardised	solutions	for	simulation,	and	there	is	considerable	implementation	complexity,	even	for	less	simulation-specific
areas	like	logging	where	existing	libraries	provide	much	of	the	functionality.

http://jasss.soc.surrey.ac.uk/18/3/9.html 6 21/10/2015

	The	JSIT	Library

4.1 	To	address	the	consistent	omissions	detailed	in	section	3.3,	I	have	developed	an	open-source	Java-based	library—Java	Simulation	Infrastructure	Toolkit	(JSIT)—which	works	towards	a	solution	for	the	partially-
missing	aspects.	JSIT	only	provides	the	four	section	3.3	capabilities;	it	is	not	an	attempt	to	implement	the	entire	reference	architecture.	It	works	with	existing	simulation	toolkits	which,	as	section	3	discussed,	each
implement	their	own	partial	mapping	to	the	reference	architecture.	(When	I	use	'toolkit'	henceforth	in	this	section,	I	mean	the	toolkit	JSIT	is	being	used	with,	not	JSIT	itself.)

4.2 	JSIT	should	be	usable	with	any	Java-based	simulation	(or	one	that	can	interoperate	with	Java)	but,	in	terms	of	use	with	specific	simulation	frameworks,	it	has	currently	only	been	'proven'	for	AnyLogic	and
MASON.	Using	it	requires	that	the	base	simulation	is	coded	in	particular	ways,	and	the	degree	of	integration-specific	'glue	code'	required	depends	on	the	toolkit	used.	The	idea	is	that	JSIT	helper	libraries	will	exist
for	commonly-used	toolkits	that	do	most	of	this	work	for	the	modeller	in	a	generic	way,	leveraging	any	useful	features	in	the	toolkit.	Currently,	only	a	helper	library	for	AnyLogic	has	been	written,	but	there	is	also	a
sample	MASON-based	model	that	shows	how	to	integrate	with	JSIT	in	a	'raw'	way	(i.e.,	without	use	of	a	helper	library,	which	effectively	means	implementing	a	simplified	version	of	the	helper	library	functionality	as
part	of	the	model;	since	this	does	not	have	to	be	generic,	it	can	take	various	short-cuts	to	work	just	for	the	model	in	question).

4.3 	AnyLogic	was	explicitly	chosen	as	the	initial	helper	library	focus	because,	compared	to	MASON	and	Repast	Simphony,	I	expected	it	to	have	the	most	implementation	issues	(and	thus	the	most	potential	influence
on	how	the	core	JSIT	code	would	need	to	work)	because	it	is	the	most	oriented	towards	being	an	integrated,	visual	development	tool	(see	figure	4).	My	hypothesis	was	that	the	user	culture	focus	(and	commercial
interests)	might	compromise	the	technical	architecture,	in	the	sense	that	the	user-oriented	features	and	conceptual	model	'leak	into'	the	user-visible	parts	of	the	technical	architecture	(or	result	in	less	developer

focus	on	it)	in	a	way	which	might	impede	the	implementation.[26]	I	believe	this	hypothesis	to	be	correct,	although	I	cannot	be	sure	until	the	other	implementations	are	fully	complete.	(I	should	also	point	out	that
AnyLogic-specific	features	also	aided	in	some	aspects	of	the	implementation.)	In	any	case,	outlining	the	specifics	in	the	AnyLogic	case	is	interesting,	and	gives	an	insight	into	some	more	general	ideas	(see
section	6).

4.4 	Figure	7	shows	how	a	model	uses	JSIT.	The	core	user-written	model	is	some	'root'	class	which	aggregates	a	set	of	model	components	(which	may	themselves	aggregate	other	components).	The	root	class	is
coded	to	specify	itself	as	a	JSIT-specific	'main	model',	and	then	uses	JSIT	features	via	the	required	interfaces.	The	helper	library	(or	equivalent	user-written	code)	provides	the	underlying	link	to	the	simulation
toolkit	used,	but	is	never	called	directly	by	the	core	user	code	(i.e.,	the	interaction	with	JSIT	is	always	via	a	toolkit-agnostic	core	API).

4.5 	Much	more	detail,	together	with	the	case	study	model	(section	5)	and	sample	MASON-based	model,	are	available	with	full	source	code	at	https://github.com/sprossiter/JSIT.	A	user	guide	is	included.

Figure	7:	A	UML	class	diagram	showing	the	main	classes	and	relationships	when	a	model	uses	the	JSIT	framework,	and	how	this	splits	into	core	JSIT	code,
JSIT	helper	library	code	(which	might	be	coded	by	the	user	if	no	helper	library	exists),	and	user	model	code.	Extra	Java	interfaces	related	to	the

EventManager	class	are	not	shown.	For	a	background	to	UML,	I	recommend	Fowler	(2004).

4.6 	I	now	explain	briefly	how	each	of	the	aspects	in	section	3.3	is	implemented,	with	some	notes	on	the	AnyLogic	helper	library	implementation.

Logging

4.7 	This	reuses	a	widely-used,	open	source	Java	logging	framework:	Logback.[27]	Simulation-specific	message	header	information	(simulated	date	and	time)	are	added	in	a	generic	way,	and	diagnostic	log	files	are
split	per	simulation	run	in	multi-run	batch	experiments.	The	advanced	features	of	Logback	(compared	to	other	Java	logging	frameworks)	were	needed	to	implement	the	per-run	separation.	User	code	just	uses
standard	Logback	mechanisms	to	get	an	appropriate	Logger	and	log	messages	at	differing	detail	levels.	A	per-run	configuration	file	is	used	to	specify	what	diagnostic	levels	are	required	from	what	classes.

4.8 	The	AnyLogic	integration	was	particularly	problematic	because	AnyLogic	has	some	strange	threading	strategies;	for	example,	single-run	experiments	can	have	models	initialised	in	a	different	thread	than	the	one
time	is	stepped	within,	and	certain	circumstances	cause	models	to	switch	execution	to	totally	different	threads.	This	significantly	complicates	the	logic	needed	to	separate	log	files	per	run,	and	involves	AnyLogic-
specific	alternatives	to	the	normal	way	that	JSIT	logging	works.

Event-Driven	Separation

4.9 	JSIT	provides	a	simple	EventManager	class	and	a	set	of	interfaces	that	event	sources	and	receivers	need	to	implement.	Event	sources	declare	whether	an	event	is	a	domain	event	or	not,	so	the	framework	can
also	be	used	for	non-domain-events	(see	section	5	for	an	example).	The	EventManager	writes	all	domain	events	to	a	special	domain	events	log	file,	which	provides	the	model's	narrative	(and	reuses	the	logging
solution).	This	proof-of-concept	implementation	is	restricted	to	synchronous	messaging;	i.e.,	those	object	subscribing	for	certain	domain	events	receive	them	immediately	on	creation.	Objects	can	subscribe	to
events	from	all	instances	of	a	source	class,	or	just	to	those	for	a	specific	instance.

4.10 	There	are	no	particular	AnyLogic	integration	issues.

Run-Reproducibility	Support

4.11 	When	a	model	is	run,	the	helper	library	ModelInitialiser	subclass	(see	figure	7)	automatically	records	environmental	information	and	all	the	model	parameters,	using	Java	objects	for	this	information	which	are	then

http://jasss.soc.surrey.ac.uk/18/3/9.html 7 21/10/2015

https://github.com/sprossiter/JSIT

serialised	to	an	XML	file	(via	the	open	source	XStream	library[28])	in	a	fairly	human-readable	form.	Run-reproducibility	information	is	also	included	at	the	start	of	the	diagnostics	log.

4.12 	Reproducibility	is	significantly	aided	by	storing	model	code	in	a	version	control	system	(VCS)—see	Wilson	et	al.	(2014).	If	so,	environmental	information	is	recorded	on	the	location	of	this	model	version's	code	so

that	the	exact	version	can	be	restored	as	needed.[29]	The	information	also	specifies	if	the	model	code	had	been	amended	from	the	version	retrieved	from	the	version	control	system.

4.13 	The	automated	reconstitution	of	a	model	run	from	the	information	in	this	file	is	much	more	complicated	to	implement	than	its	creation	(and	has	not	yet	been	done),	though	the	object-serialised	nature	of	the	file
means	that	it	is	easy	to	recreate	the	objects	that	it	was	created	from.	(But	that	just	provides	the	model	parameters	and	environment	details;	that	environment	ideally	should	still	be	constructed	in	some	automated
way	where	needed.)

4.14 	AnyLogic	model	parameters	are	held	in	a	particular	way	in	the	Java	code	generated	for	the	root	class.	This	means	that	model	parameters	can	be	retrieved	in	a	generic	way	without	requiring	the	user	to	specify	or
define	them	in	any	particular	way.	However,	one	key	model	parameter	is	the	random	seed	value	(if	stochastic),	which	AnyLogic	does	not	make	accessible	(largely	due	to	restrictions	in	Java's	Random	class);	it	also
internally	generates	some	extra	RNG	instances	that	affect	the	seed	that	the	'real'	one	gets	(and	may	impact	reproducibility	if	these	internal	details	ever	change).	The	code	works	round	these	issues	by	defining	its
own	RNG	(which	the	model	must	use).	AnyLogic	also	does	not	currently	allow	the	AnyLogic	version	used	to	be	determined	at	run-time.

4.15 	It	is	also	not	normal	to	separate	an	AnyLogic	model	from	the	experiments	which	run	it,	but	this	is	possible	by	defining	an	'experiments-only	model'	which	has	a	dummy	root	Agent	which	wraps	the	real	one.	(If	this
separation	is	not	done,	JSIT	has	no	way	of	distinguishing	changes	to	the	model	code	from	changes	to	an	experiment.)

Test-Oriented	Stochasticity	Control

4.16 	A	set	of	classes	(with	StochasticItem	as	the	top-level	class)	provide	a	set	of	probability	distributions	which	the	model	includes	instances	of.	The	implementation	of	these	distributions	(in	terms	of	sampling	them
normally)	is	still	provided	by	the	toolkit,	and	the	helper	library	Sampler	sub-class	(see	figure	7)	makes	this	link.	However,	JSIT	provides	the	implementation	for	overridden	sampling:	currently,	the	only	override
operation	supported	is	to	collapse	distributions	to	their	mean,	but	a	number	of	other	useful	ones	are	intended	for	the	future.	The	user	sets	up	an	external	configuration	file	to	define	any	overrides	required	for	the	run
(and	for	what	distributions).	There	are	also	some	other	forms	of	convenient	'stochastic	items'	supported,	such	as	lookup	tables	of	distributions	(useful	where	the	distribution	sampled	from	depends	on	the	attributes
of	an	individual	entity,	such	as	death	rates	by	gender	and	age).

4.17 	A	separate	advantage	of	this	solution	is	to	standardise	the	representation	of	probability	distributions	across	toolkits,	whilst	still	leveraging	the	per-toolkit	implementations.	As	I	said	earlier,	most	toolkits	I	know	of	do
not	represent	them	as	object	instances,	and	the	sampling	methods	provided	often	have	confusing	differences	between	parameters.

4.18 	In	terms	of	AnyLogic	integration,	AnyLogic	multi-run	experiments	can	launch	parallel	runs	which	run	in	the	same	Java	virtual	machine	(but	in	different	threads).	This	means	that	there	needs	to	be	very	careful
concurrency-related	design:	distributions	are	typically	shared	by	all	instances	of	a	given	entity	type,	but	there	need	to	be	separate	instances	per	run	which	will	be	accessed	from	different	threads	(and	we	should
assume	this	might	be	required	for	non-AnyLogic-models	as	well).	In	the	generic	case,	the	modeller	uses	StochasticAccessorMDC	instances	(see	figure	7)	to	manage	this	but,	because	of	the	threading	issues	with
AnyLogic	discussed	in	section	4.1,	there	is	an	alternative	solution	for	AnyLogic.

4.19 	The	'distribution	lookups'	mentioned	above	also	leverage	the	AnyLogic	HyperArray	element,	which	has	a	useful	visual	interface	that	can	be	used	to	set	up	lookups	to	Bernoulli	distributions.

	A	Case	Study	on	a	Health	&	Social	Care	Model

5.1 	To	bring	everything	together,	an	existing	multi-paradigm	model	of	health	and	social	care	(Viana	et	al.	2012),	using	AnyLogic,	was	designed	to	use	the	JSIT	library	and,	where	possible	within	the	constraints	of
AnyLogic,	conform	to	the	reference	architecture.	Since	one	of	the	goals	of	the	reference	architecture	is	testability	(section	1),	this	also	included	setting	up	automated	tests	which	compare	outputs	to	the	'narrative'
events	log.

Architecture

5.2 	The	relevant	architecture	is	shown	in	figure	8,	which	the	reader	should	refer	to	in	what	follows.

http://jasss.soc.surrey.ac.uk/18/3/9.html 8 21/10/2015

Figure	8:	A	UML	class	diagram	showing	the	architecture	of	the	AMD	model,	emphasising	the	mapping	to	the	reference	architecture.	The	EyeClinic	actually	includes	a	separate
component	which	schedules	clinic	appointments	and	handles	the	dynamic	creation	of	non-AMD	patients,	but	that	separation	is	not	important	for	the	exposition	here.

5.3 	The	model	looks	at	eye	clinic	patients	suffering	with	age-related	macular	degeneration	(AMD).	These	patients	are	treated	at	an	eye	clinic	with	eye	injections	which	can	slow	the	central	vision	loss	associated	with
AMD,	but	they	are	contending	for	resources	with	other	non-AMD	eye	clinic	patients.	The	more	general	social	care	needs	of	the	AMD	sufferers	is	also	modelled,	because	one	broader	aim	is	to	explore	how	health
and	social	care	interact	in	an	ageing	population.	AMD	sufferers	and	the	clinic	exist	in	a	2-D	space.

5.4 	Thus,	the	Domain	Model	layer	consists	of	AMD	and	non-AMD	patients	and	an	eye	clinic,	with	AMD	sufferers	and	the	clinic	composed	by	a	root	'core	model'	object	(but	this	is	never	run	directly).	The	eye	clinic	holds
and	generates	non-AMD	patients	itself.	The	AMD	sufferers	and	the	root	object	produce	domain	events,	such	as	starting	and	completing	an	appointment	at	the	clinic.	(The	root	object	produces	events	for	when	new
AMD	sufferers	are	created,	abstracting	the	AMD	development	and	clinic	referral	process.)

5.5 	The	model	produces	detailed	outputs	over	simulated	time	for	the	operation	of	the	clinic,	AMD	sufferers'	characteristics	(e.g.,	sight	level	over	time),	and	aggregate	population	statistics	(e.g.,	numbers	of	AMD
sufferers	with	different	social	care	need	levels).	These	are	also	the	basis	for	some	of	the	run-time	visualisation.	Thus,	the	Meta-Data	Capture	layer	includes	'stats	gatherers'	for	these	aspects,	and	a	controller	for
the	multiple	per-AMD-sufferer	stats	gatherers.	Some	of	these	statistics	are	just	time	series	of	agent	characteristics	at	regular	intervals,	and	so	can	just	be	sampled	from	the	agent	directly.	However,	most	of	the
statistics	relate	to	specific	domain	events	occurring	dynamically	(e.g.,	appointments	being	completed)	and	here	domain	events	are	used:	they	receive	notification	of	events	they	have	subscribed	to,	and	can	then

query	the	relevant	component	for	the	state	they	need	to	capture.[30]	In	particular,	the	controller	is	notified	of	new	AMD	sufferers,	and	can	then	dynamically	create	a	stats	gatherer	for	that	agent.	A	root	'main	model'

object	composes	all	these	into	a	simulation	which	can	be	run	as	a	visualisation-less	version	of	the	model.[31]	(There	could	also	be	multiple	variant	root	objects	representing	different	combinations	of	meta-data
capture	and	output.)

5.6 	Modeller-coded	visualisation	consists	of	(i)	a	visualisation	of	the	2-D	space	with	AMD	sufferers	and	clinic	represented;	(ii)	a	visualisation	of	the	clinic	in	operation,	with	patients	and	staff	moving	around	a	layout	of
the	space;	and	(iii)	graphs	and	charts	corresponding	to	the	clinic,	individual	AMD	patient	and	AMD	population	areas	captured	in	the	lower	layer.	There	is	also	navigation	around	the	various	visualisations,	including
being	able	to	'click-through'	AMD	sufferers	in	the	spatial	visualisation	to	go	to	their	statistics	presentation,	and	on	from	there	to	view	the	actual	agent	state	(provided	by	the	built-in	AnyLogic	visualisation).	Figure	8
shows	the	State	&	Control	Presentation	layer	objects	used	to	achieve	this	(and	their	relationship	to	lower-layer	classes).	Both	domain	and	non-domain	events	are	used	here	to	good	effect.	Domain	events	for	AMD
sufferer	creation	are	used	to	add	their	visualisation	to	the	spatial	presentation,	where	these	visualisations	graphically	show	certain	agent	characteristics	(such	as	their	stage	of	AMD	in	each	eye);	thus,	the	spatial
visualisation	also	receives	domain	events	relating	to	changes	in	these	characteristics	and	updates	the	agent	visualisation	accordingly.	A	non-domain	event	is	used	for	the	population	statistics	visualisation	to	be
aware	when	the	related	stats	gatherer	has	stopped	collecting	(typically	at	the	end	of	the	model).	This	is	needed	so	it	can	provide	final	updates	to	its	charts.	(They	otherwise	update	at	regular	intervals,	but	will	miss
some	data	without	this	event-driven	update.)

Testing

5.7 	To	do	automated	tests	of	the	whole	system,	the	model	can	be	set	up	with	simplified	parameters	to	perform	logic	whose	outputs	can	be	worked	out	a	priori	'on	paper'.	To	test	individual	components,	the	same	thing
can	be	done	but	with	only	those	components	needed	composed	together	into	the	test	model,	with	fake	objects	used	to	replace	domain	model	components	not	under	test	where	needed.	(A	'fake'	is	a	specific	SE
testing	term;	see	Gürcan	et	al.	(2013).)	Figure	9	shows	the	case	when	testing	the	eye	clinic	component	(which	is	effectively	a	DES	model).	Note	how	only	the	components	needed	are	composed	via	a	single	test-
specific	root	object,	and	AMD	sufferer	objects	are	replaced	by	fakes	which	include	only	the	minimal	functionality	needed	to	operate	as	part	of	the	clinic	appointment	cycle.	(Most	of	this	logic	is	in	the	existing	Patient
class,	so	the	fake	logic	is	relatively	simple.)

Figure	9:	A	UML	class	diagram	showing	the	architecture	of	the	reduced	model	used	to	test	the	DES-based	eye	clinic	component;	compare	this	to	figure	8.

5.8 	Full	details	can	be	seen	in	the	online	material.

Other	JSIT-Enabled	Functionality

5.9 	By	use	of	domain	events,	a	narrative	events	log	is	automatically	created.	All	classes	use	the	logging	feature,	subdividing	their	messaging	by	diagnostic	detail	level.	For	example,	the	default	INFO	level	is	used	for
'progress'	messages	that	we	would	normally	expect	the	user	to	want	to	see.	The	lower	DEBUG	and	TRACE	levels	provide	increasing	detail	about	what	the	logic	is	doing	and	relevant	state.	The	run-reproducibility
features	of	JSIT	also	automatically	create	a	settings	file	per	run,	with	details	of	all	model	parameters	and	environmental	characteristics.

5.10 	Appendix	B	shows	some	example	file	extracts.

Reflections

5.11 	The	usefulness	of	the	design	really	proved	itself	in	practice,	and	the	abstract	best-practices	it	attempts	to	encourage	reinforced	each	other.	The	layered,	loosely-coupled	design	was	invaluable	in	assisting	the
creation	of	tests	at	different	levels,	and	the	separation	encourages	the	modeller	to	think	much	more	clearly	about	the	set	of	features	that	they	need	and	which	ones	really	need	to	be	coupled	together.	Combining	this
with	defining	model	parameters	as	an	object	hierarchy	gives	a	really	clean	mapping	of	parameters	to	components,	which	also	makes	reusing	components	simpler.	The	logging	significantly	helped	in	debugging,	and
nicely	complements	the	code	visualisation	AnyLogic	provides;	the	former	focuses	on	behaviour	(with	relevant	state	secondary),	whilst	the	latter	focuses	on	current	state	and	exploratory	navigation	between
components.	(With	diagnostic	logs,	one	can	do	this	exploration	over	several	re-runs	by	changing	the	diagnostic	configuration	to	focus	in	on	different	potential	problem	areas,	or	just	log	the	full	detail	and	navigate
through	that	via	knowledge	of	the	logic	and	message	content.)

http://jasss.soc.surrey.ac.uk/18/3/9.html 9 21/10/2015

5.12 	The	automatic	settings	file	production,	even	without	the	ability	to	automatically	reconstitute	a	run,	has	already	helped	in	providing	a	'permanent'	record	within	the	run	outputs	of	the	exact	settings	used,	which	has
been	useful	for	run	provenance	and	debugging.

5.13 	However,	there	are	also	some	less	obvious	conceptual	benefits:	(i)	Using	domain	events	really	encourages	the	modeller	to	think	about	the	flow	of	actions	in	their	model,	what	are	the	critical	things	that	happen,	and
what	agents	(or	model	components)	might	care	about	them.	This	is	a	nice	complement	to	thinking	of	the	model	as	an	'algorithm'.	(ii)	Setting	up	the	expected	outputs	for	automated	tests	(and	the	inputs	needed	to
achieve	the	required	behaviour)	is	time-consuming,	but	forces	the	modeller	to	effectively	re-review	their	entire	conceptual	design.	I	picked	up	on	several	design	flaws	by	doing	this,	as	well	as	a	number	of	subtle
bugs.	Such	testing	also	tends	to	highlight	unnecessary	complexity	in	the	design,	because	this	often	makes	testing	trickier	and	the	modeller	is	encouraged	to	consider	whether	that	part	of	the	design	is	really
necessary.

5.14 	In	terms	of	AnyLogic	'getting	in	the	way',	most	of	this	complexity	is	abstracted	away	into	the	JSIT	framework.	AnyLogic	is	still	an	open	platform	with	object-oriented	extensibility,	and	thus	the	non-JSIT	design	was
reasonably	straightforward.	The	only	difficulty	is	that	all	the	AnyLogic	help,	example	models,	and	textbooks	do	not	encourage	one	to	think	in	this	layered	way—no	example	models	ever	have	visualisation-only
Agents,	for	example—and	the	hierarchy	of	nested	Agents	is	assumed	to	be	the	way	the	user	would	want	to	navigate	the	model.	This	meant	adding	some	simple	navigation	facilities	in	user	code	that	would	handle
the	transitions	the	model	intended.	Testing	is	also	made	more	complicated	because,	unless	one	uses	the	very	expensive	Professional	Edition,	AnyLogic	does	not	provide	external	access	to	AnyLogic	models	(to	be
able	to	execute	tests	relating	to	them),	so	any	testing	needs	to	be	integrated	into	AnyLogic	experiments.

	Conclusions

6.1 	This	paper	presents	a	reference	architecture	which	embodies	key	SE	design	patterns,	and	helps	modellers	understand	how	to	create	simulations	which	exhibit	a	core	set	of	SE	best-practice	properties.	I	have	tried
to	show	how	this	(together	with	some	classificatory	background)	helps	critically	understand	and	evaluate	simulation	toolkits,	and	that	it	is	possible	to	practically	apply	these	ideas	on	real	models	using	mainstream
toolkits,	aided	by	the	JSIT	library	(developed	as	part	of	this	paper)	to	provide	four	specific	generally-missing	capabilities.

6.2 	The	reference	architecture	is	clearly	one	such	architecture	(see	appendix	A),	but	I	believe	that	it	captures	the	most	important	decisions;	i.e.,	the	ones	with	most	architectural	impact	(and	thus,	referring	back	to
Fowler's	quote,	the	hardest	decisions	to	change	later).	I	am	keen	to	collaborate	directly	with	toolkit	developers	(most	of	whom	are	also	active	researchers)	and	related	initiatives	such	as	JAMES	II	to	see	if	useful
consensus	can	be	established.	It	would	also	be	useful	to	use	the	ideas	in	this	paper	to	better	'place'	the	emerging	ideas	discussed	in	section	1	within	the	landscape	of	toolkits	and	conceptual/software	design
abstractions.	The	JSIT	AnyLogic	integration	also	highlighted	that	there	could	be	value	in	trying	to	define	a	form	of	architectural	contract	for	simulation	toolkits	that	would	guarantee	consistent	architectural	behaviour.
As	one	example,	there	should	be	an	expectation	that	a	non-parallel	model	(i.e.,	one	that	runs	single-threaded)	should	exist	in	a	single	well-defined	thread	for	its	full	lifecycle	(or	at	least	a	set	of	sibling	threads).

6.3 	In	terms	of	the	case	study,	I	am	somewhat	biased	in	that	I	developed	these	ideas	and	the	JSIT	framework	as	part	of	creating	the	AnyLogic-based	AMD	simulation	model.	There	is	a	need	for	other	modellers	to	work
with	the	ideas,	and	the	JSIT	library,	and	feed	back	their	own	experiences.	There	is	clearly	significant	overlap	between	this	task	and	those	in	the	previous	paragraph.

6.4 	I	also	focused	primarily	on	ABM	modelling	(partly	due	to	the	readership	of	JASSS,	and	partly	due	to	my	own	experience),	though	I	claim	the	ideas	are	universal.	There	is	a	need	to	demonstrate	that	this	is	so	via
case	studies	and	discussion	in	other	areas	(though	note	that	the	AMD	case	study	here	is	in	fact	a	combination	of	ABM,	DES	and	SD,	developed	by	complexity	scientists	and	operational	researchers).	In	particular,
ideas	such	as	logging	and	event-driven	separation	seem	ill-suited	to	continuous-time	models	such	as	SD	ones,	but	there	is	still	some	potential	for	use	there.	For	example,	an	SD	stock	representing	a	market	price
may	have	domain-meaningful	events	when	certain	critical	values	are	reached,	or	at	intervals	relating	to	financial	reporting	cycles.	There	is	no	reason	why	an	SD	model	could	not	include	'ABM-like'	ideas,	such	as
having	a	rate	equation	change	form	when	a	critical	event	occurs	elsewhere	in	the	system.	So,	in	fact,	the	adoption	of	the	ideas	here	may	even	encourage	more	cross-paradigm	conceptual	thinking,	as	well	as
generic	SE	best-practice.

6.5 	The	JSIT	library	is	still	partly	proof-of-concept	and	there	is	lots	more	I	intend	to	do	in	terms	of	providing	more	helper	libraries,	'hardening'	the	code	(e.g.,	so	that	it	scales	better	for	large	simulations)	and	improving
documentation.	The	more	it	is	used	on	different	style	models	in	different	disciplines,	the	more	its	generality	will	be	tested	and	the	likelihood	that	useful	design	improvements	emerge.	For	run-reproducibility	support,
the	idea	has	recently	been	taken	forwards	for	general	scientific	computing	by	the	Sumatra	toolkit	(Davison	et	al.	2014),	and	integration	with	that	looks	promising	(though	it	is	Python-based).

6.6 	Finally,	there	are	two	broader	issues	which	are	worth	slightly	more	extended	discussion,	where	the	first	informs	the	second.

Why	is	there	so	little	Focus?

6.7 	If	these	kinds	of	SE-driven	ideas	are	important	for	producing	bug-free,	flexible	and	reusable	simulation	code	which	reuses	design	patterns	tried-and-tested	across	years	of	SE	research	and	practice,	why	is	there	so
little	focus	on	it	in	the	simulation	literature,	and	how	even	is	this	neglect	across	disciplines?

6.8 	I	do	not	think	that	there	is	a	particularly	deep	methodological	answer,	or	one	with	historical	specifics	per	discipline.	There	are	the	same	set	of	reasons	as	discussed	in	the	broader	scientific	computing	best-practice
literature	and	by	related	organisations	(see	section	1):	(i)	the	focus	has	always	been	on	the	science,	with	a	feeling	that	these	SE	ideas	are	too	'heavyweight'	or	too	'commercially-focused',	especially	for	single-
scientist-developed	simulations;	(ii)	there	is	little	to	no	formal	SE	training	for	computational	scientists,	and	there	are	always	issues	of	what	to	remove	from	the	curriculum	if	it	was	added;	(iii)	there	is	a	perception	that
SE	is	'too	hard',	compounded	by	toolkits	which	try	to	abstract	away	under-the-covers	detail	as	much	as	possible	(Brailsford	(2014,	§2),	though	see	Segal	(2008)	for	an	alternative	viewpoint);	and	(iv)	the	current
academic	system	does	not	incentivise	the	production	of	quality	software,	or	making	it	open	(despite	reproducibility	being	a	cornerstone	of	science).	All	these	aspects	are	beginning	to	change,	and	progress	tends	to
be	more	advanced	in	areas	where	the	research	is	more	universally	computationally	intense	(e.g.,	bioinformatics),	and	where	lauded	science	has	been	shown	to	be	flawed	due	to	software	errors	(Wilson	et	al.	2014,
p.1).

6.9 	In	relation	to	this,	Grimm	&	Railsback	(2005)	state	in	their	simulation	textbook	that	“software	tools	and	technologies	are	themselves	complex	and	adaptive,	and	different	technologies	are	best	for	different
[models...]	We	cannot	make	this	a	software	engineering	book,	and	if	we	did	it	would	likely	be	out	of	date	by	the	time	you	read	it.”	Whilst	I	have	sympathy	with	this	(and	their	general	outline	of	important	software
engineering	ideas	is	good),	this	paper	contends	that,	whilst	technologies	may	rapidly	change,	good	design	patterns	tend	not	to	and	can	be	usefully	taught.

6.10 	Remember	that	we	are	not	talking	about	the	software	development	process	here,	where	there	are	perhaps	more	legitimate	arguments	that	some	forms	of	research	require	a	more	lightweight,	ad	hoc	process
(Segal	2008),	though	I	would	argue	that	these	are	also	variants	of	established	SE	best-practice	in	agile	methodologies	(i.e.,	there	is	nothing	special	about	scientific	research	as	a	software	development	domain).

Cultural	Issues	in	Adoption

6.11 	Because	of	the	above,	there	are	significant	cultural	issues	to	adopt	these	ideas	but	I	hope	that,	like	much	other	SE	best-practice,	the	benefits	tend	to	be	self-evident	to	most	modellers	when	they	try	to	put	these
ideas	into	practice,	although	the	cultural	context	will	certainly	affect	this	and	empirical	evidence	is	hard	to	disentangle	from	it—Turhan	et	al.	(Oram	&	Wilson	2010,	Ch.12)	give	a	nice	treatment	of	this	with	respect	to
TDD.	One	particular	problem	I	think	should	be	avoided	is	in	introducing	everything	by	analogy	and	simulation-specific	terminology,	'hiding'	the	generic	SE	origins	and	thus	obscuring	the	interdisciplinary	links.
(Analogy	is	fine	to	complement	the	type	of	SE-driven	exposition	in	this	paper.)

6.12 	Gürcan	et	al.	(2013)	and	North	&	Macal	(2014)	are	both	somewhat	guilty	of	this.	Gürcan	et	al.	(2013)	introduce	a	testing	framework,	but	talk	about	micro-,	meso-	and	macro-level	testing	(social	theory	ideas)
instead	of	unit,	component	and	system	testing	(SE	terms)	which	is	exactly	what	they	are;	there	is	no	extension	to,	or	change	in,	the	ideas	for	the	ABM	context.	North	&	Macal	(2014)	talk	about	product	and	process
patterns	for	ABM,	and	do	directly	talk	about	SE	concepts	(especially	design	patterns).	However,	their	patterns	are	couched	in	simulation-specific	terms,	with	many	not	making	clear	how	they	are	related	to	SE
concepts:	for	example,	their	“step-by-step”	is	a	direct	application	of	SE	incremental	development,	and	their	idea	to	treat	model	validation	as	a	court	case	also	fails	to	make	clear	how	much	of	this	is	an	analogy	for
existing	SE	best-practice,	and	how	much	is	a	simulation-specific	innovation.

	Acknowledgements

	The	author	wishes	to	thank	Jason	Noble	for	useful	discussion	and	support.	Joe	Viana	was	also	very	patient	in	allowing	the	JSIT	extensions	to	be	used	in	the	case	study	model!	This	work	was	conducted	under	the
EPSRC-funded	Care	Life	Cycle	(CLC)	project,	which	is	EPSRC	grant	EP/H021698/1.

	Notes

	1See	http://www.software.ac.uk.

2See	http://sciencecodemanifesto.org.

3See	http://software-carpentry.org.

4There	are	also	a	large	number	of	references	to	empirical	studies	in	the	best-practice	papers	and	books	mentioned.

5I	use	the	term	'toolkit'	generically	to	refer	to	all	the	existing	platforms	for	simulation	which,	as	well	as	'platforms'	and	'toolkits',	can	also	be	referred	to	as	software	libraries	or	frameworks.	There	are	some	technical
distinctions	between	these	terms,	but	they	are	not	relevant	for	the	purposes	of	this	paper.

6The	foundational	theory	of	modelling	and	simulation	in	the	DEVS	literature	(Zeigler	et	al.	2000)—which	extends	to	ABM	(Müller	2009)—sets	up	some	very	useful	frames	and	terminology	to	talk	about	these	issues
more	formally	for	simulation	(which	I	unfortunately	do	not	have	space	to	touch	on	here),	but	does	not	directly	address	them.

7This	would	also	help	practitioners	understand	the	contribution	of	the	emerging	ideas	just	mentioned.

8There	is	a	reasonable	amount	of	focus	across	these	references	on	the	development	process,	but	that	is	not	the	same	thing.	There	is	also	a	growing	literature	on	model	comparison	and	reproduction	(Rouchier	et
al.	2008),	but	the	'reproducibility'	there	(of	model	results	from	separate	implementations	of	the	same	model	or	potentially	equivalent	models)	is	in	a	different	sense	to	the	reproducibility	here	(of	runs	for	the	same
model	implementation).

http://jasss.soc.surrey.ac.uk/18/3/9.html 10 21/10/2015

http://www.software.ac.uk
http://sciencecodemanifesto.org
http://software-carpentry.org

9One	of	the	main	points	of	a	reference	architecture	is	normally	that	any	actual	implementation	of	the	software	system	in	question	could	be	rewritten	to	conform	to	it	(possibly	with	some	pieces	missing)	whilst
retaining	the	same	functionality.	I	strongly	believe	this	is	true	here,	but	I	make	no	serious	attempt	to	'prove'	it;	I	hope	that	the	presentation	intuitively	makes	the	idea	at	least	likely	to	be	true,	especially	for	readers
with	stronger	programming	backgrounds.

10In	more	strict	layered	architectures,	a	layer	only	uses	the	services	of	the	layer	directly	below	it.	This	is	not	true	here.

11Since	particular	instances	of	probability	distributions	represent	part	of	the	domain	model	(abstracting	some	aspect	of	the	real-world),	one	could	argue	that	they	belong	in	the	domain	model	layer.	However,	they	are
such	generic	utilities	(not	usable	just	for	domain-modelling)	that	I	do	not	think	it	is	controversial	to	place	them	here.

12In	some	models,	state	that	is	part	of	the	model	is	derived	from	other	state;	e.g.,	the	average	income	of	all	agents	in	a	spatial	neighbourhood	might	influence	the	behaviour	of	those	agents.	This	is	'atomic'	state
from	the	perspective	of	the	meta-data	layer.

13It	could	check	(poll)	every	few	seconds	to	see	if	changes	have	occurred,	but	this	is	incredibly	wasteful	of	processing	(especially	if	needed	in	many	places)	and	imposes	a	minimum	response	time	to	changes.

14There	are	lots	of	variations,	such	as	in	when	the	subscriber	gets	the	notification	(synchronously	or	asynchronously),	how	events	are	formatted,	and	the	granularity	to	which	subscriptions	can	be	specified.

15Even	if	the	parameters	of	the	relevant	probability	distribution	are	exposed	as	model	parameters,	there	are	some	distributions,	such	as	the	exponential	one,	which	cannot	even	be	made	to	revert	to	a	mean	value
by	changing	their	parameter(s).

16See	http://www.simul8.com.

17Actually,	Simul8	can	add	agent-like	behaviour	to	DES	entities,	and	has	some	SD	constructs;	Repast	Simphony	includes	some	SD	constructs.	I	would	argue	more	generally	that	the	paradigm	distinctions	are
somewhat	artifical	at	the	toolkit	level,	and	becoming	increasingly	so,	but	that	is	a	debate	for	another	time!

18See	http://www.iseesystems.com.

19See	http://www.eclipse.org.

20In	his	blog	post	about	teaching	programming:	http://pgbovine.net/two-cultures-of-computing.htm.	Guo	is	an	academic	(University	of	Rochester),	but	I	know	of	no	literature	explicitly	discussing	these	cultures,
though	related	ideas	are	implicit	in	human-computer	interaction	(HCI)	research.

21Actually,	Simul8	models	can	be	extended	both	with	a	Simul8-specific	simulation	language—Visual	Logic—or	general	purpose	Visual	Basic.

22It	is	still	possible	for	pragmatic	reasons	to	have	an	agent	'visualise	itself';	i.e.,	embed	the	visualisation	within	the	agent's	code.	However,	this	is	a	modeller	choice,	and	is	not	emphasised	(cf.	AnyLogic	in
section	3.2).

23Lower-level	presentation	and	non-presentation	elements	are	still	distinguished	in	terms	of	different	types	of	drag-and-droppable	widget,	where	the	user	has	control	over	what	presentation	is	visible	at	run-time	at
what	'levels'	of	the	model.	However,	the	modeller	is	still	encouraged	to	embed	presentation	elements	within	the	thing	that	it	visualises,	and	meta-data	capture	elements	within	the	most	relevant	domain	model
component.	Thus,	although	there	is	some	class	hierarchy	separation,	a	layered	separation	is	not	encouraged,	though	possible,	for	user	code.	Note	that	it	is	the	embedding	of	presentation	elements	within	domain
model	elements	which	breaks	the	layering;	the	converse	can	still	preserve	it,	as	is	done	in	MASON	where	the	GUIState	embeds	the	SimState.

24See	http://ofscienceandsoftware.blogspot.co.uk/2014/09/subtleties-of-anylogic-event-scheduling.html.

25In	AnyLogic,	for	example,	the	console	also	only	retains	a	rolling	window	of	messages.

26I	had	already	had	inklings	of	this	from	my	previous	work	developing	models	with	AnyLogic,	MASON	and	Repast	Simphony.

27See	http://logback.qos.ch.

28See	http://xstream.codehaus.org.

29This	is	currently	limited	to	a	Subversion	VCS.	See	http://subversion.apache.org.

30This	is	how	I	chose	to	design	the	JSIT	library;	another	option	is	to	include	the	relevant	state	information	within	the	event	itself.	However,	the	JSIT	solution	results	in	simpler	model	code,	and	conceptually	separates
the	event	as	a	'thing	that	happened'	from	the	detailed	state	related	to	it.

31The	built-in	visualisations	provided	by	AnyLogic	are	still	created	unless	experiments	are	run	in	batch-mode.

Appendix	A:	Alternative	Reference	Architectures

A.1 	Since	any	reference	architecture	is	a	subjective	assessment	of	how	to	partition	functionality	for	an	application	domain,	it	is	worthwhile	briefly	comparing	the	reference	architecture	given	here	with	some	partial	or	full
alternatives.

Model	Instance	as	a	Domain	Model

A.2 	Conceptually,	it	may	feel	that	the	domain	model	separation	in	figure	1	is	not	quite	right,	because	the	particular	domain	model	for	the	experiment	is	also	defined	by	its	inputs	(part	of	the	Experiments	Definition
layer).	In	ABM,	there	is	also	often	a	separation	between	the	domain	model	components	(agents)	and	their	composition	into	a	model;	for	example,	Repast	Simphony	(North	et	al.	2013)	uses	“contexts”	for	this
purpose.	Thus,	figure	10	might	seem	better	in	this	regard.

Figure	10:	An	alternative	way	to	view	the	constituents	of	a	'domain	model'.

A.3 	However,	figure	1	is	preferable	for	two	reasons.

A.4 	Firstly,	from	a	software	perspective,	the	Experiment	Definition	layer	has	no	additional	domain	knowledge.	The	Domain	Model	layer	defines	the	set	of	model	parameters;	the	Experiment	Definition	layer	just	gives
them	values	for	experiments.	Setting	these	values	requires	domain	knowledge,	but	that	is	something	outside	the	context	of	the	simulation	as	a	piece	of	software.	Conceptually	it	still	makes	sense:	the	Domain
Model	represents	the	domain	model	type,	not	the	specific	parametrised	instance	used	for	an	experiment.

A.5 	Secondly,	separating	out	composition	makes	little	sense	for	DES	and	SD	models	because	the	components	are	typically	not	really	meaningful	on	their	own:	the	particular	composition	is	the	model.	(This	is	partially
true	in	ABMs	anyway,	since	agent	types	are	often	tightly	coupled	with	each	other,	meaning	that	one	type	may	not	make	sense	without	the	other.)	Equally	relevantly,	this	composition	really	reflects	what	happens	in
all	object-oriented	code:	there	has	to	be	some	top-level	object	which	composes	a	set	of	objects.	Thus,	one	should	really	define	such	sub-layers	for	Meta-Data	Capture	and	State	&	Control	Presentation	as	well,	but
these	separation	do	not	really	add	anything	useful	for	the	purposes	of	best-practice	design.	(The	'separation'	exists	however	one	codes	the	simulation.)

JAMES	II

A.6 	JAMES	II	(Himmelspach	&	Uhrmacher	2007)	is	a	simulation	toolkit	which	tries	to	provide	a	generic,	loosely-coupled	framework	for	simulations	of	any	paradigm	by	(a)	abstracting	common	infrastructural	features;
and	(b)	separating	models	from	simulators,	where	simulators	can	encapsulate	the	building	blocks	of	a	paradigm,	and	models	represent	the	choices	and	configuration	of	these	blocks	into	a	model.	(A	library	of
simulators	exists,	and	users	choose	or	create	one	to	represent	the	'behavioural	toolkit'	for	a	given	model.)	Thus,	their	JAMES	II	architecture	(figure	11)	has	a	similar	role	to	my	reference	architecture.

http://jasss.soc.surrey.ac.uk/18/3/9.html 11 21/10/2015

http://www.simul8.com
http://www.iseesystems.com
http://www.eclipse.org
http://pgbovine.net/two-cultures-of-computing.htm
http://ofscienceandsoftware.blogspot.co.uk/2014/09/subtleties-of-anylogic-event-scheduling.html
http://logback.qos.ch
http://xstream.codehaus.org
http://subversion.apache.org

Figure	11:	The	generic	architecture	of	JAMES	II,	as	presented	in	Himmelspach	&	Uhrmacher	(2007).

A.7 	We	can	note	some	similarities,	such	as	the	separation	of	user	interface	from	meta-data	capture	and	experiment,	though	the	meta-data	capture—in	the	form	of	the	Database	component—applies	only	for	the	data
itself,	not	for	any	capturing	objects.	However,	they	also	separate	simulation	(a	single	model	run)	from	experiment	(a	set	of	runs)	and,	aligning	with	DEVS	theory	(Zeigler	et	al.	2000,	§2),	model	from	simulator.	Since
the	purpose	is	for	a	generic	framework	with	'pluggable'	components	(potentially	replaceable	at	run-time)	including	simulators,	there	is	also	a	cross-cutting	registry	component.

A.8 	There	is	definitely	some	common	ground	worth	synthesising,	which	I	hope	to	do	in	future;	I	just	note	some	relevant	points	for	now.	Firstly,	toolkits	such	as	AnyLogic	can	be	viewed	as	simulators	from	JAMES	II's
perspective,	and	it	seems	would	need	to	be	encapsulated	as	such.	However,	the	object-oriented	extensibility	of	toolkits	like	AnyLogic	sits	a	bit	awkwardly	here	because	models	are	not	clean	object-based-style
compositions	of	pre-built	elements	(such	as	the	microsimulation	models	on	the	MicMac	project	(Zinn	et	al.	2013)	using	a	custom-designed	JAMES	II	simulator	MicCore).	Secondly,	other	than	the	registry,	they	do
not	explicitly	include	any	cross-cutting	aspects	in	their	architecture;	since	they	are	focused	more	on	the	pluggable	framework,	they	seem	less	concerned	with	'pragmatic'	SE	best-practice	than	I	am.	(Basically,	the
normative	aspects	of	their	architecture	differ	in	focus	and	granularity	to	mine.)

	Appendix	B:	Example	JSIT	Outputs	from	the	Case	Study

B.1 	To	make	things	more	concrete,	below	are	some	extracts	from	the	case	study	events	log,	diagnostic	log,	and	run-reproducibility	settings	file.	Figure	12	shows	the	events	log.	Notice	the	simulated	day	and	time	in	the
header	for	each	event,	and	how	it	reads	as	a	'narrative'	of	the	events.	The	inclusion	of	details	(such	as	the	length	of	stay	at	the	end	of	each	appointment)	allows	the	log	to	be	used	for	automated	testing.	Figure	13
shows	the	diagnostics	log.	Note	how	this	has	a	more	'programmer-friendly'	message	header	(with	thread	ID,	class	producing	the	message	and	detail	level).	Typically,	INFO	is	the	default	message	level	and	is	used
for	messages	we	expect	the	user	to	generally	be	interested	in	(such	as	tracking	each	day	or	week	of	processing).	In	this	case,	one	particular	component	(the	appointment	scheduler)	had	been	set	to	maximum
TRACE	detail	level,	so	as	to	debug	a	potential	problem	there	whilst	suppressing	detail	elsewhere.	There	are	also	messages	near	the	top	relating	to	the	run-reproducibility	functionality.	Figure	14	shows	the	settings
file.	Notice	how	it	includes	environmental	information,	model	parameters,	and	the	stochastic	items	(typically	probability	distributions)	used.

Figure	12:	Sample	events	log	output	(extracts)	from	the	case	study	model	using	the	JSIT	library.

DAY 1 05:10 AMD Sufferer #1 had an AMD_INITIAL appointment booked for day 2
DAY 1 05:10 Created referred AMD Sufferer #1: FEMALE aged 71
DAY 1 09:00 Non-AMD Patient #4 started appointment type OTHER without FFA or OCT
DAY 1 09:01 Non-AMD Patient #1 started appointment type OTHER without FFA or OCT
DAY 1 09:46 Non-AMD Patient #4 completed their OTHER appointment: length of stay 46, total wait time 0
DAY 1 09:57 Non-AMD Patient #5 started appointment type OTHER without FFA or OCT
DAY 2 09:00 AMD Sufferer #1 started appointment type AMD_INITIAL
DAY 2 09:15 Non-AMD Patient #11 started appointment type OTHER with FFA
DAY 3 09:42 AMD Sufferer #1 had AMD injection(s) in affected eye(s)
DAY 3 09:53 AMD Sufferer #1 completed their AMD_INJECTION appointment: length of stay 53, total wait time 0
DAY 3 10:20 Non-AMD Patient #13 started appointment type OTHER with FFA
DAY 3 10:26 Non-AMD Patient #16 completed their OTHER appointment: length of stay 71, total wait time 0
DAY 3 10:47 Non-AMD Patient #17 started appointment type OTHER with FFA and OCT
DAY 3 11:03 Non-AMD Patient #19 started appointment type OTHER without FFA or OCT
DAY 3 11:08 Non-AMD Patient #14 started appointment type OTHER with OCT
DAY 3 12:15 Non-AMD Patient #19 completed their OTHER appointment: length of stay 71, total wait time 0
DAY 35 00:58 AMD Sufferer #34 has died aged 96
DAY 72 05:27 AMD Sufferer #3 changed AMD level from EARLY to INTERMEDIATE
DAY 91 01:00 AMD Sufferer #2 changed care need from CRITICAL to MODERATE
DAY 91 01:00 AMD Sufferer #3 changed care need from NONE to CRITICAL
DAY 91 01:00 AMD Sufferer #4 changed care need from NONE to MODERATE
DAY 91 01:00 AMD Sufferer #4 changed care provision from NONE to INFORMAL_ONLY

Figure	13:	Sample	diagnostics	log	output	(extracts)	from	the	case	study	model	using	the	JSIT	library.

THREAD 19 MODEL INIT ModelInitialiser INFO ******** Per-Run Model Setup ***********
THREAD 19 MODEL INIT ModelInitialiser INFO Running model version 0.1r233 (with local modifications)
THREAD 19 MODEL INIT ModelInitialiser INFO Model repository source https://svn.soton.ac.uk/CLC_Project/Simulations/AMD/Trunk/Code
THREAD 19 MODEL INIT ModelInitialiser INFO Run ID 20140903163311-FullViz_IC_Synthesis-1 calculated by Main_ModelFullViz and used as outputs folder name
THREAD 19 MODEL INIT ModelInitialiser INFO Using normal stochasticity (no overrides)
THREAD 19 MODEL INIT ModelInitialiser INFO ModelCore.MaleAMD stochastic item set up for run ID 20140903163311-FullViz_IC_Synthesis-1
THREAD 19 MODEL INIT ModelInitialiser INFO ModelCore.AgeIn10YearRange stochastic item set up for run ID 20140903163311-FullViz_IC_Synthesis-1
THREAD 19 MODEL INIT Main_Model INFO AMD model run launched from experiment FullViz_IC_Synthesis (running to population size >= 500 on a Monday)
THREAD 19 MODEL INIT Main_Model INFO Using random seed 2 (from base seed 1)
THREAD 19 MODEL INIT ModelInitialiser INFO Written model settings to settings.xml
THREAD 19 MODEL INIT ModelCore INFO Model core starting up...
THREAD 19 MODEL INIT EyeClinicWithNetwork INFO Fixed visualisation clinic DES starting up...
THREAD 19 MODEL INIT EyeClinicAppointmentScheduler INFO Clinic appointment scheduler starting-up...
THREAD 19 MODEL INIT EyeClinicAppointmentScheduler DEBUG Adding appointment slots to end of week from weekday 2 (1=Sun)
THREAD 19 MODEL INIT EyeClinicAppointmentScheduler TRACE First non-AMD appt start point (raw delay 1.2658953624627303) adjusted to 540.0 with 180.0 mins left of this first opening period
THREAD 19 MODEL INIT EyeClinicAppointmentScheduler TRACE Resultant next non-AMD appointment time 541.2658953624627
THREAD 19 MODEL INIT SpatialViz INFO Spatial visualiser starting up...
THREAD 19 MODEL INIT EyeClinicFullViz INFO Eye clinic full stats visualiser starting up...
THREAD 19 MODEL INIT PopulationFullViz INFO Population-level stats visualiser starting up...
THREAD 25 SIM-TIME 0.0 DAY 1 00:00 ModelCore INFO ******** Model Execution ***********
THREAD 25 SIM-TIME 0.0 DAY 1 00:00 ModelCore INFO Start of week 1 processing

<environmentSettings>
<modelName>AMD Whole-System Health & Social Care</modelName>
<modelVersion>0.2</modelVersion>
<modelVCS>SVN</modelVCS>
<modelVersionSource>https://svn.soton.ac.uk/CLC_Project/Simulations/AMD_HealthSocialCare/Trunk/AMD_Model/Code</modelVersionSource>
<modelVCS__CommitID>r412</modelVCS__CommitID>
<runtimeCodeHash>271f49ea1e112c272235b8a9c241e473</runtimeCodeHash>
<modificationStatus>NO</modificationStatus>
<javaVersion>1.8.0_05</javaVersion>
<javaVM>Java HotSpot(TM) 64-Bit Server VM 25.5-b02 (Oracle Corporation)</javaVM>
<librariesDetail>
<libraryDetail>
<jarName>com.anylogic.engine.jar</jarName>
<isPartOfSimSource>false</isPartOfSimSource>
</libraryDetail>
<libraryDetail>
<jarName>jsit-core-0.2-SNAPSHOT.jar</jarName>
<isPartOfSimSource>true</isPartOfSimSource>
</libraryDetail>
<randomnessSettings>
<seed>1415964022012</seed>
<baseSeed>1415964022011</baseSeed>
</randomnessSettings>
<anyLogicVersion>UNKNOWN</anyLogicVersion>
</environmentSettings>
<uk.ac.soton.clc.amd.testing.DES__ComponentTest>
<parameters>
<waitingCapacityOfDepartment>50</waitingCapacityOfDepartment>
<receptionCapacity>10</receptionCapacity>
<networkBasedDES>null</networkBasedDES>
<appointmentScheduling>
<nonAMD__AverageInterarrival>99999.0</nonAMD__AverageInterarrival>
<nonAMD__ProbFFA>0.5</nonAMD__ProbFFA>
<nonAMD__ProbOCT>0.5</nonAMD__ProbOCT>
</appointmentScheduling>
<maxWaitingTimeDist>
<k>21</k>
<range>

http://jasss.soc.surrey.ac.uk/18/3/9.html 12 21/10/2015

Figure	14:	Sample	output	(extracts)	from	the	case	study	model	settings	file.

<min>60</min>
<max>80</max>
</range>
</maxWaitingTimeDist>
</parameters>
</uk.ac.soton.clc.amd.testing.DES__ComponentTest>
<stochasticItems>
<item id="DES_ComponentTest.MaxWaitingTime" sampleMode="COLLAPSE_MID">
<distUniformDiscrete>
<k>21</k>
<range>
<min>60</min>
<max>80</max>
</range>
</distUniformDiscrete>
</item>
</stochasticItems>

References

	ALLAN,	R.	J.	(2010).	Survey	of	agent-based	modelling	and	simulation	tools.	Tech.	Rep.	DL-TR-2010-007,	Science	&	Technologies	Facilities	Council	(STFC),	UK.

BORSHCHEV,	A.	&	Filippov,	A.	(2004).	From	system	dynamics	and	discrete	event	to	practical	agent	based	modeling:	Reasons,	techniques,	tools.	In:	Proceedings	of	the	22nd	International	Conference	of	the
System	Dynamics	Society.

BRAILSFORD,	S.	C.	(2014).	Discrete-event	simulation	is	alive	and	kicking!	Journal	of	Simulation	8(1),	1–8.

BUSCHMANN,	F.	(1996).	Pattern-Oriented	Software	Architecture:	a	system	of	patterns.	Wiley,	volume	1	ed.	http://www.worldcat.org/isbn/0471958697.

COLLIER,	N.	&	Ozik,	J.	(2013).	Test-driven	agent-based	simulation	development.	In:	Proceedings	of	the	2013	Winter	Simulation	Conference	(Pasupathy,	R.,	Kim,	S.	H.,	Tolk,	A.,	Hill,	R.	&	Kuhl,	M.	E.,	eds.).	IEEE.

DAVISON,	A.	P.,	Mattioni,	M.,	Samarkanov,	D.	&	Teleńczuk,	B.	(2014).	Sumatra:	A	toolkit	for	reproducible	research.	In:	Implementing	Reproducible	Research	(Stodden,	V.,	Leisch,	F.	&	Peng,	R.	D.,	eds.),	chap.	3.
Chapman	&	Hall,	pp.	57–78.

DJANATLIEV,	A.,	Dulz,	W.,	German,	R.	&	Schneider,	V.	(2011).	VERITAS—a	versatile	modeling	environment	for	test-driven	agile	simulation.	In:	Proceedings	of	Wintersim	2011	(Jain,	S.,	Creasey,	R.	R.,
Himmelspach,	J.,	White,	K.	P.	&	Fu,	M.,	eds.).	http://www.informs-sim.org/wsc11papers/325.pdf.

EVANS,	E.	(2004).	Domain-Driven	Design:	tackling	complexity	in	the	heart	of	software.	Addison-Wesley.

EWALD,	R.	&	Uhrmacher,	A.	M.	(2014).	SESSL:	A	domain-specific	language	for	simulation	experiments.	ACM	Trans.	Model.	Comput.	Simul.	24(2).	.	[doi:10.1145/2567895]

FOWLER,	M.	(2004).	UML	Distilled:	A	Brief	Guide	to	the	Standard	Object	Modeling	Language.	Addison-Wesley,	third	ed.	http://www.worldcat.org/isbn/0321193687.

FOWLER,	M.,	Rice,	D.,	Foemmel,	M.,	Hieatt,	E.,	Mee,	R.	&	Stafford,	R.	(2003).	Patterns	of	Enterprise	Application	Architecture.	Addison-Wesley.

GAMMA,	E.,	Helm,	R.,	Johnson,	R.	&	Vlissides,	J.	(1995).	Design	Patterns:	Elements	of	Reusable	Object-Oriented	Software.	Addison-Wesley.

GILBERT,	N.	&	Troitzsch,	K.	G.	(2005).	Simulation	for	the	Social	Scientist.	Open	University	Press,	2nd	ed.

GREEN,	T.	R.	G.	&	Petre,	M.	(1996).	Usability	analysis	of	visual	programming	environments:	A	'cognitive	dimensions'	framework.	Journal	of	Visual	Languages	&	Computing	7(2),	131–174.	.
[doi:10.1006/jvlc.1996.0009]

GRIMM,	V.	&	Railsback,	S.	F.	(2005).	Individual-based	modeling	and	ecology.	Princeton	Series	in	Theoretical	and	Computational	Biology.	Princeton	University	Press.	http://www.worldcat.org/isbn/0691096651.

GULYÁS,	L.,	Szabó,	A.,	Legéndi,	R.,	Máhr,	T.,	Bocsi,	R.	&	Kampis,	G.	(2011).	Tools	for	large	scale	(distributed)	agent-based	computational	experiments.	In:	Proceedings	of	CSSSA	2011.	Computational	Social
Science	Society	of	the	Americas	(CSSSA).

GÜRCAN,	O.,	Dikenelli,	O.	&	Bernon,	C.	(2013).	A	generic	testing	framework	for	agent-based	simulation	models.	Journal	of	Simulation	7(3),	183–201.	.	[doi:10.1057/jos.2012.26]

HIMMELSPACH,	J.	&	Uhrmacher,	A.	M.	(2007).	Plug'n	simulate.	In:	40th	Annual	Simulation	Symposium	(ANSS'07).	Washington,	DC,	USA:	IEEE.	.

JEFFRIES,	R.	&	Melnik,	G.	(2007).	TDD:	The	art	of	fearless	programming.	IEEE	Software	24(3),	24–30.	.	[doi:10.1109/MS.2007.75]

JOINES,	J.	A.	&	Roberts,	S.	D.	(1999).	Simulation	in	an	object-oriented	world.	In:	Proceedings	of	the	1999	Winter	Simulation	Conference	(Farrington,	P.	A.,	Nembhard,	H.	B.,	Sturrock,	D.	T.	&	Evans,	G.	W.,	eds.).	.

KERNIGHAN,	B.	(1979).	UNIX	for	Beginners.	Bell	Telephone	Labs,	2nd	ed.

LUKE,	S.,	Cioffi-Revilla,	C.,	Panait,	L.,	Sullivan,	K.	&	Balan,	G.	(2005).	MASON:	A	multiagent	simulation	environment.	Simulation	81(7),	517-527.	[doi:10.1177/0037549705058073]

MCCONNELL,	S.	(2004).	Code	Complete:	A	practical	handbook	of	software	construction.	Microsoft	Press,	second	ed.	http://www.worldcat.org/isbn/9780735619678.

MILLER,	J.	H.	&	Page,	S.	E.	(2007).	Complex	Adaptive	Systems:	An	Introduction	to	Computational	Models	of	Social	Life.	Princeton	Studies	in	Complexity.	Princeton	Press.

MILLINGTON,	J.	D.	A.,	O'Sullivan,	D.	&	Perry,	G.	L.	W.	(2012).	Model	histories:	Narrative	explanation	in	generative	simulation	modelling.	Geoforum	43(6),	1025–1034.	.	[doi:10.1016/j.geoforum.2012.06.017]

MULDER,	J.	D.,	van	Wijk,	J.	J.	&	van	Liere,	R.	(1999).	A	survey	of	computational	steering	environments.	Future	Generation	Computer	Systems	15(1),	119–129.	.	[doi:10.1016/S0167-739X(98)00047-8]

MÜLLER,	J.	P.	(2009).	Towards	a	formal	semantics	of	event-based	multi-agent	simulations.	In:	Multi-agent	Based	Simulation	IX,	no.	5269	in	LNCS.	Springer.

NIKOLAI,	C.	&	Madey,	G.	(2009).	Tools	of	the	trade:	A	survey	of	various	agent	based	modeling	platforms.	Journal	of	Artificial	Societies	and	Social	Simulation,	12(2),	2.	http://jasss.soc.surrey.ac.uk/12/2/2.html.

NORTH,	M.	J.,	Collier,	N.	T.,	Ozik,	J.,	Tatara,	E.	R.,	Macal,	C.	M.,	Bragen,	M.	&	Sydelko,	P.	(2013).	Complex	adaptive	systems	modeling	with	Repast	Simphony.	Complex	Adaptive	Systems	Modeling	1(1),	3+.	.
[doi:10.1186/2194-3206-1-3]

NORTH,	M.	J.	&	Macal,	C.	M.	(2014).	Product	and	process	patterns	for	agent-based	modelling	and	simulation.	Journal	of	Simulation,	8,	25-36.	.	[doi:10.1057/jos.2013.4]

ORAM,	A.	&	Wilson,	G.	(eds.)	(2010).	Making	software	:	what	really	works,	and	why	we	believe	it.	O'Reilly.	http://www.worldcat.org/isbn/9780596808327.

RAILSBACK,	S.	F.	&	Grimm,	V.	(2012).	Agent-based	and	individual-based	modeling	:	a	practical	introduction.	Princeton	University	Press.	http://www.worldcat.org/isbn/9780691136745.

RAILSBACK,	S.	F.,	Lytinen,	S.	L.	&	Jackson,	S.	K.	(2006).	Agent-based	simulation	platforms:	review	and	development	recommendations.	Simulation	82,	609–623.
http://www.humboldt.edu/ecomodel/documents/ABMPlatformReview.pdf.	[doi:10.1177/0037549706073695]

ROPELLA,	G.	E.,	Railsback,	S.	F.	&	Jackson,	S.	K.	(2002).	Software	engineering	considerations	for	individual-based	models.	Natural	Resource	Modeling	15(1),	5–22.	[doi:10.1111/j.1939-7445.2002.tb00077.x]

ROUCHIER,	J.,	Cioffi-Revilla,	C.,	Polhill,	J.	G.	&	Takadama,	K.	(2008).	Progress	in	model-to-model	analysis.	Journal	of	Artificial	Societies	and	Social	Simulation	11(2),	8.	http://jasss.soc.surrey.ac.uk/11/2/8.html.

SANDVE,	G.	K.,	Nekrutenko,	A.,	Taylor,	J.	&	Hovig,	E.	(2013).	Ten	simple	rules	for	reproducible	computational	research.	PLoS	Comput	Biol	9(10),	e1003285+.	.	[doi:10.1371/journal.pcbi.1003285]

SEGAL,	J.	(2008).	Scientists	and	software	engineers:	A	tale	of	two	cultures.	In:	Proceedings	of	the	Psychology	of	Programming	Interest	Group	PPIG	08.

SOMMERVILLE,	I.	(2011).	Software	engineering.	Pearson,	9th	ed.	http://www.worldcat.org/isbn/9780137053469.

STODDEN,	V.,	Donoho,	D.,	Fomel,	S.,	Freidlander,	M.	P.,	Gerstein,	M.,	Leveque,	R.,	Mitchell,	I.,	Larrimore	Ouellette,	L.	&	Wiggins,	C.	(2010).	Reproducible	research:	Addressing	the	need	for	data	and	code	sharing
in	computational	science.	Computing	in	Science	&	Engineering	12(5),	8–13.	.

STODDEN,	V.,	Guo,	P.	&	Ma,	Z.	(2013).	Toward	reproducible	computational	research:	An	empirical	analysis	of	data	and	code	policy	adoption	by	journals.	PLoS	ONE	8(6),	e67111+.	.
[doi:10.1371/journal.pone.0067111]

TISUE,	S.	&	Wilensky,	U.	(2004).	NetLogo:	Design	and	implementation	of	a	multi-agent	modeling	environment.	In:	Proceedings	of	Agent	2004.

UHRMACHER,	A.	M.	(2012).	Seven	pitfalls	in	modeling	and	simulation	research.	In:	Proceedings	of	the	2012	Winter	Simulation	Conference	(Laroque,	C.,	Himmelspach,	J.,	Pasupathy,	R.,	Rose,	O.	&	Uhrmacher,
A.	M.,	eds.).

VIANA,	J.,	Rossiter,	S.,	Channon,	A.	A.,	Brailsford,	S.	C.	&	Lotery,	A.	(2012).	A	multi-paradigm,	whole	system	view	of	health	and	social	care	for	age-related	macular	degeneration.	In:	Proceedings	of	the	Winter

http://jasss.soc.surrey.ac.uk/18/3/9.html 13 21/10/2015

http://www.worldcat.org/isbn/0471958697
http://www.informs-sim.org/wsc11papers/325.pdf
http://dx.doi.org/10.1145/2567895
http://www.worldcat.org/isbn/0321193687
http://dx.doi.org/10.1006/jvlc.1996.0009
http://www.worldcat.org/isbn/0691096651
http://dx.doi.org/10.1057/jos.2012.26
http://dx.doi.org/10.1109/MS.2007.75
http://dx.doi.org/10.1177/0037549705058073
http://www.worldcat.org/isbn/9780735619678
http://dx.doi.org/10.1016/j.geoforum.2012.06.017
http://dx.doi.org/10.1016/S0167-739X(98)00047-8
http://jasss.soc.surrey.ac.uk/12/2/2.html
http://dx.doi.org/10.1186/2194-3206-1-3
http://dx.doi.org/10.1057/jos.2013.4
http://www.worldcat.org/isbn/9780596808327
http://www.worldcat.org/isbn/9780691136745
http://www.humboldt.edu/ecomodel/documents/ABMPlatformReview.pdf
http://dx.doi.org/10.1177/0037549706073695
http://dx.doi.org/10.1111/j.1939-7445.2002.tb00077.x
http://jasss.soc.surrey.ac.uk/11/2/8.html
http://dx.doi.org/10.1371/journal.pcbi.1003285
http://www.worldcat.org/isbn/9780137053469
http://dx.doi.org/10.1371/journal.pone.0067111

Simulation	Conference,	WSC	'12.	Winter	Simulation	Conference.	http://dl.acm.org/citation.cfm?id=2429759.2429884.

WHITLEY	&	Blackwell,	A.	F.	(2001).	Visual	programming	in	the	wild:	A	survey	of	LabVIEW	programmers.	Journal	of	Visual	Languages	&	Computing	12(4),	435–472.	.	[doi:10.1006/jvlc.2000.0198]

WILSON,	G.	(2014).	Software	carpentry:	lessons	learned.	F1000Research	.	[doi:10.12688/f1000research.3-62.v1]

WILSON,	G.,	Aruliah,	D.	A.,	Brown,	C.	T.,	Chue	Hong,	N.	P.,	Davis,	M.,	Guy,	R.	T.,	Haddock,	S.	H.	D.,	Huff,	K.	D.,	Mitchell,	I.	M.,	Plumbley,	M.	D.,	Waugh,	B.,	White,	E.	P.	&	Wilson,	P.	(2014).	Best	practices	for
scientific	computing.	PLoS	Biol	12(1),	e1001745+.	.	[doi:10.1371/journal.pbio.1001745]

ZEIGLER,	B.	P.,	Gon	Kim,	T.	&	Praehofer,	H.	(2000).	Theory	of	modeling	and	simulation	:	integrating	discrete	event	and	continuous	complex	dynamic	systems.	Academic	Press,	2nd	ed.

ZINN,	S.,	Himmelspach,	J.,	Uhrmacher,	A.	M.	&	Gampe,	J.	(2013).	Building	Mic-Core,	a	specialized	M&S	software	to	simulate	multi-state	demographic	micro	models,	based	on	JAMES	II,	a	general	M&S
framework.	Journal	of	Artificial	Societies	and	Social	Simulation	16(3),	5.	http://jasss.soc.surrey.ac.uk/16/3/5.html.

http://jasss.soc.surrey.ac.uk/18/3/9.html 14 21/10/2015

http://dl.acm.org/citation.cfm?id=2429759.2429884
http://dx.doi.org/10.1006/jvlc.2000.0198
http://dx.doi.org/10.12688/f1000research.3-62.v1
http://dx.doi.org/10.1371/journal.pbio.1001745
http://jasss.soc.surrey.ac.uk/16/3/5.html

	Abstract
	Introduction
	Aims

	A Best-Practice Paradigm-Independent Frame
	Layered Functionality
	Relevant Cross-Cutting Concerns
	Some Layer-Specific Features

	Understanding Simulation Toolkits
	MASON Reference Architecture Mapping
	AnyLogic Reference Architecture Mapping
	Consistent Omissions in all Toolkits

	The JSIT Library
	Logging
	Event-Driven Separation
	Run-Reproducibility Support
	Test-Oriented Stochasticity Control

	A Case Study on a Health & Social Care Model
	Architecture
	Testing
	Other JSIT-Enabled Functionality
	Reflections

	Conclusions
	Why is there so little Focus?
	Cultural Issues in Adoption

	Acknowledgements
	Notes
	Appendix A: Alternative Reference Architectures
	Model Instance as a Domain Model
	JAMES II

	Appendix B: Example JSIT Outputs from the Case Study
	References

