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Abstract:
Since the first publication of the bounded-confidence models 20 years ago, hundreds of articles studying this
class of social-influence models have been written. Bounded-confidence models proposed an intriguing so-
lution to a pervasive research puzzle and have helped unveil and explain intriguing phenomena. Here, we re-
flect about remaining research problems and future modeling challenges, arguing that there remain counter-
intuitive model implications to be understood. To illustrate that there remain uncovered model challenges,
we extend the bounded-confidence model. We assume assimilative influence when agents connected by posi-
tive relationships hold sufficiently similar opinions, adopting the core assumption of the bounded-confidence
models. We combine this with another influential modeling approach, the notion that if agents connected by
a negative social relationship disagree too much, opinion differences increase due to repulsive influence. This
allows us to vary the relative strength of assimilation and repulsion in the influence dynamics, also allowing
for the possibility that neither occurs in a particular interaction. Simulation experiments reveal three surpris-
ing findings: Counter the intuition that stronger assimilation decreases opinion diversity, we show that in the
presence of repulsion, intensifying the strength of assimilation can actually generate more opinion bipolariza-
tion. Second, we show that if repulsion becomes weaker this may still result in more bipolarization. Third, it
turns out that more negative social relationships between or within subgroups can result in less bipolarization.
We demonstrate these effects in very simple and highly stylized settings, in order to show that intuition fails
to capture the complexity arising from the interplay of assimilative and repulsive influence even in these sim-
ple settings. We discuss implications of our findings for the ongoing debate about societal conditions fostering
bipolarization, including in particular the design of personalized online social networks. Further, we address
how our results may inform future work comparing and integrating alternative models of social-influence dy-
namics.

Keywords: Opinion Polarization, Agent-Based Modeling, Bounded-confidence Model, Repulsion

This article is part of a special section on "Opinion Dynamics: 20 years later", guest-editors: Guillaume
Deffuant, Andreas Flache, Rainer Hegselmann, & Michael Mäs

Introduction

1.1 Bounded-confidence models have a central place in the social-influence modeling literature (Hegselmann &
Krause 2002; Deffuant et al. 2000). Since their publication 20 years ago, they have been studied in hundreds of
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publications and have generated numerous novel and counter-intuitive insights (Hegselmann & Krause 2015;
Kurahashi-Nakamura et al. 2016). Most prominently, these models provided a simple but intriguing solution to a
longstanding problem formulated by Robert Abelson (1964), showing that the inevitable march towards perfect
consensus generated by earlier social-influence models can be stopped by the simple assumption that influence
is limited to encounters between agents with sufficiently similar opinions. The outcome can be fragmentation,
an opinion distribution with multiple modes with relatively moderate opinions. Yet, researchers also noted
that bounded-confidence models could not readily capture opinion bipolarization, that is opinion distributions
with two modes located at increasingly extreme positions and increasing intergroup disagreement. Given the
strong interest in explaining bipolarization (Levin et al. 2021), fueled by current societal trends, this has led
researchers to search for alternative modeling approaches. An important approach to overcome this problem
adds the assumption of repulsion (Macy et al. 2003; Jager & Amblard 2005). That is, it is not only assumed that
there is zero influence when interaction partners disagree too much. It is also added that influence can even
turn negative or, repulsive, in that agents increase opinion differences to sources of influence they disagree with
too much. The assumption of repulsion has been subject to various empirical tests. While outcomes are mixed
(Takács et al. 2016; Liu & Srivastava 2015), there is growing evidence for repulsive social influence in online
contexts (Bail et al. 2018; Kozitsin 2023; Keijzer 2022).

1.2 The aim of this contribution to the special issues on the 20th anniversary of the bounded-confidence models is
to show that there remain uncovered research challenges to the literature on social-influence models. Rather
than looking back at earlier research, we seek to point to implications of bounded-confidence models that have
not been explored sufficiently. In particular, we demonstrate here that combining the assumption of bounded
confidence and the assumption of repulsive influence generates a series of new and highly counter-intuitive dy-
namics. We conclude that despite 20 years of highly productive research from various disciplines, the bounded-
confidence model and its elaborations are far from being sufficiently understood. We discuss approaches to
continue research on and with bounded-confidence models in future work.

1.3 To this end, we analyze a model combining assimilative influence with bounded confidence and repulsion, ex-
tending a model proposed by Jager & Amblard (2005). Our main addition to this earlier model is the inclusion
of heterogeneous network ties. In our model, there is assimilative social influence when two network nodes are
connected by a positive tie and when they are sufficiently similar. Repulsion, in contrast, is activated when two
nodes are connected by a negative social relationship and when opinion differences exceed a given threshold.
In our analyses, we vary the structure of the social network as well as the parameters governing when opinions
are sufficiently similar or dissimilar to trigger assimilative influence or repulsion.

1.4 We restrict our analyses to highly stylized and very simple settings, assuming very small populations, simple
network structures, very specific initial opinion distributions, and a synchronous updating schedule. While
these assumptions should create a setting where it is easy to anticipate model behavior based on intuition,
we show that intuition actually fails. In particular, we show that the conjunction of assimilative and repulsive
influence generates the following counter-intuitive results:

• Increasing the space for assimilative influence by increasing the necessary opinion difference needed to
deactivate assimilative influence can lead to more and not less opinion bipolarization.

• Decreasing the space for repulsive influence by increasing the necessary opinion difference to activate
repulsion can lead to more and not less opinion bipolarization.

• More negative social relationships between subgroups in a population can lead to less opinion bipolar-
ization.

• More negative social relationships within subgroups of a population can lead to less opinion bipolariza-
tion.

1.5 The remainder of this contribution is organized as follows. In Section 2, we summarize the bounded-confidence
model and our extension including repulsive influence. Next, the results of our simulation experiments are pre-
sented in Section 3. We start with a short analysis of the bounded-confidence model to summarize its core
implications. Subsequently, we discuss the findings derived from our extension of the bounded-confidence
model. In the concluding section, we reflect on the implications for future research on social-influence pro-
cesses.
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The Model

The classical bounded-confidence model

2.1 Bounded confidence models capture the dynamics arising from repeated opinion communication in a social
network, where the nodes of the network represent individuals, and the edges between the nodes represent
influence relationships between individuals. Suppose a social network has n individuals, and at each point t
in time, the opinions of individuals are xi(t) ∈ [0, 1]. At given time steps, individuals’ opinions are updated
based on their own previous opinion and the influence of the opinions of their network neighbors. The core
assumption across different versions of the bounded confidence model is that when the opinion of a network
neighbor is sufficiently close, agents are influenced to adapt their opinion by moving closer toward the opinion
of that network neighbor. Two classical versions of bounded confidence can be distinguished in the literature,
the model proposed by Deffuant, Weissbuch, and co-authors (Deffuant et al. 2000), and the model proposed by
Hegselmann and Krause (Krause 2000; Hegselmann & Krause 2002).

2.2 We focus here on the version developed by Hegselmann and Krause. Their model assumes synchronous up-
dating, such that in one time step all agents simultaneously move their opinions towards the average opinion
of all network neighbors whose opinion falls within their range of confidence. Equation (2) formalizes this as-
sumption.

xi(t + 1) = αi1x1(t) + αi2x2(t) + · · · + αinxn(t) (1)
where αi j =

1
|I(i,x(t))| , denotes the weight of influence of neighbor j on the opinion of individual i, I(i, x(t)) = { j |∣∣∣xi(t) − x j(t)
∣∣∣ ≤ ϵ} denotes the set of all neighbors whose opinions are sufficiently similar to that of individual

i, |I(i, x(t))| denotes the number of individuals in the set of sufficiently similar neighbors, and ϵ denotes the
confidence level. Notice that this set is never empty as it always includes agent i itself.

2.3 Equation 1 implies that an individual’s opinion moves towards the arithmetic mean of the opinions of all net-
work neighbors whose prior opinions fall within i’s range of confidence. The opinion influence weight αi j is a
time-varying quantity, as influence dynamics may change the number of individuals within i’s range of confi-
dence.

2.4 Based on these assumptions, researchers have conducted numerous mathematical and computational analy-
ses, largely supporting the result that when there is no strong variation in the distribution of confidence levels
and when there are no individuals who are not open to influence in the social network, the type of opinion
distribution (e.g. consensus, fragmentation or polarization) to which dynamics converge is largely determined
by the average level of confidence ϵ (Hegselmann 2020). As the level of individuals’ confidence ϵ decreases,
individual opinions will typically be more fragmented. The number of individuals n in the social network and
the convergence parameters α only affect the rate of convergence of group opinions. At the same time, ear-
lier work has shown that the model also can produce many counter-intuitive results even for simple settings
(Hegselmann 2020).

2.5 While research on the bounded confidence model has generated many important insights into the conditions
for different outcomes of complex collective opinion dynamics driven by simple individual-level processes, it
remains an open question how model dynamics change when combined with another frequently studied micro-
level process, repulsive influence. One reason to explore this question is the increasing importance of online
social interaction. Due to the rapid development of the Internet, the way people communicate has changed
dramatically, and people can now be more exposed to divergent and discrepant sources of information, not
being limited to communication among acquaintances (Keijzer et al. 2018). In social media, people are not
only influenced by similar opinions, but can also be repelled by strongly different opinions (Bail et al. 2018;
Kozitsin 2023). As a consequence, models that only take into account assimilative influence from sufficiently
similar sources may not be able to capture how this affects online opinion dynamics.

Adding repulsion to bounded-confidence models

2.6 Here, we extend the bounded-confidence model, including two thresholds to filter the neighbors in the network
whose opinions are similar to the individual’s own and thus have a assimilative influence on him, and those
whose opinions are more different and thus have a repulsive influence on him. At the same time, we draw on
the assumption of synchronous update of individual opinions, inspired by Hegselmann & Krause (Krause 2000;
Hegselmann & Krause 2002). The central advantage of synchronous updating for the purpose of our analysis is
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that it turns the dynamics we study deterministic and, thus, independent of the ordering of opinion updates.
This makes it easier to understand why the model has the counter-intuitive implications we present.

2.7 Consider a social network with N nodes representing the agents. The social relationships between agents are
represented by a matrix C. There are three types of relationships between individuals: positive links (ci j = 1),
negative links (ci j = −1) and no link (ci j = 0). The links are undirected, that is ci j = c ji, and no individual
is connected to him/herself, i.e., cii = 0. Every agent is described by an opinion xi(t) ∈ [0, 1]. The set x(t) =
{x1(t), x2(t), . . . , xn(t)} describes the distribution of opinions in the population.

2.8 To specify the social influence dynamics, we distinguish for any given point in time two subsets of the set of
neighbors an individual has. For ease of exposition, let’s call these subsets “influential friends” and “influential
foes”. Influential friends of individual i are neighbors who are positively linked to i and whose opinions do not
differ by more than ϵT from i’s opinion. This threshold has been adopted from the bounded-confidence model.
That is, like in the bounded-confidence model only influential friends exert assimilative influence on i’s opinion.
Influential foes, in contrast, are neighbors of i who are negatively linked to i and hold an opinion that differs by
more than ϵR from i’s opinion. Influential foes exert repulsive influence on i’s opinion. Accordingly, we denote
ϵR the repulsion threshold. More precisely, the corresponding two subsets are defined as follows.

A+i (t) = { j | sign(ϵT −
∣∣∣xi(t) − x j(t)

∣∣∣) ≥ 0 ∧ ci j = +1}

A−i (t) = { j | sign(ϵR −
∣∣∣xi(t) − x j(t)

∣∣∣) ≤ 0 ∧ ci j = −1}
(2)

2.9 A+i (t) denotes the set of neighbors who exert assimilative influence on individual i ∈ N at time t, and A−i (t)
denotes the set of neighbors with repulsive influence on individual i. We selected neighbors that positively
and negatively influenced individual i by the threshold parameters ϵT and ϵR, respectively. Notice that unlike
earlier literature (Jager & Amblard 2005), we do not require that the repulsion threshold (ϵR) must be greater
than the trust threshold (ϵT ). While this assumption would be reasonable if all network relations have the same
valence, in our model it can be of interest to assume that individuals will have less tolerance for disagreement
when they have a negative relation to a source of influence, as compared to disagreement with positive source
of influence. In other words, we are interested in exploring what happens if larger disagreement is needed
to make an individual ignore the opinion of a positively connected neighbor than would be needed to let an
individual be negatively influenced by the opinion of a negatively connected neighbor.

2.10 To further specify the model dynamics, we compute separately the net pull X+ on i’s opinion exerted by the
aggregation of the influences from all influential friends and the net push X− exerted by the aggregation of the
influences of all influential foes, at a given time point. Equation 3 formalizes this as follows.

X+i (t) =
∑

j∈A+i ,i, j

(x j(t) − xi(t))

X−i (t) =
∑

j∈A−i ,i, j

(x j(t) − xi(t))
(3)

2.11 Individual opinions in the network are pulled towards the average opinion of influential friends, and the larger
the proportion of influential friends among all neighbors, the stronger this attraction becomes. At the same
time, individuals’ opinions are pushed away from the average opinion of influential foes. The larger the pro-
portion of influential foes among all neighbors, the stronger this push will be. Note that this push is limited by
the bounds of the opinion scale.

2.12 To be able to control the extent to which the combined influence of influential friends and enemies changes an
individual’s opinion at a given time step, we introduce a parameterλ that controls the impact of these influences
relative to the individual’s prior opinion. Individual’s opinions are updated as specified in Equation 4, where ni

denotes the number of neighbors of agent i.

xi(t + 1) = xi(t) +
λ

ni
· (X+i (t) − X−i (t)) (4)

2.13 When repulsion is very strong, Equation 4 can imply that the updated opinion adopts values beyond the bounds
of the opinion scale. To assure that opinions always remained within these bounds, we included that opinions
adopt a value on the respective bound, whenever this happened.
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Results

3.1 To quantify the degree of opinion bipolarization in the simulated opinion dynamics, we use the bipolarization
index proposed in earlier work (Flache & Mäs 2008), but in a slightly adapted version (Flache 2019). It captures
the degree to which opinions in the population fall apart into two evenly-sized fragments with maximal dis-
agreement between and maximal agreement within the fragments. Technically, the bipolarization of the opin-
ions Pt is obtained by calculating the variance of the opinion distances of all pairs of agents in the population, as
detailed in Equation 5. In Equation 5, ¯d(t) represents the average opinion difference in all pairs of agents in the
entire population. When the opinion difference between all agents is zero, the group has reached a consensus,
which corresponds to (Pt = 0). If the population consists of two maximally distant factions of equal size, then
Pt = 1.

Pt =
4

N2

∑i∈N, j∈N
i j (

∣∣∣xi(t) − x j(t)
∣∣∣ − ¯d(t))2 (5)

The classical bounded confidence model

3.2 We start our analyses with the classical bounded-confidence model, to illustrate that already this classical
model generates counter-intuitive effects and to demonstrate one of the main differences of our model com-
pared to the bounded thresholds model. To this end, we used the simple ring network shown in Panel a of
Figure 1. The values printed next to the ten nodes show the initial opinion of each agent. We assigned the initial
opinions in such a way that already at the outset two subsets of agents can be distinguished. While agents A to
E hold opinions smaller or equal to xi(0) = 0.5, the opinions of agents F to J exceed this value, which creates a
potential faultline for opinion bipolarization.

Figure 1: Two ring networks with 10 nodes and two links per node. Blue lines indicate positive network relation-
ships. Here, sufficiently small opinion differences lead to assimilative social influence. Red lines show negative
social relationships, where sufficiently large opinion differences between the two nodes lead to repulsive influ-
ence. The values printed next to the nodes show the initial opinions. The only difference between the networks
shown in Panels a and b concerns the negative link between agents A and J shown in Panel b. Panel a was used
to show implications of the bounded-confidence model. Panel b shows the network analyzed with the new
model.

3.3 In Figure 2, we show opinion trajectories generated by the bounded-confidence model under three different
values of the parameter ϵT . Each line shows the opinion trajectory of an agent. The colors of the ten lines in
each panel correspond to agents’ initial opinions. The Figure provides two insights. First, it shows that also
according to the bounded-confidence model, the relationship between the openness to assimilative social in-
fluence and the final degree of opinion bipolarization is not monotone, a counter-intuitive effect that has been
described in earlier work and that is present even in this very simple setting (Hegselmann 2020; Deffuant 2006;
Mathias et al. 2016; Lorenz 2006). On the one hand, comparing Panels a and c, one finds that giving assimila-
tive influence more space by increasing the maximal width of the confidence interval, generates consensus. In
Panel a, assimilative influence is activated between agents who do not disagree by more than ϵT = 0.1 scale
units. As a consequence, influence is restricted to two subsets of agents: agents B, C, D, E and agents F, G,
H, I, J. Within the subsets, agents reach a local consensus. In addition, agent A disagrees too much with both
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of his contacts and, as a consequence, does not join either of the subgroups. In sum, the dynamic reaches a
steady state with three stable fragments. In Panel c, in contrast, the high openness to assimilative influence
(ϵT = 0.3) leads to fast opinion convergence also between the two subgroups, a force that is stronger than local
convergence. The final outcome is a global consensus.

Figure 2: Opinion dynamics generated by the bounded-confidence model for three different levels of bounded-
confidence (ϵT ). All three runs were based on the network and the initial opinions shown in Panel a of Figure 1.

3.4 Counter-intuition, however, the highest degree of bipolarization is observed under an intermediate value of
ϵT = 0.2 (see Panel b), where assimilative influence is still generating local convergence and the emergence
of two subgroups. In addition, agent A is now sufficiently similar to agent B and, thus, joins the subgroup of
B. The final degree of opinion bipolarization is slightly higher than in Panel a, because agent A grew perfectly
similar to agents B, C, D, E and, in addition, more dissimilar to the other subgroup´s members. This counter-
intuitive effect is relatively small, but it demonstrates that also the classical bounded-confidence model can
display complex behaviors even in very simple settings.

3.5 The second insight illustrated by Figure 2 is that the bounded-confidence assumption alone does not suffice
to generate maximal opinion bipolarization in this setting. While bipolarization did slightly increase in Panels
a and b from an initial value of Pt = .24 to Pt = .28 and Pt = .29, respectively, a population will never fall
apart into two maximally extreme subgroups unless there are already at the outset of the dynamics agents
with maximally extreme opinions and zero openness to influence (Hegselmann & Krause 2002). In fact, while
increasing ϵT from 0.1 to 0.2 reduced the number of subgroups from three to two, the distance between the two
big subgroups remained unchanged. In search for microlevel assumptions that can generate increasing and
maximal bipolarization, modelers added further assumptions to the model.

More assimilative influence can increase bipolarization

3.6 One approach to induce increasing as well as maximal bipolarization is to add the assumption of repulsive
influence. Panel b of Figure 1 shows the same social network as Panel a with one difference: we added a negative
link between agents A and J. This intensified the initial faultline between the two subgroups, since it adds the
possibility for repulsive influence between the two subgroups observed under the bounded-thresholds model.
Agents’ initial opinions remained unchanged, however.

3.7 Figure 3 shows opinion trajectories generated by the model combining assimilative and repulsive influence.
We kept the parameter governing the amount of repulsive influence constant at ϵR = 0.5 and varied only the
amount of assimilative influence. The dynamics shown in Panels a (ϵT = 0.15) and d (ϵT = 0.5) are very similar
to the ones generated by the bounded-confidence model, because repulsive influence is possible only between
agents A and J, and their opinions never differed by more than ϵR = 0.5 in these dynamics. When assimilative
influence is very restricted (Panel a), the model generates again an opinion distribution with two fragmented
subgroups and agent A in the center. With very strong assimilative influence (Panel d), the population again
reaches consensus.
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Figure 3: Four opinion dynamics generated by the bounded-thresholds model with assimilative and repulsive
influence with four different amounts of assimilative influence (ϵT ). All four runs were based on the network
and the initial opinions shown in Panel b of Figure 1. The repulsion threshold was fixed at (ϵR = 0.5).

3.8 Counter-intuition, Figure 3 shows that increasing the trust threshold from 0.15 (Panel a) to 0.2 (Panel b), results
in a higher degree of bipolarization. Increasing the trust threshold makes the conditions for assimilative influ-
ence less restrictive. Intuitively, one could expect this to reduce bipolarization. However, this causes Agent A to
join the subgroup with opinions below 0.5, which pulls Agent A away from Agent J until the opinion difference
between the two agents exceeds the repulsion threshold ϵR. As a consequence, Agents A and J adopt more
extreme opinions, moving closer to the poles of the opinion scale. However, only in the subgroup of Agents J
assimilative influence leads the other subgroup members to also adopt extreme opinions. This is because the
opinion differences between Agent J and the members of his subgroup are smaller than the trust threshold.
In contrast, the opinion of Agent A differs by more than the threshold value ϵR from the opinions of the mem-
bers of his subgroup. In equilibrium, the population is characterized by an extreme group, a single agent at the
opposite pole of the opinion scale and a second subgroup with non-extreme opinion values.

3.9 When the trust threshold is further increased to 0.3 (Panel c), even the maximal degree of opinion bipolarization
is generated. The dynamics are very similar to those of Panel d, but the increased trust threshold implies that
Agent A now manages to also pull his subgroup to the opinion pole.

3.10 The four runs illustrate two mechanisms generating a counter-intuitive effect of increasing assimilative influ-
ence. First, increasing assimilative influence can contribute to bipolarization, because it fosters local opinion
convergence and the emergence of distinct subgroups. Importantly, when opinions converge locally, opinion
differences between agents joining different subgroups can grow. If these agents have a negative relationship,
repulsion can be activated and lead agents in opposing subgroups to adopt increasingly distant views. Thus,
assimilative influence can generate opinion distributions that activate repulsion. Second, once repulsion has
generated extremists, assimilative influence can motivate friends of extremists to also adopt extreme opinions
and contribute to strong bipolarization.

3.11 Next, we tested whether this non-monotonous effect of increasing the trust threshold generalizes to a broader
section of the parameter space. The heat map shown in Figure 4 informs about the level of bipolarization in
the equilibrium outcomes induced when values of the trust and the repulsion threshold are varied indepen-
dently across the entire range of feasible values [0, 1]. All runs were conducted with the network and the initial
opinions shown in Panel b of Figure 1.
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Figure 4: Degree of bipolarization generated by the model with assimilative and repulsive influence on the net-
work and the initial opinions shown in Panel b of Figure 1. The trust threshold ϵT and the repulsion threshold ϵR
vary from 0 to 1 in steps of 0.01. The color scale shows the degree of bipolarization. Letters identify the different
phases generated by the model and correspond to the panel index in the Figure with typical runs provided in
Appendix A

3.12 We can distinguish nine qualitatively different phases in the parameter space inspected in this experiment. Runs
representing four of theses phases have been shown in Figure3. These runs represent points on a horizontal
slice through the heat map at ϵR = 0.5. Area F in the heat map is trivial, since neither assimilative nor repul-
sive influence is activated. This is because the initial opinions of all agents connected by a positive link differ
by more than the trust threshold. Likewise, the two agents connected by the negative link differ by less than
the repulsion threshold. Area G corresponds to Panel a in Figure 3. The yellow area (C) shows the parameter
combinations leading to a dynamic similar to the one shown in Panel b. Area D corresponds to Panel c and Area
I to Panel d. The remaining areas (A, B, H, E) are addressed in Appendix A.

3.13 In a nutshell, the heat map of Figure 4 shows that our observation that more assimilative social influence can
result in growing bipolarization is not restricted to very specific parameter values.

Less repulsion can generate more bipolarization

3.14 Another counter-intuitive effect can be observed when the amount of repulsive influence is manipulated. Intu-
itively, one would expect that bipolarization is a more likely outcome of opinion dynamics when there is more
repulsive influence. This intuition is incomplete, however. To demonstrate this, Figure 6 shows opinion tra-
jectories generated under four different values of the repulsion parameter ϵR. The trust threshold was fixed at
ϵT = 0.22. We also slightly adjusted the initial opinion distribution, as shown in Figure 5. Also this new initial
setup is characterized by an initial faultline. The main change, however, was to decrease the opinion difference
between the two agents connected by a negative tie.
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Figure 5: Ring network used to demonstrate that less repulsive influence can lead to more bipolarization. Cir-
cles represent nodes, blue edges represent positive relationships, red edges represent negative relationships,
values next to the nodes show agents’ initial opinions

3.15 In Panel a of Figure 6, we show the run with the strongest repulsive influence. Here, agents A and J are increas-
ing their opinion distance whenever their opinions differ by more than 0.1. Accordingly, the figure shows how
bipolarization quickly rises in this dynamic. Agents A and J move to opposite poles within a few time steps.
Next, they exert assimilative influence on their positive network contacts, sparking a chain of opinion moves of
the remaining agents until all agents are maximally extreme.

3.16 For the dynamics shown in Panel b, the repulsion threshold was set to 0.22, which implements weaker repul-
sion. In fact, since agents A and J initially disagree by 0.2 units of the opinion scale and since repulsion is acti-
vated only when opinion distance exceeds the repulsive threshold of 0.22, there is no repulsion at the outset.
What is more, the two positive network contacts of A and J hold the same initial opinion as the two agents B
and I (see Figure 5), which implies that A and J do not change opinion in the first time step. Only in the second
time step - after the opinions of B and I had moved closer to the extremes - A and J develop more extreme
opinions as the result of assimilative influence from influential friends. The consequence is that their opinions
now differ by more than the repulsion threshold, which results in a strong push toward the nearest pole of the
opinion scale. In the meantime, assimilative influence has generated a local convergence of opinions within the
two subgroups. This pulls back agents B and I, who do not follow A and J quickly enough. At some moment,
A and J even grew too dissimilar to their positive network contacts. The end result is an opinion distribution
with two non-extreme clusters of agents and two isolated extremists.
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Figure 6: Opinion dynamics generated by the model with assimilative and repulsive influence with four different
amounts of repulsive influence (ϵR). All runs were based on the network and the initial opinions shown in Figure
5. The trust threshold was fixed at ϵT = 0.22.

3.17 Panel c shows a counter-intuitive dynamic, since it shows more bipolarization compared to Panel b despite less
repulsive influence (ϵR = 0.4). Since repulsion between A and J is activated only when their opinions differ by
more than 0.4, there is only assimilation at the beginning of the dynamics. This generates local convergence
and the emergence of two very homogeneous clusters. However, similar to the dynamics shown in Panel b of
Figure 3, local convergence also increases the opinion differences between A and J to a degree that repulsion
is activated. When this happens, the two agents start developing increasingly extreme opinions. Unlike in the
dynamics with stronger repulsion (Panel b), two homogeneous local subgroups had formed already and A and
J were part of one of them. As a consequence, A and J are subsequently dragging the remaining members of
their local subgroup with them while being pushed to opposite extremes by their mutual repulsion.

3.18 Finally, Panel d shows the lowest degree of bipolarization, an outcome that is expected given that there is little
repulsion. In fact, the opinion difference between A and J never exceeds the threshold of 0.6 in this dynamic.
The trust threshold is not large enough to make the opinions converge between E and F, thus two stable opin-
ion clusters form.

3.19 In sum, a comparison of Panel b and c highlights that more repulsive influence can generate less opinion bipo-
larization. This happens because weaker repulsive influence gives room for assimilative influence and the emer-
gence of local clusters. Local convergence can activate repulsion, which affects not only the agents who experi-
ence repulsion but also the other members of local clusters. Under a stronger repulsion, this dynamic does not
unfold when agents affected by repulsion develop extreme opinions so fast that they disagree too much with
other members of their own cluster to drag them with them.

3.20 In Figure 7, we again show for which combinations of ϵT and ϵR qualitatively different outcomes emerge for
the initial situation depicted by Figure 5. The four dynamics shown in Figure 6 correspond to a vertical slice
from the bottom to the top through this heat map at ϵT = 0.22. The heat map shows a large phase of maximal
bipolarization in equilibrium (see Area C). The dynamics that lead to this equilibrium, however, are not the same
under all parameter combinations included in this phase, as we have already seen in Panels a and c of Figure
6. In both cases, the model generates maximal bipolarization, but only in the run shown in Panel c, there is an
intermediate period with two subgroups holding non-extreme opinions.
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Figure 7: Degree of bipolarization generated by the model with assimilative and repulsive influence on the net-
work and the initial opinions shown in Figure 5. The trust threshold ϵT and the repulsion threshold ϵR vary from
0 to 1 in steps of 0.01. The color scale shows the degree of bipolarization. Letters identify the different phases
generated by the model and correspond to the panel index in the Figure with typical runs provided in Appendix
B.

3.21 Importantly, the heat map shows that when one moves at ϵT = 0.22 vertically from bottom to the top through
the heat map, one actually leaves Phase B twice and enters Phase C. This is the phase illustrated by Panel b
in Figure 6. Thus, bipolarization increases despite weaker repulsive influence. The heat map, however, also
reveals that this counter-intuitive effect can be observed only in a restricted range of values of parameter ϵT .
We show below, however, further evidence for this effect.

3.22 Another finding from this second heat map is that there is again support for the first counter-intuitive effect.
When slicing horizontally through the heat map for instance at ϵR = 0.3, bipolarization increases when Phase B
is left and Phase C is entered, despite stronger assimilative influence.

3.23 Area F in the heat map corresponds to Panel d of 6. The remaining areas are addressed in Appendix B.

More negative links between subgroups generate less bipolarization

3.24 Intuitively, one would expect that bipolarization should be more likely when there are more negative social re-
lationships in a network, a prediction relating to the debate about the difference between ideological and affec-
tive polarization (Finkel et al. 2012; Iyengar et al. 2019). While the concept of ideological polarization captures
what we denote here as opinion bipolarization, affective polarization describes a state in which subgroups in
a population have developed negative feelings towards the other subgroup. Intuitively, one would expect that
more negative relationships between members of different subgroups would contribute to opinion bipolariza-
tion. Again, one can show that this intuition is incomplete.

3.25 To demonstrate this, we compared opinion dynamics emerging in the two networks shown in Figure 8. The ini-
tial opinion distribution and the network shown in Panel a is identical to the network analyzed in the previous
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section (see Figure 5). The only difference between the two networks shown in Panels a and b is the two addi-
tional negative links which connect agents from different subgroups in the initial opinion distribution, linking
A with I, and B with J respectively.

Figure 8: Two ring networks with 10 nodes compared to study the effects of additional negative relationships
between subgroups. Blue lines indicate positive network relationships. Red lines show negative social relation-
ships. The values printed next to the nodes show the initial opinions. Like in the examples presented above,
agents in the upper part of the ring hold opinions below 0.5 and agents in the lower part hold opinions above
0.5, forming two subgroups. In the network shown in Panel b, we added two negative links connecting mem-
bers of different subgroups.

3.26 Figure 9 shows the opinion dynamics generated on the two networks. The dynamics shown in Panel a is the
same as the dynamics shown in Panel c of Figure 6. Here, agents A and J exert repulsive influence on each other
and, subsequently, pull their subgroups with them to the poles of the opinion scale. Strikingly, Panel b reveals
that this bipolarization dynamic does not evolve when there are additional negative links between the two
subgroups. This effect emerges because the repulsive influence is actually never activated in this run. According
to Equations 3 and 4, the strength of the assimilative influence depends on the relative share of positive and
negative links an agent has. Since agents A and J have twice as many negative links as positive links in the
network of Panel b, the strength of positive influence is weaker. As a consequence agents A and J are pulled
less by their friends towards more extreme opinions. The consequence is that the opinion distance between
the two subgroups never exceeds the repulsion threshold and repulsion is never activated. Likewise, the trust
threshold is not large enough to make agents E and F converge toward each other, which results in two opinion
clusters at steady state.
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Figure 9: Opinion dynamics generated by the model with assimilative and repulsive influence in a network with
one (Panel a) and a network with three (Panel b) negative links between the two subgroups. The trust threshold
was fixed at ϵT = 0.22 and the repulsion threshold was set to ϵR = 0.4. The networks are shown in Figure 8.
Note that both runs can be replicated also for slightly higher values of ϵR. We tested this because the opinion
differences between the two subgroups emerging in Panel b are very close to ϵR = 0.4 and we could not exclude
that floating point inaccuracies played a role. Thus, the observed effect of adding negative links between groups
is not caused by an inaccuracy.

3.27 Figure 10 depicts in Panel a heat map revealing all phases generated by the model when the two negative links
are added. In Appendix C, we show typical opinion trajectories for all areas of the heat map. Comparing Panel
a to the heat map from the previous section (see Figure 7), one can observe that adding the two negative links
often increases bipolarization, which is in line with the intuitive prediction. In particular the red area showing
the phase of the maximal degree of bipolarization is bigger with the two negative links. However, this is not
always the case. To visualize this, we included in Panel b a graph reporting the difference between the mea-
sured degree of bipolarization in the runs without (see Figure 7) and the runs with the added links (Panel b).
Positive values and blue shades indicate lower bipolarization when the additional negative links are present.
Values below zero and red shades depict higher bipolarization when the negative links are included. While the
area where bipolarization rises due to the inclusion of the negative links is relatively small, Panel b shows that
polarization increases under various combinations of the two parameters.

Figure 10: (a) Degree of bipolarization in equilibrium generated by the bounded thresholds model when two
negative links between subgroups are added (see Panel b of Figure 8). The trust threshold ϵT and the repulsion
threshold ϵR vary from 0 to 1 in steps of 0.01. The color scale shows the degree of bipolarization. (b) Difference
in the degree of bipolarization between heat maps of ring network (Figure 7) and the network with two added
negative links (Panel a). Positive values and color blue indicate lower bipolarization when the two links are
added.
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More negative links within subgroups generate less polarization

3.28 In the previous section, we showed how adding two negative links connecting members of the two different
subgroups changes dynamics. We found that this can lead to a decrease in bipolarization. To test whether this
will be different when negative links are added within rather than between subgroups, we conducted another
experiment. We added to the network of Figure 11 (panel a) two different negative links, one within each of
the two subgroups. Panel b of Figure 11 shows where we added the two negative ties. They connect agents
A and J with a member of their respective subgroup. This time different intuitions would be possible. On the
one hand, more negative links could be expected to increase bipolarization. On the other hand, negative links
within subgroups may hamper convergence within the subgroups which, in turn, could make it less likely that
repulsive interactions between negatively connected members of the different subgroups (here A and J) will
be triggered. Thus, one could also expect bipolarization to decline.

Figure 11: Two ring networks with 10 nodes compared to study the effects of additional negative relationships
within subgroups. Blue lines indicate positive network relationships. Red lines show negative social relation-
ships. The values printed next to the nodes show the initial opinions. Like in the examples presented above,
agents in the upper part of the ring hold opinions below 0.5 and agents in the lower part hold opinions above
0.5, forming two subgroups. In the network shown in Panel b, we added two negative links connecting mem-
bers within the subgroups.

3.29 Figure 12 shows two opinion trajectories. For comparison, the run in Panel a is the same as the run from Panel a
in Figure 6. The dynamics shown in Panel b emerge when the two negative links are added within the subgroups,
all other things being equal.

Figure 12: Opinion dynamics generated by the bounded-thresholds model in a network with one (Panel a) and
a network with three (Panel b) negative links where two links are within the subgroups. The trust threshold was
fixed at ϵT = 0.22 and the repulsion threshold was set to ϵR = 0.1. The networks are shown in Figure 11

3.30 The dynamics shown in Panel b are complex. The first phase of the dynamic is characterized by opinion shifts
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towards the closest opinion pole by agents A and B, as well as agents I and J. This results from repulsion caused
by the negative link between A and J and the assimilative influence from the respective subgroup. After eight
steps of opinion updates, opinions within each of the two subgroups have grown very similar while the opinion
distance between the emergent subgroups has risen to about 0.6. In fact, the maximal pairwise opinion distance
within each subgroup (A-E, and F-J) has decreased to 0.067, which is smaller than the repulsion threshold. At
this moment, the two added negative links are not activated. However, due to the repulsive influence between
them, agents A and J keep developing increasingly extreme opinions and move away from their subgroups.
This has important consequences for agents C and H, the two agents with the added negative links to A and J.
After 9 steps of opinion updates, they have grown too different to A and J and start moving away from A and
J and towards more moderate opinions. They also manage to drag the other members of their subgroups (B
D E, and F G I) with them. After further opinion updates, however, agents B and I, who have positive links
to two subgroups members with the negative links, grow too dissimilar to C and H. As a consequence, they
stop following C and H and move back in the direction of agents A and J. Subsequently, C and H continue
developing increasingly extreme opinions and eventually join the two extremists from the opposite subgroup.
The remaining two agents of each subgroup form a local consensus at moderate opinions.

3.31 In a nutshell, dynamics generate an opinion distribution with two groups at the opinion poles and two small
groups with moderate opinions. This pattern is characterized by a much lower degree of bipolarization than the
results shown in panel (a), even though negative links were added. It emerges because the two agents with the
added negative links (agents C and H) join the respective other subgroup. In addition, assimilative influence
makes these agents tear their subgroup apart. They pull a part of their subgroup with them until they grow too
different from their extreme subgroup members. Thus, also in this scenario, a combination of assimilative and
repulsive influence is responsible for the complex dynamics.

3.32 Figure 13 contains in Panel a the heat map reporting the degree of bipolarization emerging under all combi-
nations of parameters ϵT and ϵR when the two negative links are added within the subgroups. In panel b, red
areas identify phases with lower bipolarization emerging when the two negative network links are added, which
shows that the dynamics shown in Panel b of Figure 12 are characteristic for a considerable part of the parameter
space. Again, we refer to the Appendix for a detailed discussion of the trajectories of each phase (see Appendix
D).

Figure 13: (a) Degree of bipolarization generated by the bounded-thresholds model when two negative links
within subgroups are added (see Panel b of Figure 11). The trust threshold ϵT and the repulsion threshold ϵR
vary from 0 to 1 in steps of 0.01. The color scale shows the degree of bipolarization. (b) Difference in the degree
of bipolarization between heat maps of ring network (Figure 7) and the network with two added negative links
(Panel a). Positive values and color blue indicate lower bipolarization when the two links are added.

3.33 Visual comparison of the heat map in Panel a with the heat map of Figure 7 shows that the phase with max-
imal bipolarization (see blue area in Panel b) is substantially smaller when the two negative links within the
subgroups are added. Strikingly, the difference is found when ϵR adopts low values, which implements very
strong repulsive influence. Weaker repulsive influence results also here in stronger bipolarization, providing
additional support for the second counter-intuitive finding. The reason is that the two added negative links are
not activated when repulsive influence is weaker. As a consequence, the two subgroups remain cohesive and all
members of a subgroup move together to the respective pole of the opinion scale. When repulsion is stronger,
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the subgroups fall apart and the final opinion distribution also has two peaks close to the center of the opinion
scale.

Discussion

4.1 The aim of this contribution to the JASSS special-issue on the 20th anniversary of the bounded-confidence mod-
els was to reflect on the state of the literature that these models have contributed to. Rather than summariz-
ing the vast body of literature that has emerged in the past 20 years, we sought to illustrate that there remain
challenges for modelers. In particular, we showed that a simple model combining the assumption of bounded-
confidence with the assumption of repulsion generates several counter-intuitive and intriguing dynamics even
in very simple and stylized settings. Our main conclusion is that despite 20 years of intensive and rigorous mod-
eling work with contributions from disciplines as diverse as sociology, social psychology, economics, mathe-
matics, and physics, there are still complex model dynamics that deserve attention by modelers. Bounded-
confidence modeling is a great success, but the job is not done since even relatively simple model extensions
reveal new and unexpected dynamics.

4.2 While our modeling work allowed us to illustrate that even in seemingly simple scenarios, complex and un-
expected dynamics can emerge, it seems difficult to derive precise general conclusions about the effects of
bounded-confidence and repulsion acting in tandem. Our study here pointed to one important type of dynamic:
assimilative influence based on sufficient initial similarity between agents with bounded confidence can lead
to a divergence of opinions between initial subgroups that is large enough to trigger repulsive interactions if
there are negative links between these subgroups. Thus, paradoxically, assimilation can result in more repul-
sion, and stronger bipolarization. Future work is needed to study the robustness of our findings to changes in
the size of the populations, the structure of the network, networks with directed rather than undirected ties,
and heterogeneity in the agents, further extending studies like (Flache & Mäs 2008; Jager & Amblard 2005).

4.3 What is more, theoretical models need to be empirically calibrated and carefully tailored to empirical settings
in order to derive valid conclusions about real-life settings. Our findings illustrate that sometimes even small
changes in the parameters governing assimilative and repulsive influence can move the simple systems we
created into a qualitatively different phase. Accordingly, we echo Flache et al.’s (2017) call for more empirical
research on social influence in order to determine the relative strength of the different influence processes and
identify conditions that may or may not trigger a particular influence process. This empirical work, however,
needs to go hand in hand with modeling work. In a prominent study of Twitter-users, for instance, Bail et al.
(2018) found support for repulsive influence, observing that US-users supporting the Republican party grew
even more conservative after having been exposed to a bot retweeting liberal content. They conclude that
“attempts to introduce people to a broad range of opposing political views on a social media site such as Twit-
ter might be not only be ineffective but counterproductive”. Our modeling findings challenge this conclusion,
showing that the observation of repulsive influence does not allow one to draw direct conclusions about the
collective opinion dynamics even in very simple settings. Drawing conclusions about real settings as complex
as online social networks requires rigorous modeling (Keijzer & Mäs 2022).

4.4 Our findings furthermore suggest that modelers of social-influence dynamics should invest more into the sys-
tematic integration of competing models. In their review of the state of the modeling literature, Flache et al.
(2017) criticized that too often modelers develop their own independent model without comparison to existing
models. While we reiterate this call for more model comparison, our findings also show that an integration of
potentially competing models into a single framework can be fruitful. We have shown, for instance, that local
convergence generated by assimilative influence in conjunction with bounded confidence can create opinion
distributions that trigger off repulsion in settings where there was no repulsion initially. Such interactions be-
tween model assumptions remain unexplored when models are compared but not integrated. Integrating com-
peting models into a single framework, however, is challenging since models need to remain simple in order to
facilitate comprehension of their implications. The highly stylized examples presented here served as tools to
demonstrate counter-intuitive effects in a way that one can still understand them. The KISS-principle remains
an important guidance for making counter-intuitive findings intuitive. Thus, despite our call for more elabo-
rate models, we stress that modelers should strive for simplicity. Once simple models have been understood,
abstraction can be reduced gradually (Lindenberg 1992; Flache & de Matos Fernandes 2021).

4.5 Our main message that bounded-confidence models and their extensions still have unexplored and counter-
intuitive implications also points to another realm of future research on social-influence dynamics in networks:
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applications to real opinion dynamics. There is, for instance, public and scholarly debate about opinion dy-
namics emerging on online social networks and the contribution of so-called “filter bubbles” to opinion bipo-
larization. Critics of filter bubbles argue that personalization algorithms installed on online-social networks
isolate users from content challenging their opinions, which could generate opinion fragmentation (Keijzer &
Mäs 2022). A counter-argument adopted, for instance by Facebook-CEO Mark Zuckerberg (2017), is that person-
alization also leads to less contact between users who disagree and, may therefore prevent repulsive influence
between them. Filter bubbles may, thus, actually prevent bipolarization. The intuition underlying these seem-
ingly conflicting lines of thought is that assimilative influence is a force decreasing opinion differences and that
repulsive influence fosters bipolarization. Our analyses have shown that this intuition is incomplete and that
sometimes the exact opposite may be true. While our analyses are built on engineered and highly unrealis-
tic settings, they show that even in these seemingly trivial settings, dynamics and their outcomes are hard to
anticipate based on intuition alone. Elsewhere, we have demonstrated how this finding remains robust when
some of the simplistic assumptions we adopted here are relaxed and more complex network structures, larger
populations, and randomized initial opinion distributions are applied (Liu et al. 2023). Yet even those models
remain highly simplistic compared to real online social networks. Our work thus highlights that it is problematic
to base predictions about opinion dynamics in such much larger and even more complex settings on intuition.
The literature on social-influence dynamics shows that formalized theories like the bounded-confidence mod-
els allow one to rigorously capture the complexity arising from assimilative and repulsive influence. So far, the
debate about the design of digital communication technology, like online social networks has not made suf-
ficient use of this methodology and the existing insights from the literature on social influence dynamics that
the bounded-confidence models have inspired (Waldrop 2021; Keijzer & Mäs 2021).
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Appendix A: Opinion trajectories for all phases of Figure 4

Figure 4 shows that the model combining assimilative and repulsive influence generates nine different opinion
distributions depending on the values assigned to the parameters ϵT and ϵR. To demonstrate that increasing
the amount of assimilative influence can generate more bipolarization, it was not necessary to discuss all nine
phases. Therefore, we show here (see Figure 14) opinion trajectories for each of the nine phases. In Figure
14, the letter identifying a specific subpanel corresponds to the capital letter assigned to the respective phase
shown in Figure 4.

Figure 14: (Appendix A) Typical opinion trajectories for each phase shown in Figure 4. All nine runs were based
on the network and the initial opinions shown in Panel b of Figure 1. The letter identifying a specific subpanel
corresponds to the capital letter assigned to the respective phase shown in Figure 4

The trajectories shown in Panels g, c, d, and i of Figure 14 have been discussed in the main text (Figure 3) and are
not addressed here again. Panel f is the least interesting phase, as there are no opinion dynamics in this phase.
This is because ϵT is too small to allow assimilative influence and ϵR is too high to activate repulsive influence.
The opinion trajectories shown in Panel a are also characterized by very limited changes, because the very
low value assigned to ϵT and the initial opinions of the agents imply that there is no assimilative influence.
However, ϵR is sufficiently low to activate repulsive influence between agents A and J. These two agents, as a
consequence, adopt maximally extreme opinions. In Panel b’s run, there is more assimilative influence than in
the run shown in Panel a, which leads to the formation of two homogeneous clusters. Agents A and J, however,
adopt also in this run maximally extreme opinions. The run of Panel h is characterized by a sufficiently strong
assimilative influence to generate local opinion convergence and the formation of two subgroups. Repulsive
influence between agents A and J in not activated due to the high value of parameter ϵR.
A surprising opinion distribution emerges in the run shown in Panel e. Here, there is strong assimilative and
strong repulsive influence. The outcome is a uniform opinion distribution with one agent at each pole of the
scale and the remaining agents forming a chain connecting the two extremists. This so-called multiplex equilib-
rium (Flache & Mäs 2008) emerges because repulsive influence makes agents A and J adopt extreme opinions.
Each of them, however, also exerts assimilative social influence on their respective friend (agents B and I). Fur-
thermore, assimilative influence is so strong, that the assimilative social influence between agents connected
by a positive link is never deactivated. The result is that agents with only positive links are always pulled with
equal force into two opposite directions and, as a consequence, do not change opinions.
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Appendix B: Opinion trajectories for all phases of Figure 7

Figure 7 from the main text shows that the model combining assimilative and repulsive influence generates
seven different phases when applied to the network shown in Figure 5. In Figure 15, we show typical opinion
trajectories for all phases. Phases B, C, and F are described in the main text. Here, we describe the remaining
phases.
Panel a shows a typical run under very weak assimilative influence and very strong repulsive influence. The
latter implies that the negative link between Agents A and J is activated and that the two agents adopt extreme
opinions. The very restricted assimilative influence, however, implies that for no pair of agents, opinion distance
is small enough to activate assimilative influence. As a consequence, Agents B to I never adjust their opinions.
Panel d shows another example of the dynamic where agents A and J adopt maximally extreme and opposite
opinions and the remaining agents adopt opinions forming a chain between the two extremists. Like in the
run of Panel e in Figure 14, this outcome emerges because there repulsive influence between agents A and J is
activated from the beginning on and because assimilative influence is always active on all positive links.
Panel e represents a phase where agents do not change opinions, because both assimilative and repulsive influ-
ence is too weak and actually never activated. Finally, Panel d shows typical dynamics when repulsive influence
is weak and never activated, but assimilative influence is very strong. The result is perfect consensus.

Figure 15: (Appendix B) Typical opinion trajectories for each phase shown in Figure 7. All seven runs were based
on the network and the initial opinions shown in Panel b of Figure 5. The letter identifying a specific subpanel
corresponds to the capital letter assigned to the respective phase shown in Figure 7.

Appendix C: Opinion trajectories for all phases of Figure 10

Figure 10 from the main text shows that the model combining assimilative and repulsive influence generates
seven phases when assuming the network and initial opinions shown in Panel b of Figure 8. Here, we show
in Figure 16 opinion trajectories for each phase. Phase E has been discussed in the main text already. The
remaining phases are described here.
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Panel a is representative for runs with highly restricted assimilative influence and strong repulsive influence.
Agents A and B, on the one hand, and agents I and J are negatively influenced by their negative network con-
tacts. As a consequence, all four agents adopt extreme opinions. The remaining agents never change opinions,
because of the very restricted assimilative influence, which is never activated.
The dynamics shown in Panel b end in maximal bipolarization. Also in this run, the very strong repulsive influ-
ence leads A and B, as well as I and J to adopt extreme views. Unlike in Panel a, however, assimilative influence
is also very strong. As a consequence, agents C to H join the extremists belonging to their respective subgroup.
Panel c is representative for runs where assimilative influence is even stronger. Now, there is even influence
between agents E and F. Since A and B, as well as I and J again adopt extreme opinions, and all positive links
result in assimilative influence, we observe an equilibrium with two agents on each pole of the scale and the
remaining agents adopting opinions forming a chain connecting the poles.
Panel d shows a typical dynamic when both repulsive and assimilative influence is too restricted. There are no
opinion changes.
Panel f is representative for parameter combinations with weak repulsive influence and moderate assimilative
influence. The assimilative influence is sufficiently strong to generate local opinion convergence but too weak
to foster global consensus. Repulsive influence is never activated.
Panel g shows a run where there is no repulsion but very strong assimilative influence. The result is a perfect
consensus.

Figure 16: (Appendix C) Typical opinion trajectories for each phase shown in Figure 10. All seven runs were
based on the network and the initial opinions shown in Panel b of Figure 8. The letter identifying a specific
subpanel corresponds to the capital letter assigned to the respective phase shown in Figure 10.

Appendix D: Opinion trajectories for all phases of Figure 13

Figure 13 from the main text shows that the model combining assimilative and repulsive influence generates
eleven phases when assuming the network and initial opinions shown in Panel b of Figure 11. Here, we show
in Figure 17 opinion trajectories for each phase.
The run shown in Panel a represents the combination of weak assimilative influence and strong repulsion.
Agents A and J, the two agents who connect the two subgroups with a negative link, do not change their opin-
ions initially, because repulsive influence exerted on them by their two negative links push them into opposite
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directions. Agents C and H, however, are pushed by A and J towards the poles of the opinion scale. The closer
they come to the respective pole the stronger the push on A and J and the faster the two will move to opposite
pole. This is a dynamic we have not observed before. The two agents who connected the two subgroups with
a negative link that often causes bipolarization are adopting opinions on the pole opposite to opinions of their
initial subgroup. The remaining agents hardly change opinions because of the weak assimilative influence.
The phase represented by Panel b is similar to the phase of Panel a, but assimilative influence is slightly stronger.
The dynamics are similar to the run from Panel a, with the exception that agents D and E, and F and G are
adopting extreme opinions, because the assimilative influence exerted by C and I is sufficiently strong.
Panel c shows a run from the same phase as the run shown in Panel b of Figure 12 from the main text. The
only difference is that, unlike in the run presented in the main text, the four agents with non-extreme opin-
ions develop a local consensus on a moderate position. This happens because assimilative influence is slightly
higher. We assigned the two runs to the same phase because in equilibrium the difference in bipolarization is
very small, as Figure 13 reveals.
Panel d is similar to the Panel c. The central difference is that assimilative influence is so strong that the positive
link between agents E and F is activated while they are indirectly dragged towards more moderate opinions by
C and H. As a consequence, they prevent D and G from developing more extreme opinions. The end result is
an opinion distribution with three agents on each pole and four agents forming a chain connecting the poles.
Panel e represents runs with an even stronger assimilative influence. The dynamics are very similar as the ones
shown in Panel d with one exception. Agents B and I, the two agents with positive links to the subgroup mem-
bers connected by a negative link are more influenced by both actors. In Panel d, B and I joined one of their
neighbors when the other grew too dissimilar. With the stronger assimilative influence, B and I now remain
influenced by both neighbors and adopt opinions in the center of the opinion scale, being pulled with equal
strength in opposite directions.
The phase represented by Panel f is characterized by too weak assimilative influence and too weak repulsion to
generate any opinion changes. Increasing assimilative influence (see Panel g), generates local convergence and
the emergence of two subgroups. Again, one can observe how assimilative influence implies that opinion dif-
ferences between agents A and J grow and at some moment exceed the repulsion threshold. As a consequence
A and J adopt maximally extreme opinions.
When assimilative influence is further increased, dynamics illustrated in Panel h emerge. These dynamics are
actually very similar to the ones from Panel g. However, the increased assimilative influence implies that the
two subgroups are joining the two extremists. This is a replication of the first counter-intuitive finding: some-
times more assimilative influence generates stronger bipolarization.
To generate the run shown in Panel i, assimilative influence was further increased. At the beginning, dynam-
ics are similar to those in Panels g and h: local convergence generates two clusters. Plus, repulsive influence
between agents A and J leads them to adopt maximally extreme opinions. However, unlike in the other two
panels, dynamics lead again to the equilibrium where the remaining agents form a chain connecting the two
extremists. This happens because the local convergence also decreased the opinion differences between agents
E and F. Since, assimilative influence is stronger than before, the two agents start influencing each other and
adopt more similar opinions. Since they exert assimilative influence on D and G, the population fans out and
and covers the complete opinion scale.
The phase represented by Panel j is characterized by moderate assimilative influence and very weak repulsion.
The consequence is local convergence into two groups that differ too much to generate consensus. In Panel k
is generated when assimilative influence is very strong and repulsion weak. This generates perfect consensus.
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Figure 17: (Appendix D) Typical opinion trajectories for each phase shown in Figure 13. All eleven runs were
based on the network and the initial opinions shown in Figure 11. The letter identifying a specific subpanel
corresponds to the capital letter assigned to the respective phase shown in Figure 13.
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