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Abstract: Assimilation – the tendency for individuals to adjust their opinions to more closely align with those
around them – is one of the central components of computational social-influence and opinion-dynamics mod-
els that seek to elucidate how large-scale societal trends can emerge from local social interactions among small
groups of individuals. Although assimilation processes have been well studied using increasingly sophisticated
assimilative schemes like bounded confidence, nonlinear opinion-averaging methodologies, time-varying so-
cial network structures, etc., we show there is a surprising, previously unrecognized phenomenon lurking in
even the simplest of assimilation models. We consider here two societies that start out on opposite sides of
some opinion spectrum, for instance, one initially very conservative society and the other very liberal. We as-
sume small groups of individuals from these societies can meet and interact, and that during an interaction
each person’s opinion simply moves closer to the average opinion of the group. One might anticipate that this
barebones assimilation process – which involves nothing more than simple numerical averaging of opinions
during each encounter – will invariably lead to a steady (and rather uninteresting) convergence of overall opin-
ion among the two societies wherein the initial intersocietal differences are straightforwardly washed away.
We show instead that a counterintuitive, large-scale demographic reversal can sometimes emerge – i.e., the
two societies can potentially end up swapping their relative positions on the opinion spectrum, with the ini-
tially conservative society ending up more liberal, on the whole, than the formerly liberal society. This finding
(dubbed an “assimilation anomaly”) shows how the process of repeatedly taking simple averages on a local
level can induce an overall reversal of average opinion on a global level. Using a heat diffusion model from
physics, we reveal the origins of this curious phenomenon. This dynamical effect involving two interacting so-
cieties is wholly distinct from other interesting social-influence phenomena described in the opinion-dynamics
literature (e.g., polarization, fragmentation, phase transitions, bifurcations, etc.).

Keywords: Opinion Dynamics, Social Influence, Computational Social Science, Cultural Dissemination, Social
Networks, Sociophysics

Introduction

1.1 In an effort to better understand the structure and dynamics of societies, computational social scientists of-
ten employ multi-agent models governed by relatively simple interaction rules to simulate the behaviors of
large systems with many interacting components. Such models have proven to be highly informative and serve
as useful complements to traditional approaches based on large-scale empirical data. A particularly promi-
nent class of social-influence models, known as opinion-dynamics models, focus on how beliefs and opinions
in a society evolve and their underlying mechanisms of transmission. In broadest terms, social-influence or
opinion-dynamics models assume individual agents possess some set of socially malleable traits (i.e., opinions
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or beliefs) that can be influenced by social interactions with other agents and explore the dynamical evolu-
tion of these beliefs across society as these interactions progress. Opinion-dynamics models are quite versa-
tile, with direct applications across many disciplines including political science, sociology, and economics, as
evidenced by a vast and burgeoning literature (e.g., Xia et al. 2011; Castellano et al. 2009; Peralta et al. 2023;
Hegselmann et al. 2002; Deffuant et al. 2000; Weisbuch et al. 2002; Lorenz 2007; Vespignani 2011; Sirbu et al.
2016; Axelrod 1997; Castellano et al. 2000; Kuperman 2006; Nguyen et al. 2021; Currin et al. 2022; Keijzer & Mäs
2022). Indeed, numerous strains of opinion-dynamics models have been developed, being differentiated from
one another based on whether the model’s opinion state variable is continuous, discrete, a scalar or a vector
(e.g., Hegselmann et al. 2002; Deffuant et al. 2000); the choice of averaging algorithm that governs the weight-
ing of opinions during the multi-agent interactions (e.g., Krause 2000; Hegselmann et al. 2002; Kuperman 2006;
Friedkin & Johnsen 2011); the restrictions or constraints on the sets of agents who can participate in the opinion-
averaging process (e.g., in bounded confidence models only agents whose opinions are sufficiently similar can
interact; in Axelrod’s cultural assimilation model the assumption of homophily bases the likelihood of inter-
actions between two agents on how similar the agents are to one another and does not permit two agents
who are completely dissimilar to interact) (e.g., Axelrod 1997; Hegselmann et al. 2002; Dittmer 2001); whether
there is an underlying social network/graph structure in the model and whether any such underlying network
is static or evolves in time (e.g., Fennell et al. 2021; Stivala & Keeler 2016; Reia & Fontanari 2016; Pfau et al. 2013;
Vazquez et al. 2007); the communication scheme used by the agents (e.g., one-to-one, one-to-many, many-
to-one) (Flache & Macy 2011; Abelson 1964; Friedkin & Johnsen 2011; Keijzer et al. 2018; Shibanai et al. 2001);
whether a mass media influence is present or not (e.g., Daley & Kendall 1964; Peres & Fontanari 2012; Rodríguez
et al. 2009; Pineda et al. 2009); the inclusion or omission of noise (e.g., Gandica et al. 2013; Klemm et al. 2003;
Parisi et al. 2003; Flache & Macy 2011); etc.

1.2 Despite this tremendous variety of model types and assumptions, assimilation represents a common, unify-
ing theme underlying the vast majority of these social-influence or opinion-dynamics models, i.e., virtually all
these models include some type of assimilative mechanism by which interacting agents adjust their views in
light of the opinions of others, with the general tendency being for interacting agents to become more similar
during any given encounter. Typically, in an assimilative interaction involving multiple agents, the agents will
neither completely adopt nor completely disregard the opinions of the other participating agents, but instead
will take a partial step towards their collective middle ground, which is usually computed by taking some sort of
weighted average of opinions of the agents (see, e.g., Friedkin & Johnsen 2011). Often assimilation proceeds in
a very straightforward manner, particularly if few restrictions or limitations are placed on the opinion-averaging
process itself. For instance, in very simple assimilation scenarios involving a single society, the process of re-
peatedly averaging over the opinions of various groups of agents in that society will eventually wash away dif-
ferences and ultimately produce consensus throughout the society (i.e., complete uniformity in the opinions of
the agents), also known as a mono-culture in some contexts. In more sophisticated assimilation models where
various constraints, restrictions, or other stipulations are placed on the assimilative averaging mechanism (e.g.,
as in bounded-confidence models where agents that are very different from one another cannot interact, or in
models where agents’ opinions harden over time, etc.), complete assimilation within the society may never
reach fruition and other interesting behaviors can result, such as the polarization or fragmentation of opinions,
or the appearance of phase transitions (e.g., Castellano et al. 2000).

1.3 In this paper we illustrate a novel, seemingly anomalous effect that can arise even in the simplest of assim-
ilation models where one would normally not expect any surprises. First consider a single society in which
small groups of agents are interacting, and during those interactions the agents’ opinion values each just move
closer toward their common numerical group average (without any complicating factors like bounded confi-
dence restrictions, time-varying weights in the averaging process, etc.). (See Section 2 for details.) In this sim-
plistic scenario, the process of repeatedly numerically averaging the opinions of different agents will ultimately
produce a state of complete consensus within a society, as expected. The surprise happens when we instead
consider two such societies, this time assuming that assimilation is not only occurring within each society but
now also allow for inter-societal assimilation wherein agents from one society can briefly visit, interact, and
assimilate with agents in the other society before returning home. We assume the same simplistic numeri-
cal opinion-averaging mechanism is at work for both these inter-societal and intra-societal interactions. What
we discover is that this seemingly straightforward assimilation mechanism – even though it is based entirely
on simple numerical averaging of opinions – can yield a nontrivial result among the two interacting societies,
namely, reversals in the overall opinion characteristics of the two societies during the course of their interac-
tions. For instance, consider two societies where the agents’ opinion values can lie anywhere between 0 and
100 on some (continuous) numerical opinion spectrum. Agents are free to interact with neighboring agents
in their own society, and/or can briefly visit and interact with an agent and its neighbors in the other society.
During each encounter we assume the basic group opinion-averaging process described above is carried out.
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Now suppose the two societies start out extremely polarized, where initially every agent in one society has an
opinion value of 100, while every agent in the second society has an initial opinion value of 0. As small groups
of agents repeatedly interact and assimilate with one another (both within their own society and when visiting
the other society), an unexpected phenomenon can emerge: at some point in their evolution, it is possible that
the average opinion in the first society could drop below that of the second society (e.g., the first could drop
from 100 to, say, 40, while the average opinion in the second society could rise from 0 to a value of 60). This
unexpected reversal in overall societal opinions typically appears as a transient, intermediate state of the sys-
tem, and if the assimilation process is allowed to proceed indefinitely eventually a state of complete uniformity
within and between the two societies will ultimately result (though under certain choices of the model’s param-
eters this reversal can sometimes persist). Regardless, the existence of a potential reversal of the two societies’
relative positions on the opinion spectrum under this humblest of assimilation mechanisms (based on nothing
more than simple numerical averaging) is in many respects quite surprising, and is the main focus of this paper.

1.4 The goal of this work is a modest one. With the help of a very elementary opinion-dynamics model, we illustrate
and analyze this rather curious, previously unrecognized facet of assimilation. We do not attempt to directly
match our numerical findings to specific real-world empirical data drawn from any particular case study, but
instead wish to highlight here the existence of this surprising dynamical phenomenon which can lurk in even
very simple social-influence/opinion-dynamics models. The paper is structured as follows: in Section 2 we
introduce a very basic, stripped-down multi-agent model describing assimilation in two societies (intentionally
devoid of bells and whistles so as to cleanly exhibit the effect); Section 3 documents our numerical findings
and observations of the “assimilation anomaly,” and describes various associated dynamical trends seen in
our simulations. In Section 4 we lay out the intuitive, conceptual, and theoretical underpinnings that explain
how and why an assimilation anomaly can arise, focusing on an analogous heat diffusion model from physics.
Section 5 summarizes our findings and discusses extensions.

The Basic Assimilation Model

2.1 Below we outline the basic opinion-dynamics model that we will use to illustrate the emergence of the assimi-
lation anomaly. We emphasize from the outset that many of the particular choices we make for the model are
largely for purposes of convenience and simplicity of illustration, and that the assimilation anomaly described
in this paper is a fairly robust phenomenon that can emerge even if a number of the model’s specific features
are altered. For instance, in our model we will assume nearest-neighbor interactions on a simple grid-like net-
work. However, the effect can still emerge even if we drop the simple grid-like structure and instead assume
that an agent visiting the other society can simultaneously interact with all agents in that society, not merely
nearest neighbors; this drastic change in underlying network structure does not suppress the emergence of the
assimilation anomaly and in fact can even sometimes enhance it. Similarly, though we will impose doubly pe-
riod boundary conditions to eliminate edge effects on the square lattices representing the two societies, this
choice of boundary conditions is done for convenience and has little bearing on the overall outcome.

2.2 We begin by considering two societies,AandB, composed of agents located on square lattices of sizesNA×NA

and NB ×NB , respectively, as shown in Figure 1. Individual agents in each society are denoted respectively by
Aij and Bij , where the indices i, j of Aij run from 1, 2, . . . , NA while those of Bij run from 1, 2, . . . , NB . When
we don’t wish to explicitly specify which society an agent resides in, we will use Xij to denote a generic agent
(while keeping in mind that the upper limits for the indices i, j will depend on which of the two societies the
agent actually resides in). Each agent is assumed to hold a (scalar, real-valued) opinion whose numerical value
lies in the range [0,100] (this choice of a 100-point range for the opinion scale is arbitrary and has no bearing on
the model’s behavior.) As it should not cause any confusion based on context, we will useXij both to denote the
agent located at lattice point i, j as well as to denote the numerical value of that agent’s opinion. Every agent
Xij is assumed to have four nearest neighbors, namely Xi,j−1, Xi,j+1, Xi−1,j , Xi+1,j , where for convenience
we assume doubly periodic (toroidal) boundary conditions on the lattices.
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Figure 1: Societies A and B, consisting of agents on lattices of sizes NA ×NA and NB ×NB . The assimilation
process consists of a series of interactions among small groups of agents in the societies. In an intra-societal
interaction, an agent in one of the societies is randomly selected (e.g., the upper dark-green square in A) along
with its four nearest neighbors (shown in light green). The agents in this small group then update their opinions
using the simple opinion-averaging process described by Equation 1. In an inter-societal interaction, an agent
in one of the societies is randomly selected (e.g., the lower dark-green square in A). This agent then briefly
visits a randomly selected agent in the other society (e.g., the dark-orange square in B) along with that agent’s
four nearest neighbors (shown in light orange), and this group of six agents then follow the opinion-averaging
process (Equation 1). The overall time evolution of opinions in each society are monitored as repeated intra- and
inter-societal interactions occur. For convenience periodic boundary conditions are assumed for each lattice.

2.3 Assimilation proceeds in a straightforward, iterative fashion, as follows: At each step, a small group of agents
is selected (as described below) and the opinion of each member of this group is moved closer to the average
opinion of the group, denotedX . More precisely, lettingXij denote the opinion value of an agent in the selected
group, the agent’s updated opinion value is:

Xij → Xij + s(X −Xij) (1)

2.4 Here, the assimilation parameter s ∈ [0, 1] controls how large a step the interacting agents take towards their
overall group average during the interaction. For instance, if s is set to 1 then during the interaction all agents in
the group immediately take on the average opinion of their group, whereas if s < 1 then during the interaction
each agent only moves partway towards the group average. By assumption s can never exceed 1, meaning
that during an interaction an agent’s updated opinion will always move towards X but is never permitted to
‘overshoot’ it; i.e., if an agent’s opinion value immediately prior to the interaction is below the group average
(< X), then immediately after the interaction its updated opinion will increase but still remain ≤ X . Likewise,
if an agent’s opinion starts above the group average, then it will decrease during the interaction but remains
≥ X . More generally, notice that the linear opinion-updating rule (1) always preserves the relative ordering of
agents on the opinion spectrum during an interaction, i.e., as the agents in the interacting group each move
towards their overall group average they can never pass one another and hence cannot change their relative
positions. Lastly, we remark that the averaging rule (1) is applied simultaneously to all agents in the selected
group, and once this update is complete another group of agents is randomly selected and the whole process
repeats.

2.5 The process by which the small groups of interacting agents are selected is straightforward. Since there are two
societies, there are four distinct selection scenarios based on where the interacting agents reside:

2.6 Intra-Society-A Group Selection. An agent Aij in Society A is selected at random, along with its four nearest
neighbors Ai,j−1, Ai,j+1, Ai−1,j , Ai+1,j . This group of five agents, all in Society A, will then interact and as-
similate according to opinion-updating rule (1) described above.

2.7 Intra-Society-B Group Selection. An agent Bij in Society B is selected at random, along with its four nearest
neighborsBi,j−1,Bi,j+1,Bi−1,j ,Bi+1,j . This group of agents in SocietyB will then interact as described above.

2.8 Inter-Society-A-to-B Group Selection. An agent Aij in A is randomly selected. This agent will visit a randomly
selected agent Bi′ ,j′ in B along with its four nearest neighbors Bi′ ,j′−1, Bi′ ,j′+1, Bi′−1,j′ , Bi′+1,j′ . Together
these six agents interact (according to the averaging process described above), and then Aij returns home.
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2.9 Inter-Society-B-to-A Group Selection. An agent Bij in B is randomly selected. This agent will visit a randomly
selected agent Ai′ ,j′ in A along with its four nearest neighbors Ai′ ,j′−1, Ai′ ,j′+1, Ai′−1,j′ , Ai′+1,j′ . These six
agents interact, and then Bij returns home.

2.10 We assign individual probabilities, denoted ρA, ρB , ρAtoB , ρBtoA respectively, to each of the above four group-
selection scenarios, with ρA + ρB + ρAtoB + ρBtoA = 1. We remark that the flexibility to freely choose these
probabilities gives our model the capacity to explore a range of scenarios. For instance, if ρA, ρB are both
set to be much larger than ρAtoB , ρBtoA, then this means that assimilative interactions within a given society
are occurring much more frequently than inter-societal interactions. Similarly, we could model one form of
asymmetry between two societies by selecting different values for ρAtoB , ρBtoA (e.g., as might be warranted,
for instance, if two societies have very different levels of economic prosperity and/or if one has severe travel
restrictions while the other does not, in which case the per capita visitation rates from Society A to Society
B and from Society B to Society A could be very different). Likewise, selecting different values of the intra-
societal interaction parameters ρA, ρB could reflect intrinsic differences in these societies’ population/housing
densities and/or their communication/transportation networks.

2.11 In our model we also allow for the possibility that the number of inter-society interactions could be capped –
i.e., it might not be feasible or realistic for agents in one society to make an unlimited number of visits to the
other society. Hence our model lets one select a maximum number of allowed inter-societal visits that any one
agent can make. We denote these caps as maxAtoB and maxBtoA, where for flexibility we have not required that
the visitation caps between Societies A and B be symmetric since conditions within each society could differ.

2.12 Lastly, we must select the initial conditions for the model. Although one could freely assign different starting
values (between [0,100]) for the opinions of each of the N2

A +N2
B agents in the combined system, throughout

our simulations we will assume that our two societies always start off at polar-opposite ends of the opinion
spectrum – i.e., initially every agent in SocietyAholds opinion value 100, while every agent in SocietyB initially
has opinion value 0. We focus on this extreme case to dramatize the assimilation anomaly by showing that it
can emerge even in the most unlikely of circumstances.

2.13 The above assimilation model, and the rudimentary group averaging scheme that it employs for updating the
agents’ opinions, represents one of the simplest possible choices of opinion-dynamics models that one could
devise to describe the assimilation of opinions between and within two societies – i.e., during each interaction
all members of the interacting group simply take a step closer to their group average (without ever overshoot-
ing that average or passing one another on the opinion spectrum). This choice of a highly simplified model
was intentional, to cleanly illustrate that even a seemingly ordinary, unsophisticated assimilation mechanism
can produce nontrivial dynamical behaviors, and in particular to demonstrate how the superficially mundane
process of repeatedly taking local averages over small groups of agents can produce surprising behaviors in the
aggregate.

2.14 In the next section we examine the model’s numerical behavior and document the emergence of the assimila-
tion anomaly. In Section 4 we then provide the key physical insight, intuition, and analysis which explains the
basis and origin of the anomaly.

Numerical Results and the Reversal in Average Societal Opinion

Model metrics

3.1 To quantify and analyze the model’s behavior, we will employ two key sets of metrics to track the evolution of
opinions in the two societies as they interact and assimilate. The first is the average societal opinion values, de-
noted A, B, respectively, for the two societies, which are straightforwardly computed by taking an unweighted
average of opinions over all agents in a society:

A =
1

N2
A

NA∑
i=1

NA∑
j=1

Aij and B =
1

N2
B

NB∑
i=1

NB∑
j=1

Bij (2)

3.2 By design, A = 100, B = 0 at the start of the simulation. The second set of metrics are probabilistic in nature.
We define:

• PA>B to be the probability that a randomly chosen agent in Society A holds a higher opinion on the
numerical opinion spectrum than that of a randomly chosen agent in Society B. More formally, let v ∈
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[0, 100] be a numerical opinion value, and let nA(v) denote the number of agents in A whose opinion
value exceeds v. Then we have:

PA>B =
1

N2
AN

2
B

NB∑
i=1

NB∑
j=1

nA(Bij) (3)

where here Bij represents the numerical opinion value of agent Bij (recall the dual meaning of Bij as
both opinion value and agent, depending on context).

• PB>A is the probability that a randomly chosen agent in Society B holds a higher opinion on the nu-
merical opinion spectrum than that of a randomly chosen agent in Society A. Letting nB(v) denote the
number of agents in B whose opinion value exceeds v, we have:

PB>A =
1

N2
AN

2
B

NA∑
i=1

NA∑
j=1

nB(Aij) (4)

• PA=B is the probability that a randomly selected agent from A and a randomly selected agent from B will
have the same opinion.

3.3 At the start of the simulation PA>B = 1, PB>A = 0, PA=B = 0.
3.4 Before proceeding, we note a small but relevant technical consideration when computing probabilities PA>B ,

PB>A, PA=B as defined above. In these computations one must directly compare the numerical opinion val-
ues of different agents. Recall that the opinion spectrum ranges continuously from 0 to 100. Now, since the
assimilation process involves repeatedly averaging the agents’ opinions, it can happen that at some point the
opinions of two agents could become exceedingly close (e.g., supposeA26,37 = 41.0007 andB15,4 = 41.0008).
At a certain point, such differences in opinion values may become so small as to lose all meaning or relevance
in any practical sense. However, even the tiniest of numerical differences will still directly and notably impact
the values of PA>B , PB>A, PA=B , and hence some additional care is warranted when computing these prob-
abilities so as not to be misleading. This is readily handled by incorporating a numerical tolerance into the
comparisons used in these probability computations. In particular, we specify a numerical tolerance value, and
then, for purposes of comparison, treat two agents’ opinions as being effectively equal whenever their numer-
ical difference is less than the specified tolerance. We note that this introduction of a numerical tolerance does
not in any way affect the workings of the model itself (i.e., the numerical averaging algorithms governing the
agents’ dynamical evolution, as described by Equation 1 in Section 2), but rather only impacts the calculation
of the probability metrics PA>B , PB>A, PA=B .

3.5 These two sets of metrics – the average societal opinionsA, B and the comparative probabilitiesPA>B , PB>A,
PA=B - are complementary in nature. Each provides a different insight into the overall opinion state of the
two societies, and both are useful. The societal averages will prove to be most direct and informative, albeit
somewhat blunt instruments, while the probability metrics, particularly when viewed in conjunction with the
societal averages, will provide additional insight into the distribution of opinions within each society that may
not be picked up by the societal averages alone.

Ordinary convergence versus the assimilation anomaly

3.6 Ordinary Convergence: Because the two societies in the model start out at opposite extremes on the opinion
spectrum,A = 100,B = 0, and because the mechanism governing the assimilation of opinions involves, infor-
mally speaking, nothing more than repeatedly grabbing small handfuls of agents and averaging their opinions,
one might naturally assume that as time progresses the only large-scale dynamical movement that one will
observe will be a very steady, uniform convergence of opinions both between and within the two societies: As
seen in Figure 2(A), in this scenario one anticipates that A will decrease and B will increase as they approach
the same asymptotic opinion value. Correspondingly, as seen in Figure 2(B), as the two societies converge the
probabilityPA=B will gradually rise from 0 to 1, whilePA>B will drop from its initial value of 1 towards 0. Prob-
ability PB>A is initially at 0 and will undergo a transient rise before eventually dropping back towards 0 as the
societies converge. Figure 3 again illustrates ordinary convergence of opinions between the two societies, ex-
cept this time the number of inter-society visits that agents are allowed to make has been capped at a small
value. In this case, inter-societal assimilation ceases once the caps have been reached, and hence the close
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convergence in opinions seen in Figure 2(A) never quite reaches completion: In particular, observe in Figure
3(A) that A, B will again approach one another (just as in Figure 2(A)) but now their final asymptotic values
remain distinct. Regardless, both Figure 2 and Figure 3 illustrate the straightforward convergence of societal
opinions that one expects from ordinary assimilation based on simple opinion averaging.

Figure 2: Ordinary assimilation, showing the convergence of opinions between two societies due to opinion-
averaging. All agents in Society A start off with an opinion value of 100, while all agents in Society B start
with opinion value 0. Figure 2(A) shows the temporal evolution of the average opinion value in each society as
assimilation proceeds; as anticipated, A uniformly decreases while B uniformly increases. Figure 2(B) depicts
the probabilities that a randomly chosen agent in Society A holds a higher opinion than a randomly chosen
agent in Society B (PA>B), that a randomly chosen agent in Society B holds a higher opinion than a randomly
chosen agent in Society A (PB>A), and the probability that they will be equal to within a specified numerical
tolerance (PA=B). The plots are show for parameter settings NA = 20, NB = 20, ρA = 0.2, ρB = 0.4,
ρAtoB = 0.1, ρBtoA = 0.3, s = 1, tolerance = 1, maxAtoB= 4, maxBtoA = 4.

Figure 3: Ordinary assimilation with lower visitation caps. As in Figure 2, one again observes the convergence of
opinions between the two societies under the simple opinion-averaging process, but here the convergence of
opinions is incomplete owing to the low inter-societal visitation caps that have been put in place (i.e., maxAtoB=
1, maxBtoA= 1). All other parameter values are identical to those in Figure 2.

3.7 Assimilation Anomaly: While simple opinion averaging does indeed frequently produce the anticipated out-
comes shown in Figures 2 and 3, surprisingly this is not the only possibility, as seen in Figure 4. Figure 4(A)
shows an example of an assimilation anomaly, wherein at the start of the simulation the average opinion in
Society A is higher than that in Society B, i.e., A > B, yet at some point in their temporal evolution there is
a reversal in the relative positions of the two societies on the opinion spectrum, i.e., A becomes less than B.
(Again, what makes this large-scale reversal remarkable is that during the local interactions among agents (as
described by Equation 1), all agents in the interacting group simply move closer to their group average while
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preserving their relative ordering on the opinion spectrum. Yet when this local order-preserving rule (1) is ap-
plied repeatedly to small groups of agents in the two societies, in the aggregate it can produce a large-scale
reordering (i.e., reversal) of the average opinion of the two societies even though reorderings are forbidden
in the local interactions.) Figure 4(B) shows a complementary view of the anomaly in terms of the quantities
PA>B , PB>A, PA=B . We remark that instead of strictly defining the anomaly to be when A < B, we could
expand the definition to include any cases in which PB>A > 0.5 at any point in the evolution, i.e., to scenarios
in which there is more than a 50% likelihood that a randomly chosen agent inB has a higher opinion value than
a randomly chosen agent in A. We note that the signatures of the anomaly, A < B and PB>A > 0.5 , are not
equivalent; it is possible that at some intermediate stage in the societal evolutions that A < B is not satisfied
but that PB>A > 0.5 is satisfied, for instance. We will refer to both of these criteria, A < B and PB>A > 0.5 ,
as signifying the presence of an assimilation anomaly, since one would not naively expect that either would be
possible in a simple assimilative averaging scheme of the model (though we will treat the first of these, A < B,
as the primary signature). Figure 5 illustrates the corresponding appearance of the anomaly when the visitation
caps are made more stringent (i.e., lowered in value); owing to these caps the inter-societal interactions cease
at some point and the reversal in the average opinions in Societies A and B can be permanent (e.g., compare
Figures 4(A) and 5(A)).

Figure 4: An assimilation anomaly. Note in (A) the striking crossover in average societal opinions, from A > B
toB > A (inset shows a magnified view of the anomaly). (B) provides a complementary view of the anomaly in
terms of PA>B , PB>A, PA=B . Note that PB>A rises above 0.5, indicating that the opinion value of a randomly
chosen agent in Society B is now likely to exceed that of a randomly chosen agent in Society A. All data is
shown for system parameters NA = 15, NB = 25, ρA = 0.4, ρB = 0.1, ρAtoB = 0.1, ρBtoA = 0.4, s = 1,
tolerance = 1, maxAtoB= 3, maxBtoA = 1.
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Figure 5: An assimilation anomaly, shown with lower inter-societal visitation caps maxAtoB= 1, maxBtoA = 1;
all other parameters are identical to those of Figure 4(A). Note again the presence of the anomaly, marked by
the reversal of the relative societal positions along the opinion spectrum (i.e., the transition from A > B at
the start to B > A later). In contrast to Figure 4(A), the anomaly seen in Figure 5(A) persists indefinitely since
the reduced visitation caps considered here result in an earlier cessation of inter-societal interactions, thereby
freezing the values of A,B. Note too that because of this freezing, the average opinions A,B do not closely
converge and hence the probability PA=B in Figure 5(B) does not rise towards 1 as it does in Figure 4(B).

3.8 Figures 4 and 5 serve as illustrative examples of the onset and appearance of the assimilation anomaly at par-
ticular parameter values. We next describe more general numerical observations about the emergence of the
anomaly in the model.

Trends and numerical observations

3.9 Effect of system size and noise: The emergence of the assimilation anomaly as seen in the preceding figures
(Figures 4, 5) is not a result of small system size, nor the result of noise or randomness in the system (e.g., random
selection of agents). Figure 6, for instance, illustrates the assimilation anomaly for the same parameter settings
used in Figure 4(A) except now the lattice sizes have been increase by a factor of 64 – i.e., NA × NA has been
increased from 15×15 = 225 agents to 120×120 = 14, 400 agents, andNB×NB from 25×25 = 625 agents to
200×200 = 40, 000 agents. We see no substantive change in the anomaly despite this 64-fold increase in lattice
size. Likewise, the only probabilistic element in our model (i.e., the random selection of groups of agents) also
proves not to be an essential factor in the emergence of the anomaly. Indeed, as we will describe in Section 4,
one can readily create a purely deterministic analog of the assimilation model with arbitrarily large system sizes
and the effect will still emerge. The anomaly is not a system-size nor noise-induced phenomenon. Rather, it is a
manifestation of the fact that the process of repeated local averaging over small groups of agents can produce
overall reversals of opinions in the aggregate.
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Figure 6: Comparison with Figure 4(A) shows anomaly’s insensitivity to system size. The anomaly seen here
has been generated with the same parameter values used in Fig. 4(A), except the two lattice sizes have been
increased 64-fold, to NA ×NA = 120× 120 and NB ×NB = 200× 200.

3.10 Frequency & magnitude of the assimilation anomaly and parameter dependence: Although an assimilation
anomaly can emerge via simple averaging of local group opinions, one might naturally ask how frequently
an anomaly occurs compared to the much more familiar and ordinary convergence of opinions seen in Fig-
ures 2(A), 3(A). To assess this, we conducted a large-scale numerical exploration across the parameter land-
scape of the model, varying ρA, ρB , ρAtoB , ρBtoA from 0 to 1 in steps of 0.1 (subject to the constraint that
ρA + ρB + ρAtoB + ρBtoA = 1), allowed NA, NB to be 15, 20, 25 (i.e., the number of agents in each society
could be 225, 400, or 625, meaning that the ratio of system sizes N2

A

N2
B

could take on nine distinct values ranging
from 0.36 to 2.78); let the visitation caps maxBtoA and maxAtoB range from 0,1,2,3; and set the assimilation
parameter s to be 0.9 and the numerical tolerance to be 1. Altogether this constitutes 41,184 different param-
eter scenarios. We found that the assimilation anomaly (defined here as A < B) occurs in slightly over one
third of these cases. If we restrict consideration to “large” anomalies, arbitrarily defined here as when there is a
greater than 2% reversal on a 100-point opinion scale (i.e., when B −A > 2 ), then we find that these occur in
about 15% of the cases. Importantly, we find that assimilation anomalies tend to be more common when the
overall rate of inter-societal interactions (as measured by ρAtoB +ρBtoA) is high compared to the intra-societal
interaction rate. This is illustrated in Figure 7(A). (See also Figure 7(B) for a related result showing the effect of
asymmetry in the inter-societal interaction rates, |ρAtoB − ρBtoA|.)
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Figure 7: (A)The fraction of cases exhibiting the anomaly as a function of inter-societal migration rate ρAtoB +
ρBtoA. The frequency of the anomaly (along with its size) has a tendency to increase when the inter-societal
interaction rate is high compared to the intra-societal interaction rate. Although the overall trend seen in this
plot is clearcut, we caution that it merely conveys how often the anomaly arises as a function of ρAtoB +ρBtoA,
and does not dictate what will happen in any individual case (e.g., a high value of ρAtoB+ρBtoA may produce a
large-magnitude anomaly, a small anomaly, or no anomaly at all depending on the settings of the other param-
eters in the model). Hence it is prudent to view the overall trend seen in the plot as providing a useful, albeit
inexact, rule of thumb regarding the emergence of the anomaly. (B) Note that, similar to Figure 7A, a general
upward trend is also observed when anomaly frequency is plotted against |ρAtoB − ρBtoA|, indicating that the
larger the asymmetry in the inter-societal interaction rates the more frequently the anomaly occurs. However,
the same general caveat about this being a useful but inexact rule of thumb also applies.

3.11 Numerical observations also show that the very largest magnitude assimilation anomalies (e.g., B − A > 13,
which constitute the top 1% of cases) arise primarily in situations where either the asymmetry between the two
inter-societal visitation rates is most extreme and/or when the intra-societal interaction rates are extremely low
(the underlying reason for these tendencies will become apparent from the analysis presented in Section 4).
However, we remark here that the interaction parameter settings (e.g., ρA, ρB , ρAtoB , ρBtoA) which generate
the most extreme anomalies tend to be somewhat unrealistic from a social-modeling perspective. Thus these
extreme cases will not be our prime focus, but they will nonetheless prove helpful in informing our general
understanding of the emergence of the anomaly.

3.12 We remark also that when discussing the size of an anomaly at a given parameter setting one must bear in
mind that the anomaly’s amplitude will vary from run to run since our model contains probabilistic elements. To
illustrate, we computed the standard deviation of the anomaly size for 100 runs at a given parameter setting; we
repeated this for three different parameter settings each associated with a different anomaly size. At parameter
settings (ρA, ρB , ρAtoB , ρBtoA, NA, NB , maxAtoB, maxBtoA, s, tolerance) = (0.1, 0.1, 0.1, 0.7, 15, 25, 2, 1, 0.9, 1),
a rather large anomaly is observed with average value 8.1 and standard deviation 0.9 (i.e., ∼ 11% variations).
At parameter settings (0.3, 0.1, 0.3, 0.3, 15, 25, 1, 1, 0.9, 1) we find anomaly size 2.4± 0.4 (i.e., ∼ 17% variations).
Parameter settings (0.4, 0.3, 0.1, 0.2, 15, 25, 2, 2, 0.9, 1) yield 0.034± 0.027 (i.e., variations> 80%). In general the
fractional fluctuations tend to decrease with anomaly size. In the last example (i.e., anomaly size 0.034± 0.027)
where the average magnitude of the anomaly is very small, we note that the anomaly was altogether absent in
7 of the 100 runs.

3.13 Neighborhood size: We examined different versions of the model, in which we varied the number of nearest
neighbors with which an agent interacted (in contrast to an agent always interacting with four nearest neighbors
when in its own society or with five neighboring agents when visiting the other society, as in the present model).
In particular, we examined two extremes – pairwise interactions in which an agent could only interact with a
single other agent (either in its own society or in the other society), and one-to-all interactions in which an
agent would interact simultaneously with all other agents in its own society or in the other society. Although
the anomaly could appear in each of these cases, it was most pronounced in the one-to-all scenario and least
pronounced in the case of pairwise interactions. Hence it is appropriate to think of the assimilation anomaly
as being enhanced by multi-agent interactions. The underlying reason for this will become clearer when we
consider the analogous heat-diffusion model in the next section.

3.14 Visitation caps: One of the main effects of visitation caps was noted previously in comparing Figure 2 to Figure
3, and Figure 4 to Figure 5. Here, we add that although the anomaly can arise both in systems with low caps
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and in systems with high or no caps, we observed a general tendency for the magnitude of the anomaly to be
diminished as the size of the caps was raised.

3.15 Other observations: (i) The effect of varying the assimilation parameter s was relatively straightforward: In par-
ticular, lowering s tended to slow the overall rate of convergence, as could be anticipated since during each
local interaction a reduced s meant that the agents took smaller steps towards their group average (see Equa-
tion 1), thereby dilating the overall timescale of the dynamical convergence process. However, if s was reduced
significantly without simultaneously raising the visitation caps, then the anomaly would not be seen since the
low caps would cause the inter-societal interactions to cease before an anomaly had sufficient time to develop.
(ii) The choice of numerical tolerance used in the model, by design, had no effect model’s actual dynamical be-
havior, though it did affect the qualitative appearance of the PA>B , PB>A, PA=B plots (e.g., Figures 2(B), 3(B),
4(B), 5(B)) in a straightforward manner. (iii) In general, the presence of asymmetries between the two societies
(e.g., in their sizes, in their intra-societal interaction rates, etc.) tended to enhance the size of the observed as-
similation anomalies. However, we do note that assimilation anomalies could still emerge even in the case of
perfectly symmetric parameter settings, albeit these anomalies tended to be smaller in amplitude and occurred
less frequently.

Origin and Analysis of the Assimilation Anomaly

4.1 The assimilation anomaly has a simple origin, albeit one that can be easily overlooked in opinion-dynamics
models which often have many important bells and whistles attached. The key insight comes from considering
a familiar elementary physics scenario involving heat diffusion: Here, rather than two societies, we consider in-
stead the two physical objects shown in Figure 8, labeled H and C. Object H is initially hot (say at temperature
TH = 100◦C) and Object C is initially cold (TC = 0◦C). Apart from their initial temperatures, assume that
these objects are identical in all physical characteristics (i.e., same mass, chemical composition, specific heat,
etc.). If we were to simply place these two objects in direct thermal contact with one another, their tempera-
tures would start converging (in a straightforward, uneventful manner) towards their average, reaching a final
equilibrium value of Tequilibrium = 50◦C. This is just a simple consequence of heat flow and energy conser-
vation, and there are no surprises or subtleties occurring along the way (analogous to the steady convergence
seen in Figure 2(A)). So the question becomes, what could we do differently to somehow create a temperature
reversal, wherein the final temperature of the initially cold object winds up being higher than the final tempera-
ture of the initially hot object? The answer turns out to be deceptively simple: At the start, divide the cold object
C into two equal halves, labeled Cupper and Clower, as shown in Figure 8. Now take the upper half Cupper and
put it in thermal contact with hot object H until their temperatures equilibrate, and afterwards remove Cupper

and isolate it. Next take the lower half Clower and put it in contact with H until they equilibrate, and then and
isolate it. Lastly, putCupper andClower in thermal contact with one another until they equilibrate. At the end of
this simple sequential process, we find a straightforward yet still interesting final result: The final temperature
of Object H will be 44.4◦C, whereas the final temperature of Object C (after its two halves have been recom-
bined) will be 55.6◦C. Indeed, a temperature reversal has been created, in which the two objects have swapped
relative positions on the temperature spectrum, with the initially hot object ending up at a lower temperature
than the initially cold object. This reversal occurs even though ordinary heat diffusion (here, applied to multi-
ple objects in succession) involves nothing more than taking simple averages in succession, and we normally
(albeit incorrectly) think of local serial averaging as inevitably leading to steady global convergence, rather than
being capable of producing any sort of large-scale reversals. This simple heat diffusion paradigm provides a key
physical insight into the assimilation anomaly.
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Figure 8: A simple heat diffusion example illustrating a temperature reversal. (A) Shows the starting configura-
tion: a hot (H) object and a cold (C) object which are assumed to be identical in all physical properties except for
their initial temperatures. (B) Divide the cold object into two separate (i.e., isolated) halves, Cupper and Clower.
Next, as indicated by the arrow, Cupper will be placed in direct thermal contact with (H) until it equilibrates
and then will return to its original position. (C) Shows the new temperature (66.7◦C) of Cupper and H follow-
ing their interaction. It is found by computing a simple weighted average of their temperatures: (2/3)(100◦C) +
(1/3)(0◦C) = 66.7◦C. Following this, as indicated by the arrow in the figure, the next step will be to place Clower

in thermal contact with H and then remove it. (D) The new temperature of Clower and H following their inter-
action is again computed from a simple average: (2/3)(66.7◦C) + (1/3)(0◦C) =44.4◦C. Once this is done, then as
indicated by the arrows the final step will be to place the two halves of C (Cupper and Clower) in direct thermal
contact. (E) Following this last maneuver, the final temperature of C (again, computed via simple averaging)
will be (1/2)(66.7◦C)+(1/2)(44.4◦C) = 55.6◦C; meanwhile H remains at 44.4◦C. Hence we see a temperature
reversal has occurred: the initially hotter object H ends up at a lower final temperature than the final temper-
ature of the initially colder object C.

4.2 Although the above heat-diffusion scenario represents a highly simplified – indeed somewhat oversimplified –
analog of what is actually occurring in our opinion-dynamics model, it nevertheless does correctly capture the
essential process at the heart of the assimilation anomaly. Let’s now tighten the connection by considering a
slightly more sophisticated heat diffusion scenario to make it correspond a bit more closely to the assimilative
mechanism in our opinion-dynamics model. We will again start with two physically similar objects at different
initial temperatures TH and TC , though this time allow for the possibility that they have different masses MH

andMC in order to better align with the prospect that the two societiesAandB in our assimilation model might
contain different numbers of agents. Now, however, rather than dividing up object C into just two pieces and
sequentially placing them in thermal contact with H (as was done in Figure 8), we will instead divide up object
C into a very large number of small pieces, and then successively bring each piece into temporary contact with
objectH before eventually recombining all the small bits ofC back together. See Figure 9. In this scenario each
small piece of C will play a role analogous to an individual agent in Society B making a visit to Society A. The
heat flow calculation is straightforward.
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Figure 9: Heat diffusion with one-way “visitation.” (A) Shows the starting configuration: a hot object and a cold
object which are assumed to be identical in all physical respects except for their initial temperatures and their
masses. (B) Divide up the cold object into multiple small (i.e., infinitesimal), isolated pieces. As suggested by
the arrow, take a small piece of the cold object and place it into direct thermal contact with the hot object and
then return it to its original (isolated) position. Repeat this process, in succession, for each of the small pieces.
(C) Lastly, reconstitute the (originally cold) object by recombining all the small pieces and allowing them to
thermally equilibrate with one another. At the conclusion of this process there will be an overall reversal in the
temperatures of the two objects, namely TC(final) > TH(final). As an illustration, if for instance the two
objects are of equal mass and have starting temperatures of TH(0) = 100◦C and TC(0) = 0◦C respectively,
then, as shown by the calculation in the text, their final temperatures will be TH(final) = 100◦C × e−1 ≈
36.8◦C and TC(final) = 100◦C − 100◦C × e−1 ≈ 63.2◦C.

4.3 Let TH(t) and TC(t) denote the respective temperatures of objects H and C at time t, with TH(0) and
TC(0) denoting their initial temperatures. We break object C into small, equal-size bits of mass ∆MC

each at temperature TC(0). Note that the total number of such bits is MC

∆MC
. Next discretize time t =

0,∆t, 2∆t, 3∆t, . . . , MC

∆MC
∆t, where at each time step ∆t one small piece of mass, ∆MC , is put into contact

with objectH and (instantaneously) thermally equilibrates with it, and then this small piece is removed and set
aside. Then another small bit ∆MC is brought over to H , etc., etc. This sequential process repeats until all the
pieces of C have in turn equilibrated with H (the total elapsed time will be tfinal =

MC

∆MC
∆t). Note that when

a new bit of C is brought over at time t, the updated temperature of H will be:

TH(t+∆t) =
MHTH(t) + ∆MCTC(0)

MH +∆MC
(5)

i.e., in ordinary thermal diffusion, the updated temperature TH(t+∆t) is found by averaging the temperature
of object H and the temperature of the small bit of object C, each appropriately weighted by their respective
masses. Assuming ∆MC is small (i.e., ∆MC ≪ MC and ∆MC ≪ MH ), the above expression can be approxi-
mated to first order as:

TH(t+∆t) = TH(t) +
∆MC

MH
(TC(0)− TH(t)) (6)

4.4 Rewriting, we have:
TH(t+∆t)− TH(t)

∆t
=

R

MH
(TC(0)− TH(t)) (7)

where we have defined constant R = ∆MC

∆t to be the temporal rate at which the small pieces of object C are
being put in contact with H . Notice that the left-hand-side of the above expression can be approximated as a
derivative. Integrating from t = 0 to tfinal =

MC

∆MC
∆t yields:

TH(tfinal) = TC(0) + (TH(0)− TC(0))e
− MC

MH (8)

It is straightforward to show from energy conservation that the final temperature of object C after all its indi-
vidual pieces are reassembled and allowed to come to equilibrium with one another is:

TC(tfinal) =
MH

MC
TH(0) + (1− MH

MC
)TC(0)−

MH

MC
(TH(0)− TC(0))e

− MC
MH (9)

4.5 From an examination of the above expressions, one can show that TC(tfinal)− TH(tfinal) > 0, meaning that,
under this scenario, heat diffusion will always produce a reversal of relative positions of the two objects on the
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temperature spectrum, i.e., the process of repeatedly thermal averaging objectH with small pieces of objectC
yields an overall temperature reversal wherein the initially hot object H winds up at a lower final temperature
than that of the initially cold object C. For the case of equal masses, for instance, we find that the magnitude
of the temperature reversal is TC(tfinal) − TH(tfinal) = (1 − 2

e )(TH(0) − TC(0)), i.e., about 26.4% of the
initial temperature difference. A simple calculation shows that the mass ratio that maximizes the size of the
temperature reversal is MC

MH
≈ 1.793; in this case the magnitude of the temperature reversal is approximately

29.8% of the initial temperature difference. We also mention that in the limit that one of the two objects is much
more massive than the other (i.e., either MC ≪ MH or MC ≫ MH ) then the magnitude of the temperature
reversal diminishes to 0.

4.6 The heat diffusion process described above is at the core of what is producing the assimilation anomaly in the
opinion-dynamics model. Both the heat diffusion scenario and our simple assimilation scheme rely on nothing
more than repeatedly taking local averages (over subcomponents of objects in the former case and over small
groups of agents in the latter case). The essential point is that even though the local averaging process itself can
only produce local convergence (of temperatures and/or of opinions) without any overshooting or reordering,
by repeatedly taking local averages one can create a large-scale reversal in the aggregate, i.e., an assimilation
anomaly.

4.7 Several comments are in order.
4.8 We first point out that while the above heat diffusion analysis has provided the basic physical and mathemat-

ical insight into the assimilation anomaly, nonetheless there are some key technical differences between the
opinion-dynamics model and the heat diffusion examples:

1. In the opinion-dynamics model we allowed for individual agents from both societiesA andB to make vis-
its to the other society, whereas in our heat diffusion illustration we only divided one of the two objects
(specifically, object C) into small (agent-like) bits and allowed these bits to sequentially “visit” object H ,
but we did not also divide object H into bits and allow these to visit object C. (Later we will extend the
heat model to account for two-way visitations.) This asymmetric visitation in the above heat diffusion
scenario corresponds to setting the visitation rate ρAtoB from Society A to Society B to 0 in the opinion-
dynamics model. Importantly, as we will show later, the question of asymmetric versus symmetric visi-
tation proves unimportant, since either case can give rise to an assimilation anomaly.

2. In the heat diffusion scenario of Figure 9 each small piece of object C, when brought over to object H ,
thermally equilibrates with the whole of H , whereas in our opinion-dynamics model a visiting agent only
directly interacts with (and averages with) a small group of agents residing within some local neighbor-
hood of the other society. This is a critical, nontrivial difference between the heat diffusion and assim-
ilation scenarios. We can garner insight into the implications of this distinction by comparing the two
heat diffusion scenarios described above – the first in which object C was simply divided in half (Figure
8), and the second where it was divided into a large number of pieces (Figure 9). A calculation shows
that the size of the temperature reversal is larger in the latter case. This has direct implications for our
assimilation model: it suggests that having a single agent interact with a larger number of agents in the
other society will produce a bigger effect than having an agent only interact with a small group of agents
residing in some local neighborhood of the other society. This observation is consistent with the nu-
merical trend described previously, i.e., the assimilation anomaly will be magnified as the number of
agents in a local neighborhood is increased. We can thus think of the preceding calculation for the size of
this thermal anomaly (i.e., 29.8% of the initial temperature differential) as providing a theoretical upper
bound on the size of the assimilation anomaly under one-way visitations, since as argued above averag-
ing over a smaller neighborhood size in the assimilation model compared to the thermal case will reduce
the anomaly’s magnitude below this theoretical limit. Our numerical simulations confirm this.

3. In the heat diffusion scenario, each time a small bit of ObjectC was brought over to ObjectH we assumed
that the thermal equilibration process within both that small bit of C and the whole of H was virtually
instantaneous, whereas in the opinion-dynamics model we allowed for the possibility of incomplete equi-
libration by introducing an assimilation parameter s which could be set to be less than one. (Recall that
when s = 1 all agents in interacting group immediately adopt the average group opinion whereas when
s < 1 each interacting agent only moves partway closer to the group average.) One can think of the s < 1
case as corresponding to a heat-diffusion situation in which the thermal conductivity of objects C and
H are finite resulting in partial rather than full equilibration. This in turn tells us what to expect: as the
assimilation parameter s is reduced, timescales for equilibration increase, and the size of the anomaly
will tend to diminish. This is precisely what was numerically observed in our earlier simulations.
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4. In the heat diffusion scenario of Figure 9, after each small piece of Object C was placed in thermal con-
tact with Object H it was then removed and not permitted to have any further interactions with Object
H . This is analogous to setting the inter-society visitation cap equal to one in our assimilation model. The
question thus becomes, what happens if we raise the visitation cap in the assimilation model? We again
can turn to the thermal diffusion scenario for insight: Raising the visitation cap corresponds to allowing
the small bits of ObjectC to visit ObjectH multiple times. But with each successive visit the temperature
of a small piece of C will become closer to that of H , which will therefore tend to reduce the magnitude
of the final aggregate temperature reversal. Hence we can anticipate that, all else being equal, the size
of the assimilation anomaly (at least in the case of asymmetric visitations) should generally be reduced
as the visitation caps are increased. This finding is consistent with the overall numerical trends observed
previously (though, as a cautionary remark, we note that this general trend is not an inviolable rule). As a
side remark, we do wish to note that the above correspondence between the visitation caps in the assim-
ilation model and the heat diffusion scenario is still slightly imperfect: In the thermal diffusion scenario,
after each bit of Object C interacted with Object H it was then removed and isolated not only from H
but from the rest of C as well (until the very end when all of the small pieces of C were recombined).
But in the assimilation model, an agent, after visiting the other society and returning home is allowed
to interact with its neighbors, i.e. it is not isolated. This difference between the heat diffusion scenario
and the assimilation scenario means that one cannot in general fully map these two models directly onto
one another. Nonetheless, the underlying physical process at work in the heat diffusion scenario does
provide the correct physical justification for why raising visitation caps will tend to reduce the magnitude
of the reversal in overall societal opinions.

4.9 Despite the differences, the dynamical mechanism responsible for the temperature reversal in the heat diffu-
sion case is nearly identical to that responsible for the large-scale reversal of societal opinion in the assimilation
case. Indeed, we point out that we can rigorously map the above heat diffusion scenario onto the assimilation
model under the following circumstances: If in the assimilation model we set ρAtoB = 0, ρB = 0, s = 1,
maxBtoA = 1, and increase the neighborhood sizes on the societal lattices from just four nearest neighbors to
the entirety of the lattice (thereby creating one-to-all interactions), then the two scenarios rigorously match
one another. We have carried out numerical simulations of the assimilation model under these extreme condi-
tions and have confirmed that they agree with the preceding theoretical predictions of TH(tfinal), TC(tfinal)
computed for the thermal diffusion case.

4.10 We noted earlier that it is possible to extend the above thermal diffusion scenario of Figure 9 to better mimic
the two-way visitations of the assimilation model. Here, one again considers two objects, one initially hot and
one initially cold (for ease we assume they have the same mass M ). This time, however, we divide both objects
up into small pieces of mass ∆M , and simultaneously bring a small bit of mass from the cold object to the hot
object and a small bit of mass from the hot object to the cold. After each has thermally equilibrated we return
each piece to its respective side (but keep it isolated). We repeat this process until all bits of both objects have
thermally “visited” and returned. We then allow all the small bits from the originally cold side to recombine and
equilibrate, and similarly recombine and equilibrate all the bits from the originally hot side. We again find that
an overall temperature reversal will occur. The resulting heat flow calculations describing this process are still
analytically tractable albeit slightly more involved than the previous one-way visitation case (since they entail
constructing and solving two coupled non-autonomous differential equations, which can be readily done via a
judicious change of variables). We omit the details of this calculation and instead highlight the main qualita-
tive and quantitative findings: Most importantly we find that these two-way visitations produce a temperature
reversal, withTC(tfinal)−TH(tfinal) =

1
3 (TH(0)−TC(0)) > 0. In other words, the temperature reversal that

was found in the previous thermal diffusion scenario (Figure 9) was not caused by the asymmetric, one-way na-
ture of the visitations in that scenario, but rather also similarly emerges with two-way thermal visitations. This
is why, in our assimilation model, we numerically observed the presence of the anomaly regardless of whether
we set one of the inter-societal visitation rates (either ρAtoB or ρBtoA) to zero (i.e., one-way visitations) or not
(i.e., two-way visitations). On a technical note, we mention that even this more elaborate two-way thermal dif-
fusion scenario still does not allow for a completely general one-to-one matching onto our opinion-dynamics
model for several reasons. For instance, our assimilation model includes additional adjustable features that
the thermal model lacks (e.g., in the assimilation model we can independently select values for ρA, ρB , ρAtoB ,
ρBtoA respectively, whereas the thermal model lacks this flexibility). Additionally, as previously noted, in the
heat-diffusion model, after each piece returns to its original side it remains thermally isolated from the other
pieces until the very end, whereas in the assimilation model a visiting agent returns home is not kept isolated.
Despite these nominal differences, the key mechanism responsible for these large-scale reversals (in tempera-
ture in the heat diffusion example or in societal opinion in the assimilation model) remains nearly identical.
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4.11 From our heat diffusion analysis we can now understand a crucial aspect of the assimilation anomaly which
was briefly noted in Sections 2 and 3: The reversal of the overall positions of two societies along the opinion
spectrum is not the result of a fluctuation arising from noise or randomness in the system (e.g., random selec-
tion of agents), nor is it a result of small system size. Rather, the heat diffusion analysis demonstrates that the
analogous anomaly similarly arises in a purely deterministic system of arbitrarily large size (i.e., recall that in
the thermal diffusion examples there were no probabilistic elements and no restrictions on the system sizes). In
short, the anomaly is a manifestation of the fact that the process of repeated local averaging over small groups
of agents can produce overall reversals of opinions in the aggregate (and is not associated with fluctuations or
small system sizes).

4.12 Lastly, we remark that the preceding heat diffusion analysis could readily be extended further by allowing for
the two objects at different starting temperatures to also have different specific heats. In terms of the opinion-
dynamics model, this would alter the inter-societal interactions somewhat, and would correspond to a situation
in which the interacting agents from the two societies have differing levels of intrinsic “stubbornness” in their
opinions (or, equivalently, exert different levels of influence on one another). In this scenario, the differing spe-
cific heat values would correspond to taking weighted numerical averages of the interacting agents’ opinions,
rather than simple numerical averages. Nonetheless, even if the model were extended in this way, we would
still expect that the assimilation anomaly could emerge (at appropriate parameter settings) just as before.

Concluding Remarks

5.1 The goal of this paper was a relatively modest one – to highlight the existence of a simple yet interesting dynam-
ical phenomena associated with assimilation that can arise even in the most basic of social-influence models.
We described an assimilation anomaly wherein two societies that start out on opposite ends of an opinion spec-
trum can reverse their relative positions through a simple opinion-averaging process. What makes this phe-
nomenon surprising is that it arises even in the most elementary assimilation scheme imaginable that entails
nothing more than allowing small groups of agents in the two societies to interact and average their opinions.
During these local interactions each agent simply takes a step towards the group average, and the agents can
never pass one another on the opinion spectrum during an interaction. Although one might casually presume
that this ordinary numerical averaging of opinions could only produce a steady, inevitable convergence of over-
all societal opinions, we instead illustrated how a simple local averaging process – when applied repeatedly to
different small groups of agents across the two societies – can lead to a global reversal in the average opinions
of the two societies. A straightforward heat-diffusion model from physics provides the mathematical under-
pinnings and physical intuition behind the anomaly. This finding involving two interacting societies is notably
distinct from other interesting dynamical phenomena that have been previously observed within a society in
various social-influence models (e.g., fragmentation, polarization, phase transitions, etc.). Lastly, we mention
that in this work we have, quite intentionally, shied away from attempting to directly match our model’s findings
to specific real-world data drawn from any particular case study, since to do otherwise would be misleading.
The reason is clear: realistic modelling of the transmission and evolution of opinions across human societies
requires relatively sophisticated opinion-dynamics models that incorporate a large number of distinct, socio-
logically motivated, dynamical mechanisms. Our present model, in contrast, is focused exclusively on a single
such mechanism – a local numerical averaging process to mimic assimilation – to illustrate a particular point.
In particular, it serves as an illustrative reminder that as one builds increasingly complex numerical models to
simulate social interactions, it is crucial to fully understand the behavior of each of the various dynamical pro-
cesses that one incorporates into the model. What we have shown here is that even one of the simplest possible
of such processes – using local averaging as a basic mechanism to model assimilation of opinions - can yield
some surprises.
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