170 articles matched your search for
the keywords:
Social Simulation, Agent-Based Modelling, Rejective Criticism, Constructive Feedback, Communication, Peer Support
Pietro Terna
Journal of Artificial Societies and Social Simulation 1 (2)
4
Kyeywords: Agent Based Models (ABM), Chaos, Intelligent Agents, Social Simulation, Swarm
Abstract: Social scientists are not computer scientists, but their skills in the field have to become better and better to cope with the growing field of social simulation and agent based modelling techniques. A way to reduce the weight of software development is to employ generalised agent development tools, accepting both the boundaries necessarily existing in the various packages and the subtle and dangerous differences existing in the concept of agent in computer science, artificial intelligence and social sciences. The choice of tools based on the object oriented paradigm that offer libraries of functions and graphic widgets is a good compromise. A product with this kind of capability is Swarm, developed at the Santa Fe Institute and freely available, under the terms of the GNU license.
A small example of a model developed in Swarm is introduced, in order to show directly the possibilities arising from the use of these techniques, both as software libraries and methodological guidelines. With simple agents - interacting in a Swarm context to solve both memory and time simulation problems - we observe the emergence of chaotic sequences of transaction prices.
Nigel Gilbert
Journal of Artificial Societies and Social Simulation 2 (1)
3
Kyeywords: Multi-Level Simulation, Social Simulation, Lisp, Computer Modelling, Social Simulation Tookit
Abstract: A package of Lisp functions is described which implements a simple multi-level simulation toolkit, MLS. Its design owes a great deal to MIMOSE. MLS runs within Lisp-Stat. It offers a set of functions, macros and objects designed to make the specification of multi-level models straightforward and easy to understand. Lisp-Stat provides a Lisp environment, statistical functions and easy to use graphics, such as histograms, scatterplots and spin-plots, to make the results of multi-level simulations easy to visualise.
Rosaria Conte and Scott Moss
Journal of Artificial Societies and Social Simulation 2 (1)
4
Kyeywords: Agent-Based Social Simulation, Special Interest Group, AgentLink
Abstract:
László Gulyás, Tamás Kozsik and John B. Corliss
Journal of Artificial Societies and Social Simulation 2 (3)
8
Kyeywords: Social Science Simulation, Agent-Based Modelling, Integrated Modelling Environment
Abstract: While computer models provide many advantages over traditional experimental methods, they also raise several problems. The process of software development is a complicated task with high potential for errors, especially when it is carried out by scientists holding their expertise in other fields than computer science. On the other hand, the process of creating computer simulations of social systems which reflect the reality of such systems requires insights considerably beyond expertise in computer science. The Multi-Agent Modelling Language (MAML) is one of the efforts to ease these difficulties.
In its current version, MAML is a macro-language for Swarm (a freely distributed toolset under development at SFI), but it is also part of a larger Swarm-independent framework. Also, the design of MAML, while influenced by concepts from Swarm, is general enough to allow for later extension of the supported simulation kernels. This paper gives an overview of the mentioned larger framework, with special emphasis on MAML and its graphical CASE tool, the Model Design Interface.
Chris Goldspink
Journal of Artificial Societies and Social Simulation 3 (2)
1
Kyeywords: Complex Systems, Autopoiesis, Social Simulation, Cognition, Agents, Modelling. Meta-Model, Ontology
Abstract: There is growing interest in extending complex systems approaches to the social sciences. This is apparent in the increasingly widespread literature and journals that deal with the topic and is being facilitated by adoption of multi-agent simulation in research. Much of this research uses simple agents to explore limited aspects of social behaviour. Incorporation of higher order capabilities such as cognition into agents has proven problematic. Influenced by AI approaches, where cognitive capability has been sought, it has commonly been attempted based on a 'representational' theory of cognition. This has proven computationally expensive and difficult to implement. There would be some benefit also in the development of a framework for social simulation research which provides a consistent set of assumptions applicable in different fields and which can be scaled to apply to simple and more complex simulation tasks. This paper sets out, as a basis for discussion, a meta-model incorporating an 'enactive' model of cognition drawing on both complex system insights and the theory of autopoiesis. It is intended to provide an ontology that avoids some of the limitation of more traditional approaches and at the same time providing a basis for simulation in a wide range of fields and pursuant of a wider range of human behaviours.
Peter Deadman, Edella Schlager and Randy Gimblett
Journal of Artificial Societies and Social Simulation 3 (2)
2
Kyeywords: Common Pool Resources, Intelligent Agents, Simulation, Bounded Rationality, Communication
Abstract: This paper describes the development of a series of intelligent agent simulations based on data from previously documented common pool resource (CPR) experiments. These simulations are employed to examine the effects of different institutional configurations and individual behavioral characteristics on group level performance in a commons dilemma. Intelligent agents were created to represent the actions of individuals in a CPR experiment. The agents possess a collection of heuristics and utilize a form of adaptation by credit assignment in which they select the heuristic that appears to yield the highest return under the current circumstances. These simulations allow the analyst to specify the precise initial configuration of an institution and an individual's behavioral characteristics, so as to observe the interaction of the two and the group level outcomes that emerge as a result. Simulations explore settings in which there is no communication between agents, as well as the relative effects on overall group behavior of two different communication routines. The behavior of these simulations is compared with documented CPR experiments. Future directions in the development of the technology are outlined for natural resource management modeling applications.
Wolfgang Balzer, Karl R. Brendel and Solveig Hofmann
Journal of Artificial Societies and Social Simulation 4 (2)
1
Kyeywords: Social Simulation, Game Theory, Discrete Event Simulation, Model Theory, Confirmation, Impossibility Theorem
Abstract: The aim of this note is to clarify and to correct some arguments which are used in the debate about the comparison of discrete social simulation with other methodologies used in the study of social phenomena, notably those of game theory. Though part of what will be said also applies to non-discrete simulation, the arguments are investigated only as far as the discrete case is concerned. The main claims against each of both scientific approaches are considered in particular, i.e. "impossibility" of game theory and "unsoundness" of simulation studies. Regarding the latter, arguments are presented that items occurring in simulation studies correspond to the formal constituents of a scientific theory, and thus a comparison of both approaches on the same level is justified. The question whether a superiority of one of the two approaches can be stated is illuminated in the light of four dimensions: empirical adequacy, theoretical fruitfulness, social relevance, and simplicity. This leads to the conclusion that both claims are unjustified and should be avoided in the debate about the role and merits of social simulation.
Jim Doran
Journal of Artificial Societies and Social Simulation 4 (2)
4
Kyeywords: Software Agent, Agent-Based Modelling, Integrated Watershed Management, Sustainability, Fraser River, Intervention Strategy
Abstract: We propose an advanced agent-based modelling approach to ecosystem management, informed and motivated by consideration of the Fraser River watershed and its management problems. Agent-based modelling is introduced, and a three-stage computer-based research programme is formulated, the focus of which is on how best to intervene to cause stakeholders to co-operate effectively in ecosystem management, and on the objective discovery and comparison of intervention strategies by way of computer experimentation. The agent-based model outlined is technically relatively complex, and several potential difficulties in its detailed development are discussed. Types of ecosystem intervention strategy that might plausibly be discovered or recommended by the model are projected and compared with those currently advocated in the literature.
Nigel Gilbert, Andreas Pyka and Petra Ahrweiler
Journal of Artificial Societies and Social Simulation 4 (3)
8
Kyeywords: Innovation, Simulation of Social Networks, Mobile Communications, Biotechnology, Kene
Abstract: A multi-agent simulation embodying a theory of innovation networks has been built and used to suggest a number of policy-relevant conclusions. The simulation animates a model of innovation (the successful exploitation of new ideas) and this model is briefly described. Agents in the model representing firms, policy actors, research labs, etc. each have a knowledge base that they use to generate \'artefacts\' that they hope will be innovations. The success of the artefacts is judged by an oracle that evaluates each artefact using a criterion that is not available to the agents. Agents are able to follow strategies to improve their artefacts either on their own (through incremental improvement or by radical changes), or by seeking partners to contribute additional knowledge. It is shown though experiments with the model's parameters that it is possible to reproduce qualitatively the characteristics of innovation networks in two sectors: personal and mobile communications and biotechnology.
Marie-Edith Bissey and Guido Ortona
Journal of Artificial Societies and Social Simulation 5 (2)
2
Kyeywords: Cooperation, Conventions, Prisoner's Dilemma, Social Simulation, SWARM
Abstract: This paper describes a study of the robustness of cooperative conventions. We observe the effect of the invasion of non-cooperating subjects into a community adopting a cooperative convention. The convention is described by an indefinitely repeated prisoner-dilemma game. We check the effects on the robustness of the cooperating convention of two characteristics of the game, namely the size of the prisonner-dilemma groups and the "intelligence" of the players. The relevance for real-world problems is considered. We find that the "intelligence" of the players plays a crucial role in the way players learn to cooperate. The simulation program is written in SWARM (Java version).
John Scott and Scott Moss
Journal of Artificial Societies and Social Simulation 5 (3)
9
Kyeywords: European Social Simulation Association, development of social simulation research, education and application.
Abstract: There is growing agreement that the time has come to form a learned society to promote the development of social simulation.
The undersigned wish to propose the formation of a European Social Simulation Association (ESSA). Recognising parallel interests and developments in North America, Latin America and Australasia, we would intend ESSA to coordinate with similar organisations in those and other regions to organise an international federation to support the development of social simulation research, education and application.
Armano Srbljinovic, Drazen Penzar, Petra Rodik and Kruno Kardov
Journal of Artificial Societies and Social Simulation 6 (1)
1
Kyeywords: Agent-Based Modelling; Ethnic Identity; Ethnic Mobilisation
Abstract: In this paper we used the methodology of agent-based modelling to help explaining why populations with very similar socio-demographic characteristics sometimes exhibit great differences in ethnic mobilisation levels during mobilisation processes. This agent-based model of ethnic mobilisation was inspired and developed by combining and extending several theories, ideas and modelling constructs that were already used in agent-based modelling of social processes. The model has been specifically adapted to account for some of the most important characteristics of ethnic mobilisation processes that took place in the former Yugoslavia. Results obtained by experimenting with the model indicate that the observed differences in mobilisation levels across populations may sometimes not be related to the variations within any particular socio-demographic factor, but merely to random differences in the initial states of the individuals. In this model these random differences primarily relate to the degrees of importance that individuals attach to their ethnic identity, as well as to the layout of social networks.
Claudia Pahl-Wostl and Eva Ebenhöh
Journal of Artificial Societies and Social Simulation 7 (1)
3
Kyeywords: Social Simulation, Experimental Economics, Common Pool Resource Games, Adaptive Toolbox, Altruistic Punishment
Abstract: This article describes a social simulation model based on an economic experiment about altruistic behavior. The experiment by Fehr and Gächter showed that participants made frequent use of costly punishment in order to ensure continuing cooperation in a common pool resource game. The model reproduces not only the aggregated but also the individual data from the experiment. It was based on the data rather than theory. By this approach new insights about human behaviour and decision making may be found. The model was not designed as a stand-alone model, but as a starting point for a comprehensive Adaptive Toolbox Model. This may form a framework for modelling results from different economic experiments, comparing results and underlying assumptions, and exploring whether the insights thus gained also apply to more realistic situations.
Stanislaw Raczynski
Journal of Artificial Societies and Social Simulation 7 (2)
8
Kyeywords: Simulation, Modeling, Terrorism, Discrete Event, Agent-Oriented, Social Simulation, Soft Systems
Abstract: A discrete-event model of the dynamics of certain social structures is presented. The structures include terrorist organizations, anti-terrorism and terrorism-supporting structures. The simulation shows the process of creating the structures and their interactions. As a result, we can see how the structure size changes and how the interactions work, and the process of destroying terrorist organization links by the anti-terrorist agents. The simulation is agent-oriented and uses the PASION simulation system.
Wendelin Reich
Journal of Artificial Societies and Social Simulation 7 (4)
4
Kyeywords: Formal Logic, Social Interaction, Social Simulation, Agents, Social Meta-Reasoning, Reasoning About Reasoning
Abstract: Formal logic has become an invaluable tool for research on multi-agent systems, but it plays a minor role in the more applied field of agent-based social simulation (ABSS). We argue that logical languages are particularly useful for representing social meta-reasoning, that is, agents' reasoning about the reasoning of other agents. After arguing that social meta-reasoning is a frequent and important social phenomenon, we present a set of general criteria (functional completeness, understandability, changeability, and implementability/executability) to compare logic to two alternative formal methods: black box techniques (e.g., neural networks) and decision-theoretical models (e.g., game theory). We then argue that in terms of functional completeness, understandability and changeability, logical representations of social meta-reasoning compare favorably to these two alternatives.
Oswaldo Terán
Journal of Artificial Societies and Social Simulation 7 (4)
5
Kyeywords: Methodology, Modelling, Social Simulation, MABS, Theory, Philosophy
Abstract: This paper suggests procedures for decreasing misunderstanding between modellers in social simulation, aiming at helping modellers comprehending a certain phenomena from different perspectives, being aware of the relativity of each approach, and drawing conclusions from the different perspectives. A hierarchy of four levels of language, namely, cultural or natural language, modelling and theoretical paradigm, modelling language, and simulation programming language, is proposed and exemplified as a framework for examining simulation models - assumptions of language embedded in the model at each level are made explicit. Afterwards, switching between languages is suggested for achieving different interpretations and alternative explanations of a model; alongside, as a synthesis from different interpretations, to draw in an interpretive conclusion is suggested. In addition, Interpretive Systemology, a soft systems approach, is proposed as another innovative alternative for better understanding social simulation models, as it recommends undertaking the whole modelling process from different perspectives. The hierarchy of languages, and switching between languages, will be placed against the whole modelling process as understood by Edmonds (2000).
Johannes Kottonau and Claudia Pahl-Wostl
Journal of Artificial Societies and Social Simulation 7 (4)
6
Kyeywords: Attitude Formation, Social Simulation, Voting Behavior
Abstract: Understanding the dynamics of attitude formation is a key issue in social psychology. The paper presents a computational model for simulating the formation and change of attitudes and the influence of the strength of attitudes on behavior. The main conceptual challenge was to capture not only the traditional attitude concept but the full concept of attitude strength. This required combining different theoretical approaches within an integrated modeling framework. The dynamics of political attitudes of German citizens were chosen as specific application area because of the considerable amount of empirical data available. The model was tested by simulating the effects of different voting campaign strategies on the outcome of an election. Uncertainties in model parameters were accounted for by using Monte Carlo simulations. The implications of specific theoretical assumptions were investigated by performing model simulations for different model structures.
The paper shows the potential of social simulation when it comes to bringing together different theoretical approaches. The integration within a model exposes gaps and inconsistencies and allows formulating hypotheses for further empirical investigations.
The model has a modular structure and provides a rich repository for other modelers who are working in the field of attitude simulation.
Pieter Buzing, A.E. Eiben and Martijn C. Schut
Journal of Artificial Societies and Social Simulation 8 (1)
2
Kyeywords: Social Simulation, Communication, Cooperation, Artificial Societies
Abstract: The main contribution of this paper is threefold. First, it presents a new software system for empirical investigations of evolving agent societies in SugarScape like environments. Second, it introduces a conceptual framework for modeling cooperation in an artificial society. In this framework the environmental pressure to cooperate is controllable by a single parameter, thus allowing systematic investigations of system behavior under varying circumstances. Third, it reports upon results from experiments that implemented and tested environments based upon this new model of cooperation. The results show that the pressure to cooperate leads to the evolution of communication skills facilitating cooperation. Furthermore, higher levels of cooperation pressure lead to the emergence of increased communication.
Anselm Fleischmann
Journal of Artificial Societies and Social Simulation 8 (2)
4
Kyeywords: Agent-Based Modelling, Luhmann Economy, Fuzzy Clustering
Abstract: The core of this work is the definition of an agent-based model for a simple Luhmann economy based on publications of Niklas Luhmann.
• Using an implementation on a default personal computer the behaviour of the model is studied when assumptions regarding initial conditions are made. Fuzzy-c-means clustering is used as visualisation aid. The impact of the observation horizon (a model parameter determining how far agents can see) is studied interactively.
• Solution paths of the Luhmann economy originating from an initial endowment to equilibrium (when the economy settles down) are studied.
• The impact of model parameters determining the unevenness regarding the initial distribution of wealth is studied by Monte Carlo simulation. Niklas Luhmann\'s hypothesis, that the economy starts from and produces further inequality in order to continue (see Luhmann 1988, p. 112) could be reproduced by computer simulation.
The main characteristic of the approach is the consideration of the cohesive structure of communication (i.e. one communicative act - many understanding observers) also prominent in (Dunbar 1996, pp. 192-207). The model gives directions how to model further aspects of Niklas Luhmann\'s theory.
José Manuel Galán and Luis R. Izquierdo
Journal of Artificial Societies and Social Simulation 8 (3)
2
Kyeywords: Replication, Agent-Based Modelling, Evolutionary Game Theory, Social Dilemmas, Norms, Metanorms
Abstract: In this paper we try to replicate the simulation results reported by Axelrod (1986) in an influential paper on the evolution of social norms. Our study shows that Axelrod's results are not as reliable as one would desire. We can obtain the opposite results by running the model for longer, by slightly modifying some of the parameters, or by changing some arbitrary assumptions in the model. This re-implementation exercise illustrates the importance of running stochastic simulations several times for many periods, exploring the parameter space adequately, complementing simulation with analytical work, and being aware of the scope of our simulation models.
Shah Jamal Alam, Frank Hillebrandt and Michael Schillo
Journal of Artificial Societies and Social Simulation 8 (3)
5
Kyeywords: Gift Exchange, Multiagent Systems, Habitus-Field Theory, Social Simulation
Abstract: In this paper, the implications of applying the idea of gift exchange mechanism, inspired from Pierre Bourdieu's sociological theories, into a market-based multiagent system are explored. Our work is directed in the continuation of investigations by Knabe (2002), who addressed the formation of different organizations structures between providers in a profit-oriented market. We nevertheless scrutinize various hypotheses centered to gift exchange in which an agent sacrifices its profit for a long-term binding relationship. The idea is to aim a larger profit through alliances that are formed as an effect of gift exchange. Our suggestion is that a multiagent system (MAS) based on the social mechanism of gift exchange performs a high level of robustness and durability. The market in our case comprises of customers and providers agents. The former calls for proposals for the tasks they introduce in the market, while the latter proceed with the execution of tasks based on their abilities and other circumstances. In well defined cases, the providers are able to delegate tasks to other providers. This allows them to give presents to other providers so that the gift exchange mechanism becomes possible. The agents are either profit-oriented or the ones who prefer exchanging gifts and are in pursuit of others who also practice this mechanism. A number of interesting scenarios are examined that include preservation of a hierarchical structure in the market, situations resulting in the forming of an alliance between two providers, and split of profit-oriented and gift-giving agents.
Scott Moss and Bruce Edmonds
Journal of Artificial Societies and Social Simulation 8 (4)
13
Kyeywords: Methodology, Agent Based Social Simulation, Qualitative Analysis; Evidence; Conditions of Application; History of Science
Abstract: The paper investigates what is meant by "good science" and "bad science"
and how these differ as between the natural (physical and biological)
sciences on the one hand and social sciences on the other. We conclude
on the basis of historical evidence that the natural science are much
more heavily constrained by evidence and observation than by theory
while the social sciences are constrained by prior theory and hardly at
all by direct evidence. Current examples of the latter proposition are
taken from recent issues of leading social science journals. We argue
that agent based social simulations can be used as a tool to constrain
the development of a new social science by direct (what economists
dismiss as anecdotal) evidence and that to do so would make social
science relevant to the understanding and influencing of social
processes. We argue that such a development is both possible and
desirable. We do not argue that it is likely.
Petra Ahrweiler and Nigel Gilbert
Journal of Artificial Societies and Social Simulation 8 (4)
14
Kyeywords: Evaluation, Social Simulation, Standard View, Constructivist View, User Community
Abstract: This contribution deals with the assessment of the quality of a simulation by discussing and comparing "real-world" and scientific social simulations. We use the example of the Caffè Nero in Guildford as a 'real-world' simulation of a Venetian café. The construction of everyday simulations like Caffè Nero has some resemblance to the construction procedure of scientific social simulations. In both cases, we build models from a target by reducing the characteristics of the latter sufficiently for the purpose at hand; in each case, we want something from the model we cannot achieve easily from the target. After briefly discussing the 'ordinary' method of evaluating simulations called the 'standard view' and its adversary, a constructivist approach asserting that 'anything goes', we heed these similarities in the construction process and apply evaluation methods typically used for everyday simulations to scientific simulation and vice versa. The discussion shows that a 'user community view' creates the foundation for every evaluation approach: when evaluating the Caffè Nero simulation, we refer to the expert community (customers, owners) who use the simulation to get from it what they would expect to get from the target; similarly, for science, the foundation of every validity discussion is the ordinary everyday interaction that creates an area of shared meanings and expectations. Therefore, the evaluation of a simulation is guided by the expectations, anticipations and experience of the community that uses it – for practical purposes (Caffè Nero), or for intellectual understanding and for building new knowledge (science simulation).
Guillaume Deffuant, Scott Moss and Wander Jager
Journal of Artificial Societies and Social Simulation 9 (1)
1
Kyeywords: Social Simulations, Epistemology, Validation, Simulation Methods
Abstract: The paper relates virtual dialogues about social simulation, with the implicit reference to Galieo\'s \'dialogues concerning two new sciences\'.
Peter Andras, John Lazarus, Gilbert Roberts and Steven J Lynden
Journal of Artificial Societies and Social Simulation 9 (1)
7
Kyeywords: Agent-Based Modelling, Cooperation, Social Interaction Simulation, Uncertainty
Abstract: Uncertainty is an important factor that influences social evolution in natural and artificial environments. Here we distinguish between three aspects of uncertainty. Environmental uncertainty is the variance of resources in the environment, perceived uncertainty is the variance of the resource distribution as perceived by the organism and effective uncertainty is the variance of resources effectively enjoyed by individuals. We show analytically that perceived uncertainty is larger than environmental uncertainty and that effective uncertainty is smaller than perceived uncertainty, when cooperation is present. We use an agent society simulation in a two dimensional world for the generation of simulation data as one realisation of the analytical results. Together with our earlier theoretical work, results here show that cooperation can buffer the detrimental effects of uncertainty on the organism. The proposed conceptualisation of uncertainty can help in understanding its effects on social evolution and in designing artificial social environments.
Magda Fontana
Journal of Artificial Societies and Social Simulation 9 (2)
8
Kyeywords: Social Simulation, Economic Theory, User Community
Abstract: This paper presents the analysis of a dataset of publications in economics that makes use of simulations. Data areas explored in order to obtain information about diffusion of simulation techniques in time and across sub-disciplines. Moreover, following Robert Axelrod\'s concerns about the difficulties in sharing simulation models and their outputs, some peculiarities in the communication process among \'simulators\' are highlighted.
Sujai Kumar and Sugata Mitra
Journal of Artificial Societies and Social Simulation 9 (4)
3
Kyeywords: Self-Organizing Systems, Complex Systems, Traffic, Emergent Behaviour, Agent-Based Modelling, Rule-Breaking
Abstract: Traffic signals and traffic flow models have been studied extensively in the past and have provided valuable insights on the design of signalling systems, congestion control, and punitive policies. This paper takes a slightly different tack and describes what happens at an intersection where the traffic signals are malfunctioning and stuck in some configuration. By modelling individual vehicles as agents, we were able to replicate the surprisingly organized traffic flow that we observed at a real malfunctioning intersection in urban India. Counter-intuitively, the very lawlessness that normally causes jams was causing traffic to flow smoothly at this intersection. We situate this research in the context of other research on emergent complex phenomena in traffic, and suggest further lines of research that could benefit from the analysis and modelling of rule-breaking behaviour.
Thomas Malsch and Ingo Schulz-Schaeffer
Journal of Artificial Societies and Social Simulation 10 (1)
11
Kyeywords: Socionics, Sociology, Multi-Agent Systems, Artificial Social Systems, Hybrid Systems, Social Simulation
Abstract: Socionics is an interdisciplinary approach with the objective to use sociological knowledge about the structures, mechanisms and processes of social interaction and social communication as a source of inspiration for the development of multi-agent systems, both for the purposes of engineering applications and of social theory construction and social simulation. The approach has been spelled out from 1998 on within the Socionics priority program funded by the German National research foundation. This special issue of the JASSS presents research results from five interdisciplinary projects of the Socionics program. The introduction gives an overview over the basic ideas of the Socionics approach and summarizes the work of these projects.
Matthias Nickles, Michael Rovatsos, Marco Schmitt, Wilfried Brauer, Felix Fischer, Thomas Malsch, Kai Paetow and Gerhard Weiss
Journal of Artificial Societies and Social Simulation 10 (1)
5
Kyeywords: Agent Communication, Open Multiagent Systems, Social Systems Theory, Symbolic Interactionism, Pragmatism, Computational Pragmatics
Abstract: In open systems of artificial agents, the meaning of communication in part emerges from ongoing interaction processes. In this paper, we present the empirical semantics approach to inductive derivation of communication semantics that can be used to derive this emergent semantics of communication from observations. The approach comes in two complementary variants: One uses social systems theory, focusing on system expectation structures and global utility maximisation, and the other is based on symbolic interactionism, focusing on the viewpoint and utility maximisation of the individual agent. Both these frameworks make use of the insight that the most general meaning of agent utterances lies in their expectable consequences in terms of observable events, and thus they strongly demarcate themselves from traditional approaches to the semantics and pragmatics of agent communication languages.
Klaus Jaffe and Roberto Cipriani
Journal of Artificial Societies and Social Simulation 10 (1)
7
Kyeywords: Social Simulation, Interactions, Group Size, Selfish Heard, Cultural Evolution, Biological Evolution
Abstract: A one dimensional cellular automata model describes the evolutionary dynamics of cooperation when grouping by cooperators provides protection against predation. It is used to compare the dynamics of evolution of cooperation in three settings. G: only vertical transmission of information is allowed, as an analogy of genetic evolution with heredity; H: only horizontal information transfer is simulated, through diffusion of the majority\'s opinion, as an analogy of opinion dynamics or social learning; and C: analogy of cultural evolution, where information is transmitted both horizontally (H) and vertically (V) so that learned behavior can be transmitted to offspring. The results show that the prevalence of cooperative behavior depends on the costs and benefits of cooperation so that: a- cooperation becomes the dominant behavior, even in the presence of free-riders (i.e., non-cooperative obtaining benefits from the cooperation of others), under all scenarios, if the benefits of cooperation compensate for its cost; b- G is more susceptible to selection pressure than H achieving a closer adaptation to the fitness landscape; c- evolution of cooperative behavior in H is less sensitive to the cost of cooperation than in G; d- C achieves higher levels of cooperation than the other alternatives at low costs, whereas H does it at high costs. The results suggest that a synergy between H and V is elicited that makes the evolution of cooperation much more likely under cultural evolution than under the hereditary kind where only V is present.
Thomas Malsch, Christoph Schlieder, Peter Kiefer, Maren Lübcke, Rasco Perschke, Marco Schmitt and Klaus Stein
Journal of Artificial Societies and Social Simulation 10 (1)
9
Kyeywords: Communication, Communication-Oriented Modelling, Message Sign, Dynamic Networks, Bottom-up Approach, Temporality, Social Visibility, Reputation, Socionics
Abstract: Focusing on observable message signs and referencing structures, communication processes can be described and analysed as message reference networks which are characterized by dynamic pattern evolution. Computational simulation provides a way of obtaining insights into the factors driving such processes. Our paper describes a theoretical framework for communication-oriented modelling — the COM approach — that is centred around the notion of social visibility as a reputation mechanism. The approach contrasts with agent-based social networks on the one hand, and with bibliometric document networks on the other. In introducing our simulation environment COM/TE, typical properties of message reference networks are discussed in terms of a case study which deals with the impact of different media and styles of communication on emergent patterns of social visibility.
J. Gareth Polhill, Edoardo Pignotti, Nicholas M. Gotts, Pete Edwards and Alun Preece
Journal of Artificial Societies and Social Simulation 10 (2)
2
Kyeywords: Agent-Based Social Simulation, Experiments, Ontologies, Replication, Semantic Grid
Abstract: Agent-based models, perhaps more than other models, feature large numbers of parameters and potentially generate vast quantities of results data. This paper shows through the FEARLUS-G project (an ESRC e-Social Science Initiative Pilot Demonstrator Project) how deploying an agent-based model on the Semantic Grid facilitates international collaboration on investigations using such a model, and contributes to establishing rigorous working practices with agent-based models as part of good science in social simulation. The experimental workflow is described explicitly using an ontology, and a Semantic Grid service with a web interface implements the workflow. Users are able to compare their parameter settings and results, and relate their work with the model to wider scientific debate.
Wim Westera
Journal of Artificial Societies and Social Simulation 10 (2)
5
Kyeywords: Distance Learning, Computational Simulations, System Dynamics, Education and Application, Peer Support, Peer Allocation
Abstract: This paper proposes a computational model for the allocation of fleeting peer tutors in a community of learners: a student\'s call for support is evaluated by the model in order to allocate the most appropriate peer tutor. Various authors have suggested peer tutoring as a favourable approach for confining the ever-growing workloads of teachers and tutors in online learning environments. The model\'s starting point is to serve two conflicting requirements: 1) the allocated peers should have sufficient knowledge to guarantee high quality support and 2) tutoring workload of peers should be fairly distributed over the student population. While the first criterion is likely to saddle a small number of very bright students with all the tutoring workload, the unconditional pursuit of a uniform workload distribution over the students is likely to allocate incompetent tutors. In both cases the peer support mechanism is doomed to failure. The paper identifies relevant variables and elaborates an allocation procedure that combines various filter types. The functioning of the allocation procedure is tested through a computer simulation program that has been developed to represent the student population, the students curriculum and the dynamics of tutor allocation. The current study demonstrates the feasibility of the self-allocating peer tutoring mechanism. The proposed model is sufficiently stable within a wide range of conditions. By introducing an overload tolerance parameter which stretches the fair workload distribution criteria, substantial improvements of the allocation success rate are effected. It is demonstrated that the allocation algorithm works best at large population sizes. The results show that the type of curriculum (collective route or individualised routes) has only little influence on the allocation mechanism.
J. Gareth Polhill and Bruce Edmonds
Journal of Artificial Societies and Social Simulation 10 (3)
10
Kyeywords: Agent-Based Social Simulation, Replication, Software Licences, Documentation, Archiving
Abstract: We consider here issues of open access to social simulations, with a particular focus on software licences, though also briefly discussing documentation and archiving. Without any specific software licence, the default arrangements are stipulated by the Berne Convention (for those countries adopting it), and are unsuitable for software to be used as part of the scientific process (i.e. simulation software used to generate conclusions that are to be considered part of the scientific domain of discourse). Without stipulating any specific software licence, we suggest rights that should be provided by any candidate licence for social simulation software, and provide in an appendix an evaluation of some popularly used licences against these criteria.
Onofrio Gigliotta, Orazio Miglino and Domenico Parisi
Journal of Artificial Societies and Social Simulation 10 (4)
1
Kyeywords: Agent Based Models, Leaders, Social Simulation, Social Structure, Communication Topologies
Abstract: We describe simulations of groups of agents that have to reach a target in a two dimensional environment, the performance criterion being the time taken by the last agent to reach the target. If the target is within a given distance from the agent, the agent moves towards the target; otherwise it moves randomly. The simulations contrast groups with and without a leader, where a leader is a member of the group which other members of the group follow as it moves through the environment. We investigate three factors that affect group performance: (1) group size; (2) the presence or absence of an individual agent with the ability to detect targets at a greater distance than those \'visible\' to its companions; (3) the existence of a communication network among group members. The results show that, in groups without communication, leaders have a beneficial effect on group performance, especially in large groups and if the individual with better than average sensory capabilities is the leader of the group. However, in situations where group members can communicate, these results are reversed, with leaders being detrimental, rather than beneficial, to group performance
Minh Nguyen-Duc and Alexis Drogoul
Journal of Artificial Societies and Social Simulation 10 (4)
5
Kyeywords: Participatory Social Simulations, Agent-Based Social Simulations, Computational Agents, Role-Playing Games, Artificial Maieutics, User-Centered Design
Abstract: In social science, the role of stakeholders is increasing in the development and use of simulation models. Their participation in the design of agent-based models (ABMs) has widely been considered as an efficient solution to the validation of this particular type of model. Traditionally, "agents" (as basic model elements) have not been concerned with stakeholders directly but via designers or role-playing games (RPGs). In this paper, we intend to bridge this gap by introducing computational or software agents, implemented from an initial ABM, into a new kind of RPG, mediated by computers, so that these agents can interact with stakeholders. This interaction can help not only to elicit stakeholders' informal knowledge or unpredicted behaviours, but also to control stakeholders' focus during the games. We therefore formalize a general participatory design method using software agents, and illustrate it by describing our experience in a project aimed at developing agent-based social simulations in the field of air traffic management.
Shah Jamal Alam, Ruth Meyer, Gina Ziervogel and Scott Moss
Journal of Artificial Societies and Social Simulation 10 (4)
7
Kyeywords: Agent-Based Social Simulation, Evidence-Driven Modeling, Socioeconomic Stressors, HIV/AIDS Impact
Abstract: In this paper, we present an agent-based simulation model of the social impacts of HIV/AIDS in villages in the Sekhukhune district of the Limpopo province in South Africa. AIDS is a major concern in South Africa, not just in terms of disease spread but also in term of its impact on society and economic development. The impact of the disease cannot however be considered in isolation from other stresses, such as food insecurity, high climate variability, market fluctuations and variations in support from government and non-government sources. The model described in this paper focuses on decisions made at the individual and household level, based upon evidence from detailed case studies, and the different types of networks between these players that influence their decision making. Key to the model is that these networks are dynamic and co-evolving, something that has rarely been considered in social network analysis. The results presented here demonstrate how this type of simulation can aid better understanding of this complex interplay of issues. In turn, we hope that this will prove to be a powerful tool for policy development.
Guido Fioretti and Alessandro Lomi
Journal of Artificial Societies and Social Simulation 11 (1)
1
Kyeywords: Organization Theory, Garbage Can Model, Agent-Based Modelling
Abstract: Cohen, March and Olsen\'s Garbage Can Model (GCM) of organizational choice represent perhaps the first – and remains by far the most influential –agent-based representation of organizational decision processes. According to the GCM organizations are conceptualized as crossroads of time-dependent flows of four distinct classes of objects: \'participants,\' \'opportunities,\' \'solutions\' and \'problems.\' Collisions among the different objects generate events called \'decisions.\' In this paper we use NetLogo to build an explicit agent-based representation of the original GCM. We conduct a series of simulation experiments to validate and extend some of the most interesting conclusions of the GCM. We show that our representation is able to reproduce a number of properties of the original model. Yet, unlike the original model, in our representation these properties are not encoded explicitly, but emerge from general principles of the Garbage Can decision processes.
Kyle Wagner and Kerry Shaw
Journal of Artificial Societies and Social Simulation 11 (1)
3
Kyeywords: Individual-Based Model, Genetic Algorithms, Communication, Sexual Signaling, Speciation, Evolution, Genetics
Abstract: We present cricketsim, an individual-based simulator of species and community dynamics that allows experimenters to manipulate genetic and evolutionary parameters as well as parameters affecting the simulated environment and its inhabitants. The simulator can model genotypic and phenotypic features of species, such as male signals and female preferences, as well as demographic and fitness-related features. The individual-based simulator creates a lattice (cellular) world in which males and females interact by moving, signaling/responding, and mating. One or more species evolves over simulation time as individuals of a species interact with others during its lifetime, possibly creating new offspring through successful mating. The program\'s design, parameters, execution and data collection are described, an example experiment is presented, and several applications are discussed.
Scott Moss
Journal of Artificial Societies and Social Simulation 11 (1)
5
Kyeywords: Social Simulation, Validation, Companion Modelling, Data Generating Mechanisms, Complexity
Abstract: This paper draws on the metaphor of a spectrum of models ranging from the most theory-driven
to the most evidence-driven. The issue of concern is the practice and criteria that will be appro-
priate to validation of different models. In order to address this concern, two modelling approaches
are investigated in some detailed – one from each end of our metaphorical spectrum. Windrum
et al. (2007) (http://jasss.soc.surrey.ac.uk/10/2/8.html) claimed strong similarities between
agent based social simulation and conventional social science – specifically econometric – approaches
to empirical modelling and on that basis considered how econometric validation techniques might
be used in empirical social simulations more broadly. An alternative is the approach of the French
school of \'companion modelling\' associated with Bousquet, Barreteau, Le Page and others which
engages stakeholders in the modelling and validation process. The conventional approach is con-
strained by prior theory and the French school approach by evidence. In this sense they are at
opposite ends of the theory-evidence spectrum. The problems for validation identified by Windrum
et al. are shown to be irrelevant to companion modelling which readily incorporate complexity due
to realistically descriptive specifications of individual behaviour and social interaction. The result
combines the precision of formal approaches with the richness of narrative scenarios. Companion
modelling is therefore found to be practicable and to achieve what is claimed for it and this alone
is a key difference from conventional social science including agent based computational economics.
J. Gareth Polhill, Dawn C. Parker, Daniel Brown and Volker Grimm
Journal of Artificial Societies and Social Simulation 11 (2)
3
Kyeywords: Model Communication, Model Documentation, ODD, LUCC
Abstract: This article describes three agent-based social simulation models in the area of land-use change using a model documentation protocol, ODD, from the ecological literature. Our goal is to evaluate how well fitted it is to social simulations and how successful it might be in increasing communication between individual- and agent-based modellers. Such shared protocols can facilitate model review, comparison, and replication. We initially conclude that the framework holds promise as a standard communication mechanism, although some refinements may be needed.
Diemo Urbig, Jan Lorenz and Heiko Herzberg
Journal of Artificial Societies and Social Simulation 11 (2)
4
Kyeywords: Opinion Dynamics, Communication Regime
Abstract: The opinion dynamics model introduced by Deffuant and Weisbuch as well as the one by Hegselmann and Krause are rather similar. In both models individuals are assumed to have opinions about an issue, they meet and discuss, and they may adapt their opinions towards the other agents` opinions or may ignore each other if their positions are too different. Both models differ with respect to the number of peers they meet at once. Furthermore the model by Deffuant and Weisbuch has a convergence parameter that controls how fast agents adapt their opinions. By defining the reversed parameter as self-support we can extend the applicability of this parameter to scenarios with more than one interaction partner. We investigate the effects of changing the number of peers met at once, which is done for different population sizes, and the effects of changing the self-support. For describing the dynamics we look at different statistics, i.e. number of cluster, number of major clusters, and Gini coefficient.
Juliette Rouchier, Claudio Cioffi-Revilla, J. Gareth Polhill and Keiki Takadama
Journal of Artificial Societies and Social Simulation 11 (2)
8
Kyeywords: Social Simulation, Agent-Based Modelling, Comparative Computational Methodology, Validation, Replication
Abstract: [No abstract]
Oliver Will and Rainer Hegselmann
Journal of Artificial Societies and Social Simulation 11 (3)
3
Kyeywords: Replication, Social Dilemmas, Simulation Methodology, Cooperation, Trust, Agent-Based Modelling
Abstract: The article describes how and why we failed to replicate main effects of a computational model that Michael Macy and Yoshimichi Sato published in the Proceedings of the National Academy of Sciences (May 2002). The model is meant to answer a fundamental question about social life: Why, when and how is it possible to build trust with distant people? Based on their model, Macy and Sato warn the US society about an imminent danger: the possible break down of trust caused by too much social mobility. But the computational evidence for exactly that result turned out not to be replicable.
Noam Bergman, Alex Haxeltine, Lorraine Whitmarsh, Jonathan Köhler, Michel Schilperoord and Jan Rotmans
Journal of Artificial Societies and Social Simulation 11 (3)
7
Kyeywords: Complex Systems, Agent-Based Modelling, Social Simulation, Transitions, Transition Theory
Abstract: We report on research that is developing a simulation model for assessing systemic innovations, or 'transitions', of societal systems towards a more sustainable development. Our overall aim is to outline design principles for models that can offer new insights into tackling persistent problems in large-scale systems, such as the European road transport system or the regional management of water resources. The systemic nature of these problems is associated with them being complex, uncertain and cutting across a number of sectors, and indicates a need for radical technological and behavioural solutions that address changes at the systems level rather than offering incremental changes within sub-systems. Model design is inspired by recent research into transitions, an emerging paradigm which provides a framework for tackling persistent problems. We use concepts from the literature on transitions to develop a prototype of a generic 'transition model'. Our prototype aims to capture different types of transition pathways, using historical examples such as the transition from horse-drawn carriages to cars or that from sailing ships to steam ships. The model combines agent-based modelling techniques and system dynamics, and includes interactions of individual agents and sub-systems, as well as cumulative effects on system structures. We show success in simulating different historical transition pathways by adapting the model's parameters and rules for each example. Finally, we discuss the improvements necessary for systematically exploring and detailing transition pathways in empirical case-study applications to current and future transitions such as the transition to a sustainable transport system in Europe.
Michael Macy and Yoshimichi Sato
Journal of Artificial Societies and Social Simulation 11 (4)
11
Kyeywords: Replication, Social Dilemmas, Simulation Methodology, Cooperation, Trust, Agent-Based Modelling
Abstract: [No abstract]
Martin Neumann
Journal of Artificial Societies and Social Simulation 11 (4)
6
Kyeywords: Norms, Normative Agent-Based Social Simulation, Role Theory, Methodological Individualism
Abstract: This paper describes a survey of normative agent-based social simulation models. These models are examined from the perspective of the foundations of social theory. Agent-based modelling contributes to the research program of methodological individualism. Norms are a central concept in the role theoretic concept of action in the tradition of Durkheim and Parsons. This paper investigates to what extend normative agent-based models are able to capture the role theoretic concept of norms. Three methodological core problems are identified: the question of norm transmission, normative transformation of agents and what kind of analysis the models contribute. It can be shown that initially the models appeared only to address some of these problems rather than all of them simultaneously. More recent developments, however, show progress in that direction. However, the degree of resolution of intra agent processes remains too low for a comprehensive understanding of normative behaviour regulation.
José Manuel Galán, Luis R. Izquierdo, Segismundo S. Izquierdo, José Ignacio Santos, Ricardo del Olmo, Adolfo López-Paredes and Bruce Edmonds
Journal of Artificial Societies and Social Simulation 12 (1)
1
Kyeywords: Verification, Replication, Artefact, Error, Agent-Based Modelling, Modelling Roles
Abstract: The objectives of this paper are to define and classify different types of errors and artefacts that can appear in the process of developing an agent-based model, and to propose activities aimed at avoiding them during the model construction and testing phases. To do this in a structured way, we review the main concepts of the process of developing such a model – establishing a general framework that summarises the process of designing, implementing, and using agent-based models. Within this framework we identify the various stages where different types of errors and artefacts may appear. Finally we propose activities that could be used to detect (and hence eliminate) each type of error or artefact.
Pawel Sobkowicz
Journal of Artificial Societies and Social Simulation 12 (1)
11
Kyeywords: Methodology, Agent Based Social Simulation, Qualitative Analysis; Evidence; Conditions of Application
Abstract: The growing field of studies of opinion formation using physical formalisms and computer simulation based tools suffers from relative lack of connection to the 'real world' societal behaviour. Such sociophysics research should aim at explaining observations or at proposing new ones. Unfortunately, this is not always the case, as many works concentrate more on the models themselves than on the social phenomena. Moreover, the simplifications proposed in simulations often sacrifice realism on the altar of computability. There are several ways to improve the value of the research, the most important by promoting truly multidisciplinary cooperation between physicists aiming to describe social phenomena and sociologists studying the phenomena in the field. In the specific case of modelling of opinion formation there are a few technical ideas which might bring the computer models much closer to reality, and therefore to improve the predictive value of the sociophysics approach.
Pedro Ribeiro de Andrade, Antonio Miguel Vieira Monteiro, Gilberto Câmara and Sandra Sandri
Journal of Artificial Societies and Social Simulation 12 (1)
5
Kyeywords: Spatial Games, Agent-Based Modelling, Mobility, Satisfaction, Chicken Game, Nash Equilibrium
Abstract: In this work we propose a new model for spatial games. We present a definition of mobility in terms of the satisfaction an agent has with its spatial location. Agents compete for space through a non-cooperative game by using mixed strategies. We are particularly interested in studyig the relation between Nash equilibrium and the winner strategy of a given model with mobility, and how the mobility can affect the results. The experiments show that mobility is an important variable concerning spatial games. When we change parameters that affect mobility, it may lead to the success of strategies away from Nash equilibrium.
Bill Tomlinson
Journal of Artificial Societies and Social Simulation 12 (1)
7
Kyeywords: Agent Based Models, Ancestor Commemoration, Dominance Relationships, Communication, Cooperation, Memory
Abstract: Many human cultures engage in the collective commemoration of dead members of their community. Ancestor veneration and other forms of commemoration may help to reduce social distance within groups, thereby encouraging reciprocity and providing a significant survival advantage. Here we present a simulation in which a prototypical form of ancestor commemoration arises spontaneously among computational agents programmed to have a small number of established human capabilities. Specifically, ancestor commemoration arises among agents that: a) form relationships with each other, b) communicate those relationships to each other, and c) undergo cycles of life and death. By demonstrating that ancestor commemoration could have arisen from the interactions of a small number of simpler behavioural patterns, this simulation may provide insight into the workings of human cultural systems, and ideas about how to study ancestor commemoration among humans.
Daniel Kornhauser, Uri Wilensky and William Rand
Journal of Artificial Societies and Social Simulation 12 (2)
1
Kyeywords: Visualization, Design, Graphics, Guidelines, Communication, Agent-Based Modeling
Abstract: In the field of agent-based modeling (ABM), visualizations play an important role in identifying, communicating and understanding important behavior of the modeled phenomenon. However, many modelers tend to create ineffective visualizations of Agent Based Models (ABM) due to lack of experience with visual design. This paper provides ABM visualization design guidelines in order to improve visual design with ABM toolkits. These guidelines will assist the modeler in creating clear and understandable ABM visualizations. We begin by introducing a non-hierarchical categorization of ABM visualizations. This categorization serves as a starting point in the creation of an ABM visualization. We go on to present well-known design techniques in the context of ABM visualization. These techniques are based on Gestalt psychology, semiology of graphics, and scientific visualization. They improve the visualization design by facilitating specific tasks, and providing a common language to critique visualizations through the use of visual variables. Subsequently, we discuss the application of these design techniques to simplify, emphasize and explain an ABM visualization. Finally, we illustrate these guidelines using a simple redesign of a NetLogo ABM visualization. These guidelines can be used to inform the development of design tools that assist users in the creation of ABM visualizations.
Whan-Seon Kim
Journal of Artificial Societies and Social Simulation 12 (3)
4
Kyeywords: Complex Adaptive System, Agent-Based Social Simulation, Supply Network, Trust
Abstract: This paper models a supply network as a complex adaptive system (CAS), in which firms or agents interact with one another and adapt themselves. And it applies agent-based social simulation (ABSS), a research method of simulating social systems under the CAS paradigm, to observe emergent outcomes. The main purposes of this paper are to consider a social factor, trust, in modeling the agents\' behavioral decision-makings and, through the simulation studies, to examine the intermediate self-organizing processes and the resulting macro-level system behaviors. The simulations results reveal symmetrical trust levels between two trading agents, based on which the degree of trust relationship in each pair of trading agents as well as the resulting collaboration patterns in the entire supply network emerge. Also, it is shown that agents\' decision-making behavior based on the trust relationship can contribute to the reduction in the variability of inventory levels. This result can be explained by the fact that mutual trust relationship based on the past experiences of trading diminishes an agent\'s uncertainties about the trustworthiness of its trading partners and thereby tends to stabilize its inventory levels.
Andrew Crooks, Andrew Hudson-Smith and Joel Dearden
Journal of Artificial Societies and Social Simulation 12 (4)
10
Kyeywords: Agent-Based Modelling, Pedestrian Evacuation, Segregation, Virtual Worlds, Second Life
Abstract: Urban models can be seen on a continuum between iconic and symbolic. Generally speaking, iconic models are physical versions of the real world at some scaled down representation, while symbolic models represent the system in terms of the way they function replacing the physical or material system by some logical and/or mathematical formulae. Traditionally iconic and symbolic models were distinct classes of model but due to the rise of digital computing the distinction between the two is becoming blurred, with symbolic models being embedded into iconic models. However, such models tend to be single user. This paper demonstrates how 3D symbolic models in the form of agent-based simulations can be embedded into iconic models using the multi-user virtual world of Second Life. Furthermore, the paper demonstrates Second Life\'s potential for social science simulation. To demonstrate this, we first introduce Second Life and provide two exemplar models; Conway\'s Game of Life, and Schelling\'s Segregation Model which highlight how symbolic models can be viewed in an iconic environment. We then present a simple pedestrian evacuation model which merges the iconic and symbolic together and extends the model to directly incorporate avatars and agents in the same environment illustrating how \'real\' participants can influence simulation outcomes. Such examples demonstrate the potential for creating highly visual, immersive, interactive agent-based models for social scientists in multi-user real time virtual worlds. The paper concludes with some final comments on problems with representing models in current virtual worlds and future avenues of research.
Matthias Meyer, Iris Lorscheid and Klaus G. Troitzsch
Journal of Artificial Societies and Social Simulation 12 (4)
12
Kyeywords: Citation Analysis, Co-Citation Analysis, Lines of Research, Multidisciplinary, Science Studies, Social Simulation
Abstract: Social simulation is often described as a multidisciplinary and fast-moving field. This can make it difficult to obtain an overview of the field both for contributing researchers and for outsiders who are interested in social simulation. The Journal for Artificial Societies and Social Simulation (JASSS) completing its tenth year provides a good opportunity to take stock of what happened over this time period. First, we use citation analysis to identify the most influential publications and to verify characteristics of social simulation such as its multidisciplinary nature. Then, we perform a co-citation analysis to visualize the intellectual structure of social simulation and its development. Overall, the analysis shows social simulation both in its early stage and during its first steps towards becoming a more differentiated discipline.
Simon Deichsel and Andreas Pyka
Journal of Artificial Societies and Social Simulation 12 (4)
6
Kyeywords: Methodology, Agent-Based Modelling, Assumptions, Calibration
Abstract: The issues of empirical calibration of parameter values and functional relationships describing the interactions between the various actors plays an important role in agent based modelling. Agent-based models range from purely theoretical exercises focussing on the patterns in the dynamics of interactions processes to modelling frameworks which are oriented closely at the replication of empirical cases. ABMs are classified in terms of their generality and their use of empirical data. In the literature the recommendation can be found to aim at maximizing both criteria by building so-called 'abductive models'. This is almost the direct opposite of Milton Friedman's famous and provocative methodological credo 'the more significant a theory, the more unrealistic the assumptions'. Most methodologists and philosophers of science have harshly criticised Friedman's essay as inconsistent, wrong and misleading. By presenting arguments for a pragmatic reinterpretation of Friedman's essay, we will show why most of the philosophical critique misses the point. We claim that good simulations have to rely on assumptions, which are adequate for the purpose in hand and those are not necessarily the descriptively accurate ones.
Julian Padget, Richard Vidgen, James Mitchell, Amy Marshall and Rick Mellor
Journal of Artificial Societies and Social Simulation 12 (4)
8
Kyeywords: Coevolution, Agent-Based Modelling, NK, NKCS, Fitness Landscape
Abstract: The idea of agents exploring a fitness landscape in which they seek to move from 'fitness valleys' to higher 'fitness peaks' has been presented by Kauffman in the NK and NKCS models. The NK model addresses single species while the NKCS extension illustrates coevolving species on coupled fitness landscapes. We describe an agent-based simulation (Sendero), built in Repast, of the NK and NKCS models. The results from Sendero are validated against Kauffman's findings for the NK and NKCS models. We also describe extensions to the basic model, including population dynamics and communication networks for NK, and directed graphs and variable change rates for NKCS. The Sendero software is available as open source under the BSD licence and is thus available for download and extension by the research community.
Stuart Rossiter, Jason Noble and Keith R.W. Bell
Journal of Artificial Societies and Social Simulation 13 (1)
10
Kyeywords: Social Simulation, Methodology, Epistemology, Ideology, Validation
Abstract: Because of features that appear to be inherent in many social systems, modellers face complicated and subjective choices in positioning the scientific contribution of their research. This leads to a diversity of approaches and terminology, making interdisciplinary assessment of models highly problematic.
Such modellers ideally need some kind of accessible, interdisciplinary framework to better understand and assess these choices. Existing texts tend either to take a specialised metaphysical approach, or focus on more pragmatic aspects such as the simulation process or descriptive protocols for how to present such research. Without a sufficiently neutral treatment of why a particular set of methods and style of model might be chosen, these choices can become entwined with the ideological and terminological baggage of a particular discipline.
This paper attempts to provide such a framework. We begin with an epistemological model, which gives a standardised view on the types of validation available to the modeller, and their impact on scientific value. This is followed by a methodological framework, presented as a taxonomy of the key dimensions over which approaches are ultimately divided. Rather than working top-down from philosophical principles, we characterise the issues as a practitioner would see them. We believe that such a characterisation can be done 'well enough', where 'well enough' represents a common frame of reference for all modellers, which nevertheless respects the essence of the debate's subtleties and can be accepted as such by a majority of 'methodologists'.
We conclude by discussing the limitations of such an approach, and potential further work for such a framework to be absorbed into existing, descriptive protocols and general social simulation texts.
Pierre Livet, Jean-Pierre Muller, Denis Phan and Lena Sanders
Journal of Artificial Societies and Social Simulation 13 (1)
3
Kyeywords: Ontology, Agent-Based Computational Economic, Agent-Based Model of Simulation, Model Design, Model Building, Knowledge Framework, Spatial Simulation, Social Simulation, Ontological Test
Abstract: Agent-Based Models are useful to describe and understand social, economic and spatial systems\' dynamics. But, beside the facilities which this methodology offers, evaluation and comparison of simulation models are sometimes problematic. A rigorous conceptual frame needs to be developed. This is in order to ensure the coherence in the chain linking at the one extreme the scientist\'s hypotheses about the modeled phenomenon and at the other the structure of rules in the computer program. This also systematizes the model design from the thematician conceptual framework as well. The aim is to reflect upon the role that a well defined ontology, based on the crossing of the philosophical and the computer science insights, can play to solve such questions and help the model building. We analyze different conceptions of ontology, introduce the \'ontological test\' and show its usefulness to compare models. Then we focus on the model building and show the place of a systematic ABM ontology. The latter process is situated within a larger framework called the \'knowledge framework\' in which not only the ontologies but also the notions of theory, model and empirical data take place. At last the relation between emergence and ontology is discussed.
Federico Cecconi, Marco Campennì, Giulia Andrighetto and Rosaria Conte
Journal of Artificial Societies and Social Simulation 13 (1)
6
Kyeywords: Agent-Based Modelling, Equation-Based Modelling, Congestion Game, Model of Social Phenomena
Abstract: In this work simulation-based and analytical results on the emergence steady states in traffic-like interactions are presented and discussed. The objective of the paper is twofold: i) investigating the role of social conventions in coordination problem situations, and more specifically in congestion games; ii) comparing simulation-based and analytical results to figure out what these methodologies can tell us on the subject matter. Our main issue is that Agent-Based Modelling (ABM) and the Equation-Based Modelling (EBM) are not alternative, but in some circumstances complementary, and suggest some features distinguishing these two ways of modeling that go beyond the practical considerations provided by Parunak H.V.D., Robert Savit and Rick L. Riolo. Our model is based on the interaction of strategies of heterogeneous agents who have to cross a junction. In each junction there are only four inputs, each of which is passable only in the direction of the intersection and can be occupied only by an agent one at a time. The results generated by ABM simulations provide structured data for developing the analytical model through which generalizing the simulation results and make predictions. ABM simulations are artifacts that generate empirical data on the basis of the variables, properties, local rules and critical factors the modeler decides to implement into the model; in this way simulations allow generating controlled data, useful to test the theory and reduce the complexity, while EBM allows to close them, making thus possible to falsify them.
Claudio Cioffi-Revilla
Journal of Artificial Societies and Social Simulation 13 (1)
7
Kyeywords: Agent-Based Modeling Methodology, M2M, Social Simulation, Computational Social Science, Social Complexity, Inner Asia
Abstract: Social simulation - an emerging field of computational social science - has progressed from simple toy models to increasingly realistic models of complex social systems, such as agent-based models where heterogeneous agents interact with changing natural or artificial environments. These larger, multidisciplinary projects require a scientific research methodology distinct from, say, simpler social simulations with more limited scope, intentionally minimal complexity, and typically under a single investigator. This paper proposes a methodology for complex social simulations - particularly inter- and multi-disciplinary socio-natural systems with multi-level architecture - based on a succession of models akin to but distinct from the late Imre Lakatos' notion of a 'research programme'. The proposed methodology is illustrated through examples from the Mason-Smithsonian project on agent-based models of the rise and fall of polities in Inner Asia. While the proposed methodology requires further development, so far it has proven valuable for advancing the scientific objectives of the project and avoiding some pitfalls.
J. Gareth Polhill, Lee-Ann Sutherland and Nicholas M. Gotts
Journal of Artificial Societies and Social Simulation 13 (2)
10
Kyeywords: Agent-Based Modelling, Land Use/Cover Change, Qualitative Research, Interdisciplinary Research
Abstract: This paper describes and evaluates a process of using qualitative field research data to extend the pre-existing FEARLUS agent-based modelling system through enriching its ontological capabilities, but without a deep level of involvement of the stakeholders in designing the model itself. Use of qualitative research in agent-based models typically involves protracted and expensive interaction with stakeholders; consequently gathering the valuable insights that qualitative methods could provide is not always feasible. At the same time, many researchers advocate building completely new models for each scenario to be studied, violating one of the supposed advantages of the object-oriented programming languages in which many such systems are built: that of code reuse. The process described here uses coded interviews to identify themes suggesting changes to an existing model, the assumptions behind which are then checked with respondents. We find this increases the confidence with which the extended model can be applied to the case study, with a relatively small commitment required on the part of respondents.
Tibor Bosse and Charlotte Gerritsen
Journal of Artificial Societies and Social Simulation 13 (2)
5
Kyeywords: Agent-Based Modelling, Criminal Hot Spots, Displacement, Reputation, Social Simulation, Analysis
Abstract: Within the field of Criminology, the spatio-temporal dynamics of crime are an important subject of study. In this area, typical questions are how the behaviour of offenders, targets, and guardians can be explained and predicted, as well as the emergence and displacement of criminal hot spots. In this article we present a combination of software tools that can be used as an experimental environment to address such questions. In particular, these tools comprise an agent-based simulation model, a verification tool, and a visualisation tool. The agent-based simulation model specifically focuses on the interplay between hot spots and reputation. Using this environment, a large number of simulation runs have been performed, of which results have been formally analysed. Based on these results, we argue that the presented environment offers a valuable approach to analyse the dynamics of criminal hot spots.
Roy Wilson
Journal of Artificial Societies and Social Simulation 13 (3)
8
Kyeywords: Agent-Based Social Simulation, Weak Emergence, Social Networks, Kolmogorov Complexity, Upward Causation, Downward Causation
Abstract: This paper interprets a particular agent-based social simulation (ABSS) in terms of the third way of understanding agent-based simulation proposed by Conte. It is proposed that the normalized compression distance (derived from estimates of Kolmogorov complexity) between the initial and final macrolevel states of the ABSS provides a quantitative measure of the degree to which the results obtained via the ABSS might be obtained via a closed-form expression. If the final macrolevel state of an ABSS can only be obtained by simulation, this confers on agent-based social simulations a special status. Future empirical (computational) work and epistemological analyses are proposed.
Shah Jamal Alam, Armando Geller, Ruth Meyer and Bogdan Werth
Journal of Artificial Societies and Social Simulation 13 (4)
6
Kyeywords: Cognition, Contextualized Reasoning, Evidence-Driven Agent-Based Social Simulation, Empirical Agent-Based Social Simulation, Rich Cognitive Modelling, Tzintzuntzan
Abstract: In many computational social simulation models only cursory reference to the foundations of the agent cognition used is made and computational expenses let many modellers chose simplistic agent cognition architectures. Both choices run counter to expectations framed by scholars active in the domain of rich cognitive modelling that see agent reasoning as socially inherently contextualized. The Manchester school of social simulation proposed a particular kind of a socially contextualized reasoning mechanism, so called endorsements, to implement the cognitive processes underlying agent action selection that eventually causes agent interaction. Its usefulness lies in its lightweight architecture and in taking into account folk psychological conceptions of how reasoning works. These and other advantages make endorsements an amenable tool in everyday social simulation modelling. A yet outstanding comprehensive introduction to the concept of endorsements is provided and its theoretical basis is extended and extant research is critically reviewed. Improvements to endorsements regarding memory and perception are suggested and tested against a case-study.
Lynne Hamill
Journal of Artificial Societies and Social Simulation 13 (4)
7
Kyeywords: Agent-Based Modelling,, NetLogo, Policy Advice
Abstract: This short note makes recommendations for the future direction of research in agent-based modelling (ABM). It is a personal view based on my experience as a policy adviser who has recently come to ABM. I suggest that to promote the use of ABM, the ABM community needs demonstrate the value of modelling to other social scientists by showing-by-doing and offering training projects; and to produce tools, guidance on good-practice and basic building blocks. Then the policy contexts most likely to benefit from ABM need to be identified along with any new data requirements, so that the usefulness of ABM can be demonstrated to policy analysts. This is, in my view, the challenge facing the ABM community for the next 15 years.
Adam G. Dunn and Blanca Gallego
Journal of Artificial Societies and Social Simulation 13 (4)
8
Kyeywords: Innovation Diffusion, Scale-Free Networks, Health Policy, Agent-Based Modelling
Abstract: Medical innovations, in the form of new medication or other clinical practices, evolve and spread through health care systems, impacting on the quality and standards of health care provision, which is demonstrably heterogeneous by geography. Our aim is to investigate the potential for the diffusion of innovation to influence health inequality and overall levels of recommended care. We extend existing diffusion of innovation models to produce agent-based simulations that mimic population-wide adoption of new practices by doctors within a network of influence. Using a computational model of network construction in lieu of empirical data about a network, we simulate the diffusion of competing innovations as they enter and proliferate through a state system comprising 24 geo-political regions, 216 facilities and over 77,000 individuals. Results show that stronger clustering within hospitals or geo-political regions is associated with slower adoption amongst smaller and rural facilities. Results of repeated simulation show how the nature of uptake and competition can contribute to low average levels of recommended care within a system that relies on diffusive adoption. We conclude that an increased disparity in adoption rates is associated with high levels of clustering in the network, and the social phenomena of competitive diffusion of innovation potentially contributes to low levels of recommended care.
Gijs de Bakker, Jan van Bruggen, Wim Jochems and Peter B. Sloep
Journal of Artificial Societies and Social Simulation 14 (1)
1
Kyeywords: Peer Support, Peer Allocation, Computational Simulations, System Dynamics, Distance Learning
Abstract: While student populations in higher education are becoming more heterogeneous, recently several attempts have been made to introduce online peer support to decrease the tutor load of teachers. We propose a system that facilitates synchronous online reciprocal peer support activities for ad hoc student questions: the Synchronous Allocated Peer Support (SAPS) system. Via this system, students with questions during their learning are allocated to competent fellow-students for answering. The system is designed for reciprocal peer support activities among a group of students who are working on the same fixed modular material every student has to finish, such as courses with separate chapters. As part of a requirement analysis of online reciprocal peer support to succeed, this chapter is focused on the second requirement of peer competence and sustainability of our system. Therefore a study was conducted with a simulation of a SAPS-based allocation mechanism in the NetLogo simulation environment and focuses on the required minimum population size, the effect of the addition of extra allocation parameters or disabling others on the mechanism\'s effectiveness, and peer tutor load spread in various conditions and its influence on the mechanism\'s effectiveness. The simulation shows that our allocation mechanism should be able to facilitate online peer support activities among groups of students. The allocation mechanism holds over time and a sufficient number of students are willing and competent to answer fellow-students\' questions. Also, fine-tuning the parameters (e.g. extra selection criteria) of the allocation mechanism further enhances its effectiveness.
Mikael Sandberg
Journal of Artificial Societies and Social Simulation 14 (1)
4
Kyeywords: Democracy, Bass, Communication, System Dynamics, Power, Diffusion
Abstract: This article uses Polity IV data to probe system dynamics for studies of the global diffusion of democracy from 1800 to 2000. By analogy with the Bass model of diffusion of innovations, as translated into system dynamics by Sterman, the dynamic explanation proposed focuses on transitions to democracy, soft power, and communication rates on a global level. The analysis suggests that the transition from democratic experiences (\'the soft power of democracy\') can be estimated from the systems dynamics simulation of an extended Bass model. Soft power, fueled by the growth in communications worldwide, is today the major force behind the diffusion of democracy. Our findings indicate the applicability of system dynamics simulation tools for the analysis of political change over time in the world system of polities.
Peer-Olaf Siebers and Uwe Aickelin
Journal of Artificial Societies and Social Simulation 14 (2)
2
Kyeywords: Retail Performance, Management Practices, Proactive Behaviour, Service Experience, Agent-Based Modelling, Simulation
Abstract: There has been a noticeable shift in the relative composition of the industry in the developed countries in recent years; manufacturing is decreasing while the service sector is becoming more important. However, currently most simulation models for investigating service systems are still built in the same way as manufacturing simulation models, using a process-oriented world view, i.e. they model the flow of passive entities through a system. These kinds of models allow studying aspects of operational management but are not well suited for studying the dynamics that appear in service systems due to human behaviour. For these kinds of studies we require tools that allow modelling the system and entities using an object-oriented world view, where intelligent objects serve as abstract \'actors\' that are goal directed and can behave proactively.
In our work we combine process-oriented discrete event simulation modelling and object-oriented agent based simulation modelling to investigate the impact of people management practices on retail productivity. In this paper, we reveal in a series of experiments what impact considering proactivity can have on the output accuracy of simulation models of human centric systems. The model and data we use for this investigation are based on a case study in a UK department store. We show that considering proactivity positively influences the validity of these kinds of models and therefore allows analysts to make better recommendations regarding strategies to apply people management practices.
Wolfgang Balzer and Klaus Manhart
Journal of Artificial Societies and Social Simulation 14 (4)
11
Kyeywords: Social Simulation, Process, Science, Theory, Social Science, Philosophy of Science
Abstract: We lay open a position concerning the difference between scientific processes and processes in science. Not all processes in science are scientific. This leads into the center of social simulation. More scientific theories should be incorporated in social simulations, and this should lead to more united structural approaches.
Flaminio Squazzoni and Károly Takács
Journal of Artificial Societies and Social Simulation 14 (4)
3
Kyeywords: Peer Review, Social Simulation, Social Norms, Selection Biases, Science Policy
Abstract: This article suggests to view peer review as a social interaction problem and shows reasons for social simulators to investigate it. Although essential for science, peer review is largely understudied and current attempts to reform it are not supported by scientific evidence. We suggest that there is room for social simulation to fill this gap by spotlighting social mechanisms behind peer review at the microscope and understanding their implications for the science system. In particular, social simulation could help to understand why voluntary peer review works at all, explore the relevance of social sanctions and reputational motives to increase the commitment of agents involved, cast light on the economic cost of this institution for the science system and understand the influence of signals and social networks in determining biases in the reviewing process. Finally, social simulation could help to test policy scenarios to maximise the efficacy and efficiency of various peer review schemes under specific circumstances and for everyone involved.
Petra Ahrweiler
Journal of Artificial Societies and Social Simulation 14 (4)
8
Kyeywords: Simulating Science, Theory Interaction, Agent-Based Modelling, Theory Network
Abstract: This position paper presents a framework for modelling theory communities where theories interact as agents in a conceptual network. It starts with introducing the difficulties in integrating scientific theories by discussing some recent approaches, especially of structuralist theory of science. Theories might differ in reference, extension, scope, objectives, functions, architecture, language etc. To address these potential integration barriers, the paper employs a broad definition of "scientific theory", where a theory is a more or less complex description a describer puts forward in a context called science with the aim of making sense of the world. This definition opens up the agency dimension of theories: theories "do" something. They work on a - however ontologically interpreted - subject matter. They describe something, and most of them claim that their descriptions of this "something" are superior to those of others. For modelling purposes, the paper makes use of such description behaviour of scientific theories on two levels. The first is the level where theories describe the world in their terms. The second is a sub-case of the first: theories can of course describe the description behaviour of other theories concerning this world and compare with own description behaviour. From here, interaction and potential cooperation between theories could be potentially identified by each theory perspective individually. Generating inclusive theory communities and simulating their dynamics using an agent-based model means to implement theories as agents; to create an environment where the agents work as autonomous entities in a self-constituted universe of discourse; to observe what they do with this environment (they will try to apply their concepts, and instantiate their mechanisms of sense-making); and to let them mutually describe and analyse their behaviour and suggest areas for interaction. Some mechanisms for compatibility testing are discussed and the prototype of the model with preliminary applications is introduced.
Nina Schwarz, Daniel Kahlenberg, Dagmar Haase and Ralf Seppelt
Journal of Artificial Societies and Social Simulation 15 (2)
8
Kyeywords: Agent-Based Modelling, Urban, Land Use, Repast
Abstract: Modelling urban land use change can foster understanding of underlying processes and is increasingly realized using agent-based models (ABM) as they allow for explicitly coding land management decisions. However, urban land use change is the result of interactions of a variety of individuals as well as organisations. Thus, simulation models on urban land use need to include a diversity of agent types which in turn leads to complex interactions and coding processes. This paper presents the new ABMland tool which can help in this process: It is software for developing agent-based models for urban land use change within a spatially explicit and joint environment. ABMland allows for implementing agent-based models and parallel model development while simplifying the coding process. Six major agent types are already included as coupled models: residents, planners, infrastructure providers, businesses, developers and lobbyists. Their interactions are pre-defined and ensure valid communication during the simulation. The software is implemented in Java building upon Repast Simphony and other libraries.
Ioan Alfred Letia and Radu Razvan Slavescu
Journal of Artificial Societies and Social Simulation 15 (3)
7
Kyeywords: Agent Based Social Simulation, Trust, Reputation, Cognitive Modeling, Multi-Modal Logic
Abstract: We employ a multimodal logic in a decision making mechanism involving trust and reputation. The mechanism is then used in a community of interacting agents which develop cooperative relationships, assess the results against several quality criteria and possibly publish their beliefs inside the group. A new definition is proposed for describing how an agent deals with the common reputation information and with divergent opinions. The definition permits selecting and integrating the knowledge obtained from the peers, based on their perceived trust, as well as on threshold called critical mass. The influence of this parameter and of the number of agents supporting a sentence over its adoption are then investigated.
Jan C. Thiele, Winfried Kurth and Volker Grimm
Journal of Artificial Societies and Social Simulation 15 (3)
8
Kyeywords: Agent-Based Modelling, Design of Experiments, R, NetLogo, Model Analysis, Modelling Software
Abstract: A seamless integration of software platforms for implementing agent-based models and for analysing their output would facilitate comprehensive model analyses and thereby make agent-based modelling more useful. Here we report on recently developed tools for linking two widely used software platforms: NetLogo for implementing agent-based models, and R for the statistical analysis and design of experiments. Embedding R into NetLogo allows the use of advanced statistical analyses, specific statistical distributions, and advanced tools for visualization from within NetLogo programs. Embedding NetLogo into R makes it possible to design simulation experiments and all settings for analysing model output from the outset, using R, and then embed NetLogo programs in this virtual laboratory. Our linking tools have the potential to significantly advance research based on agent-based modelling.
Flaminio Squazzoni and Niccolò Casnici
Journal of Artificial Societies and Social Simulation 16 (1)
10
Kyeywords: JASSS, Social Simulation, Bibliometric Analysis, Impact, Inter-Journal Citations
Abstract: This paper examines the bibliometric impact of JASSS on other ISI- and Scopus-indexed sources by examining inward and outward citations and their inter-relation. Given the prestige of JASSS, this analysis can measure the growth and dynamics of social simulation and give us an indication of the direction in which social simulation is moving. Results show that the impact of JASSS is higher in computer sciences, physics and ecology than it is in the social sciences, even though JASSS-indexed articles tend to be more concerned with social science-related topics. Looking at inter-journal citations revealed an interesting citation structure: JASSS collected its largest percentage of citations from non-social science-focused journals while directing more citations within its own articles toward works published in social science journals. On the one hand, this would confirm that social simulation is not yet recognised in the social science mainstream. On the other hand, this may indicate that the cross-disciplinary nature of JASSS allows it to promulgate social science theories and findings in other distant communities.
Guillaume Deffuant, Gérard Weisbuch, Frederic Amblard and Thierry Faure
Journal of Artificial Societies and Social Simulation 16 (1)
11
Kyeywords: Opinion Dynamics, Social Simulation, Agents Based Model
Abstract: Meadows and Cliff (2012) failed to replicate the results of Deffuant et al. (2002) and concluded that our paper was wrong. In this note, we show that the conclusions of Meadows and Cliff are due to a wrong computation of indicator y, which was not fully specified in our 2002 paper. In particular, Meadows and Cliff compute indicator y before model convergence whereas this indicator should be computed after model convergence.
Emmanuel Dubois, Olivier Barreteau and Véronique Souchère
Journal of Artificial Societies and Social Simulation 16 (1)
2
Kyeywords: Agent-Based Social Simulation, Role Playing Game, Companion Modelling, Attitude-Behaviour Relations, Attitude Change, Game Setting Effects
Abstract: Role playing games (RPGs) can be used as participatory simulation methods for environmental management. However, researchers in the field need to be aware of the influence of the game settings on participants' behavioural patterns and attitudes, before fine tuning the design and use of their games. We developed an agent-based model (CauxAttitude) to assess the framing induced by the conditions of implementation of a specific game, named CauxOpération, on possible changes in participants' attitudes. We designed CauxAttitude on the basis of social psychology theories that describe relations between attitudes and behaviours, as well as on observations of CauxOpération sessions. In this paper, we describe how the model behaved according to variations in the initialization of the parameters, our aim being to explore the effects of subjective choices concerning model design and implementation. The results of our simulations enabled us to identify effects of game settings we explored, including the choice of the population of participants or of the number of participants made by the game designer. Our results also revealed the underlying mechanisms that explain the effects of game settings. These provide clues to the game designer on how to manage them.
Amineh Ghorbani, Pieter Bots, Virginia Dignum and Gerard Dijkema
Journal of Artificial Societies and Social Simulation 16 (2)
9
Kyeywords: Modelling Language, Model-Driven Engineering, Institutions, Social Simulation, Meta-Model
Abstract: In this paper we introduce and motivate a conceptualization framework for agent-based social simulation, MAIA: Modelling Agent systems based on Institutional Analysis. The MAIA framework is based on Ostrom's Institutional Analysis and Development framework, and provides an extensive set of modelling concepts that is rich enough to capture a large range of complex social phenomena.
Developing advanced agent-based models requires substantial experience and knowledge of software development knowledge and skills. MAIA has been developed to help modellers who are unfamiliar with software development to conceptualize and implement agent-based models. It provides the foundation for a conceptualization procedure that guides modellers to adequately capture, analyse, and understand the domain of application, and helps them report explicitly on the motivations behind modelling choices. A web-based application supports conceptualization with MAIA, and outputs an XML file which is used to generate Java code for an executable simulation.
Naoki Shiba
Journal of Artificial Societies and Social Simulation 16 (3)
11
Kyeywords: Social Simulation, Agent-Based Models (ABM), Theorem-Proof Approach, Mate-Search Problem, Two-Sided Matching, Job Matching
Abstract: This paper discusses an extended version of the matching problem which includes the mate search problem; this version is a generalization of a traditional optimization problem. The matching problem is extended to a form of the asymmetric two-sided matching problem. An agent-based simulation model is built and simulation results are presented.
Todd and Miller (1999) simulated the two-sided matching problem in a symmetric setting. In his model, there are the same number of agents in both parties (groups), each of whom has his/her own mate value. Each agent in a party tries to find his/her mate in the other party, based on his/her candidate's mate value and his/her own aspiration level for his/her partner's mate value. Each agent learns his/her own mate value and adjusts his/her aspiration level through the trial period (adolescence). Todd and Miller (1999) tried several search rules and learning mechanisms that are symmetric for both parties.
In the present paper, Todd and Miller's (1999) model is extended to an asymmetric setting where the two parties have different numbers of agents, and the search rule and the learning mechanism for the two parties differ. Through the simulation, the search rules and the learning mechanisms which were identified to be appropriate in a symmetric setting are revealed to be inappropriate in the asymmetric setting and the reason why this is so is
discussed. Furthermore, some general facts are derived using a mathematical theorem-proof approach. Some of these facts are used to direct a revision of the model, and a revised simulation model is presented.
An implication is obtained for practical situations in asymmetric matching setting. For example, in the job hunting case, if job applicants want to finish their job hunting successfully, they should be modest at the beginning of the hunt.
Samer Hassan, Javier Arroyo, José Manuel Galán, Luis Antunes and Juan Pavón
Journal of Artificial Societies and Social Simulation 16 (3)
13
Kyeywords: Forecasting, Guidelines, Prediction, Agent-Based Modelling, Modelling Process, Social Simulation
Abstract: This paper presents a set of guidelines, imported from the field of forecasting, that can help social simulation and, more specifically, agent-based modelling practitioners to improve the predictive performance and the robustness of their models. The presentation starts with a discussion on the current debate on prediction in social processes, followed by an overview of the recent experience and lessons learnt from the field of forecasting. This is the basis to define standard practices when developing agent-based models under the perspective of forecasting experimentation. In this context, the guidelines are structured in six categories that correspond to key issues that should be taken into account when building a predictor agent-based model: the modelling process, the data adequacy, the space of solutions, the expert involvement, the validation, and the dissemination and replication. The application of these guidelines is illustrated with an existing agent-based model. We conclude by tackling some intrinsic difficulties that agent-based modelling often faces when dealing with prediction models.
Fredrik Jansson
Journal of Artificial Societies and Social Simulation 16 (3)
2
Kyeywords: Agent-Based Modelling, Ethnocentrism, Prisoners'' Dilemma, Spatial Interactions, Validation
Abstract: Ethnocentrism refers to the tendency to behave differently towards strangers based only on whether they belong to the ingroup or the outgroup. It is a widespread phenomenon that can be triggered by arbitrary cues, but the origins of which is not clearly understood. In a recent simulation model by Hammond and Axelrod, an ingroup bias evolves in the prisoner's dilemma game. However, it will be argued here that the model does little to advance our understanding of ethnocentrism. The model assumes a spatial structure in which agents interact only with their immediate neighbourhood, populated mostly by clones, and the marker becomes an approximate cue of whether the partner is one. It will be shown that agents with an ingroup bias are successful compared to unconditional co-operators since they only exclude non-clones, but are outcompeted by less error-prone kin identifiers. Thus, the results of the simulations can be explained by a simple form of kin selection. These findings illustrate how spatial assumptions can alter a model to the extent that it no longer describes the phenomenon under study.
Annie Waldherr and Nanda Wijermans
Journal of Artificial Societies and Social Simulation 16 (4)
13
Kyeywords: Social Simulation, Agent-Based Modelling, Rejective Criticism, Constructive Feedback, Communication, Peer Support
Abstract: When talking to fellow modellers about the feedback we get on our simulation models the conversation quickly shifts to anecdotes of rejective scepticism. Many of us experience that they get only few remarks, and especially only little helpful constructive feedback on their simulation models. In this forum paper, we give an overview and reflections on the most common criticisms experienced by ABM modellers. Our goal is to start a discussion on how to respond to criticism, and particularly rejective scepticism, in a way that makes it help to improve our models and consequently also increase acceptance and impact of our work. We proceed by identifying common criticism on agent-based modelling and social simulation methods and show where it shifts to rejection. In the second part, we reflect on the reasons for rejecting the agent-based approach, which we mainly locate in a lack of understanding on the one hand, and academic territorialism on the other hand. Finally, we also give our personal advice to socsim modellers of how to deal with both forms of rejective criticism.
Julia Schindler
Journal of Artificial Societies and Social Simulation 16 (4)
6
Kyeywords: Agent-Based Modelling, Policy-Support-Tool, Critique, Justification, Land Use
Abstract: Although agent-based modeling is a strong modelling method in many aspects, its high degree of freedom in agent design can also be regarded as weakness. This freedom requires strong validation strategies during model design for empirical models, especially when models aim to be descriptive enough for policy support. Where theory or evidence does not support model design, assumptions are usually made. In these cases, arguments should be given for why the assumptions do not impair the validity of results. However, we believe that such justifications are sometimes weak in such kinds of models. In particular, we believe that the justification arguments are mostly plausible, but often not strong enough to overrule other plausible arguments leading to different designs. We believe that the reasons for this argumentative ambiguity are sometimes rooted in the type of underlying theory, framework, or validation strategy chosen. The point is that we suspect that simulation results can be sensitive to this ambiguity. To test this hypothesis, we selected a well-tried theory/framework/validation design strategy, and built alternative versions of a land-use change model in line with the underlying strategy. Results clearly show that levels and direction of simulated land-use change are significantly different among model versions.
Elio Marchione, Shane D Johnson and Alan Wilson
Journal of Artificial Societies and Social Simulation 17 (2)
9
Kyeywords: Maritime Piracy, Crime, Map Generation, Simulation, Agent-Based Modelling
Abstract: This paper presents a model to generate dynamic patterns of maritime piracy. Model details, outputs and calibration are illustrated. The model presented here is a tool to estimate the number of pirates and their area of action. The Gulf of Aden is considered as a case study, and data on pirate attacks, vessels routes and flows through the Gulf of Aden in the year 2010 are used to build the model. Agent-based modelling is employed to simulate pirate, vessel and naval forces behaviours.
Mauricio Salgado, Elio Marchione and Nigel Gilbert
Journal of Artificial Societies and Social Simulation 17 (4)
3
Kyeywords: Agent-Based Modelling, Differential School Effectiveness, Multilevel Modelling, Peer Effects, Teacher Expectation Bias
Abstract: During the last thirty years education researchers have developed models for judging the comparative performance of schools, in studies of what has become known as “differential school effectiveness”. A great deal of empirical research has been carried out to understand why differences between schools might emerge, with variable-based models being the preferred research tool. The use of more explanatory models such as agent-based models (ABM) has been limited. This paper describes an ABM that addresses this topic, using data from the London Educational Authority's Junior Project. To compare the results and performance with more traditional modelling techniques, the same data are also fitted to a multilevel model (MLM), one of the preferred variable-based models used in the field. The paper reports the results of both models and compares their performances in terms of predictive and explanatory power. Although the fitted MLM outperforms the proposed ABM, the latter still offers a reasonable fit and provides a causal mechanism to explain differences in the identified school performances that is absent in the MLM. Since MLM and ABM stress different aspects, rather than conflicting they are compatible methods.
Sukaina Bharwani, Mònica Coll Besa, Richard Taylor, Michael Fischer, Tahia Devisscher and Chrislain Kenfack
Journal of Artificial Societies and Social Simulation 18 (1)
3
Kyeywords: Knowledge Elicitation, Decision-Making, Climate Adaptation, Verification and Validation, Social Simulation, Tacit Knowledge
Abstract: This paper describes a participatory and collaborative process for formalising qualitative data, using research from southeast Cameroon, how these results can provide input to an social simulation model, and what insights they can provide in better understanding decision-making in the region. Knowledge Elicitation Tools (KnETs) have been used to support a body of existing research on local strategies that build community adaptive capacity and support sustainable forest management under a range of socio-environmental and climatic stressors. The output of this approach is a set of decision rules which complements previous analysis of differentiated vulnerability of forest communities. Improvements to the KnETs methodology, such as new statistical measurements, make it easier to generate inputs for a social simulation model, such as agent attributes and heterogeneity, as well as informing which scenarios to prioritise during model development and testing. The KnETs process served as a vehicle to structure a large volume of empirical data, to identify the most salient drivers of decision-making amongst different actors, to uncover tacit knowledge and to make recommendations about which strategic interventions should be further explored in a social simulation and by local organizations planning interventions. It was notable that there were many common rule drivers for men and women from the same households, though they participated in the game-interviews separately. At the same time, though strategies were common to both poor and better-off farmers, differences lay in the package of strategies chosen – the number and type of strategies as well the drivers factors – and how they were prioritised with respect to each farmer’s goal.
Mason Wright and Pratim Sengupta
Journal of Artificial Societies and Social Simulation 18 (2)
3
Kyeywords: Multi-Agent Models, Lobbying, Public Choice, Bounded Rationality, Voting Behavior, Social Simulation
Abstract: In this paper, we investigate the interactions among oligarchs, political parties, and voters using an agent-based modeling approach. We introduce the OLIGO model, which is based on the spatial model of democracy, where voters have positions in a policy space and vote for the party that appears closest to them, and parties move in policy space to seek more votes. We extend the existing literature on agent-based models of political economy in the following manner: (1) by introducing a new class of agents – oligarchs – that represent leaders of firms in a common industry who lobby for beneficial subsidies through campaign donations; and (2) by investigating the effects of ideological preferences of the oligarchs on legislative action. We test hypotheses from the literature in political economics on the behavior of oligarchs and political parties as they interact, under conditions of imperfect information and bounded rationality. Our key results indicate that (1) oligarchs tend to donate less to political campaigns when the parties are more resistant to changing their policies, or when voters are more in-formed; and (2) if Oligarchs donate to parties based on a combination of ideological and profit motivations, Oligarchs will tend to donate at a lower equilibrium level, due to the influence of lost profits. We validate these outcomes via comparisons to real world polling data on changes in party support over time.
Jonathan Ozik, Nicholson Collier, Todd Combs, Charles M. Macal and Michael North
Journal of Artificial Societies and Social Simulation 18 (3)
11
Kyeywords: Agent-Based Modeling, Statecharts, Agent-Based Social Simulation, Repast Simphony, Software Engineering Processes
Abstract: Agent states and transitions between states are important abstractions in agent-based social simulation (ABSS). Although it is common to develop ad hoc implementations of state-based and transition-based agent behaviors, “best practice” software engineering processes provide transparent and formally grounded design notations that translate directly into working implementations. Statecharts are a software engineering design methodology and an explicit visual and logical representation of the states of system components and the transitions between those states. Used in ABSS, they can clarify a model’s logic and allow for efficient software engineering of complex state-based models. In addition to agent state and behavioral logic representation, visual statecharts can also be useful for monitoring agent status during a simulation, quickly conveying the underlying dynamics of complex models as a simulation evolves over time. Visual approaches include drag-and-drop editing capabilities for constructing state-based models of agent behaviors and conditions for agent state transitions.
Repast Simphony is a widely used, open source, and freely accessible agent-based modeling toolkit. While it is possible for Repast Simphony users to create their own implementations of state-based agent behaviors and even create dynamic agent state visualizations, the effort involved in doing so is usually prohibitive. The new statecharts framework in Repast Simphony, a subset of Harel’s statecharts, introduces software engineering practices through the use of statecharts that directly translate visual representations of agent states and behaviors into software implementations. By integrating an agent statecharts framework into Repast Simphony, we have made it easier for users at all levels to take advantage of this important modeling paradigm. Through the visual programming that statecharts afford, users can effectively create the software underlying agents and agent-based models. This paper describes the development and use of the free and open source Repast Simphony statecharts capability for developing ABSS models.
Peer-Olaf Siebers and Paul Davidsson
Journal of Artificial Societies and Social Simulation 18 (3)
13
Kyeywords: Agent-Based Social Simulation, Software Engineering, Software Architectures, UML
Abstract: This special section on "Engineering Agent-Based Social Simulations" aims to represent the current state of the art in using Software Engineering (SE) methods in ABSS. It includes a mixture of theoretically oriented papers that describe frameworks, notations and methods adapted from SE and practice-oriented papers that demonstrate the application of SE methods in real world ABSS projects.
Sabrina Scherer, Maria Wimmer, Ulf Lotzmann, Scott Moss and Daniele Pinotti
Journal of Artificial Societies and Social Simulation 18 (3)
14
Kyeywords: Model-Driven Development, Agent-Based Policy Models, Annotation of Policy Models, Conceptual Models, Social Simulation Models, Provenance Information
Abstract: Agent-based policy modelling is an application of agent-based social simulation. In this contribution it is applied to strategic policy making in the public sector. Open government principles relevant in this domain demand solutions that trace the origins of modelling decisions from narrative texts (background documents and stakeholder scenarios) through the whole policy modelling process up to the simulation results. With the help of such traces, decisions made on the basis of such simulation results are more transparent and comprehensible. This paper presents a conceptual model-driven approach developed and implemented in the OCOPOMO project. The approach ensures traceability by integrating technologies for agent-based social simulation, semantic web and model-driven development. Narrative texts are transferred into Consistent Conceptual Description (CCD) models. Those CCD models are transferred semi-automatically into formal policy models implemented in the DRAMS (Declarative Rule-based Agent Modelling System) language. These formal policy models are further elaborated (i.e. the policy modeller has still full flexibility in programming the model), and runnable simulation models are programmed. From the simulation logs, model-based scenarios are generated to interpret and support a better understanding of simulation results. The model-based scenarios are textual narratives with charts summarising the output produced by the simulation runs. Thereby passages in these texts are linked with documents containing original narrative scenarios. These traces are realised via the CCD models. A well-elaborated policy modelling process and a software toolbox support the approach. A pilot case exemplifies the application of the process and the toolbox. Evaluation results from the OCOPOMO project show benefits as well as limitations of the approach. We also reflect how the process and toolbox can be transferred into other application domains.
Luis R. Izquierdo, Doina Olaru, Segismundo S. Izquierdo, Sharon Purchase and Geoffrey N. Soutar
Journal of Artificial Societies and Social Simulation 18 (4)
1
Kyeywords: Fuzzy Logic, NetLogo, Social Simulation, Agent-Based Modelling, Mamdani Inference, IF-THEN Rule
Abstract: Fuzzy Logic is a framework particularly useful to formalise and deal with imprecise concepts and statements expressed in natural language. This paper has three related aims. First, it aims to provide a short introduction to the basics of Fuzzy Logic within the context of social simulation. Secondly, it presents a well-documented NetLogo extension that facilitates the use of Fuzzy Logic within NetLogo. Finally, by providing a concrete example, it shows how researchers can use the Fuzzy Logic extension to build agent-based models in which individual agents hold their own fuzzy concepts and use their own fuzzy rules, which may also change over time. We argue that Fuzzy Logic and the tools provided here can be useful in Social Simulation in different ways. For example, they can assist in the process of analysing the robustness of a certain social theory expressed in natural language to different specifications of the imprecise concepts that the theory may contain (such as e.g. “wealthy”, “poor” or “disadvantaged”). They can also facilitate the exploration of the effect that heterogeneity in concept interpretations may have in a society (i.e. the significance of the fact that different people may have different interpretations of the same concept). Thus, this paper and the tools included in it can make the endeavour of translating social theories into computer programs easier and more rigorous at the same time.
L. Andrew Bollinger, Martti J. van Blijswijk, Gerard P.J. Dijkema and Igor Nikolic
Journal of Artificial Societies and Social Simulation 19 (1)
1
Kyeywords: Socio-Technical Systems, Electricity Systems, Modelling Tools, Social Simulation, Netlogo, Matpower
Abstract: The growing importance of links between the social and technical dimensions of the electricity infrastructure mean that many research problems cannot be effectively addressed without joint consideration of social and technical dynamics. This paper motivates the need for and introduces a tool to facilitate the development of linked social and technical models of electric power systems. The tool, called MatpowerConnect, enables the runtime linkage of Netlogo - an oft-used modelling platform in the social simulation domain - with Matpower - a common power flow simulation package in the power systems domain. MatpowerConnect opens up new modelling possibilities for social simulation researchers active in the study of electricity systems. It offers ease of use coupled with a high degree of realism with which electricity infrastructure functionality is captured.
We describe the development and use of two demonstration models using MatpowerConnect. These models illustrate two types of problems and system scales that can be addressed. In the first model we explore the consequences of actors' adaptive strategies on the performance of a small-scale power system. In the second model we simulate the effects of different regulatory regimes on network investment in a supra-national electricity transmission system to explore the long-term consequences for network development and social welfare. In both cases, the extension enables capturing a critical functionality of electric power systems, while allowing model development efforts to focus on social simulation aspects. Resources for using the extension are provided in conjunction with this paper.
Francois Lamy, Brendan Quinn, Robyn Dwyer, Nicola Thomson, David Moore and Paul Dietze
Journal of Artificial Societies and Social Simulation 19 (2)
3
Kyeywords: Agent-Based Modelling, Methamphetamine Use, Drug-Related Harms, Treatment Access, Drug Career
Abstract: Methamphetamine use in Australia has recently attracted considerable attention due to increased human and social costs. Despite evidences indicating increasing methamphetamine-related harm and significant numbers of frequent and dependent users, methamphetamine treatment coverage remains low in Australia. This paper aims to investigate the complex interplay between methamphetamine use and treatment-related access by designing an agent-based model, using epidemiological data and expert-derived assumptions. This paper presents the architecture and core mechanisms of an agent-based model, TreatMethHarm, and details the results of model calibration performed by testing the key model parameters. At this stage of development, TreatMethHarm is able to produce proportions of methamphetamine users that replicate those produced by our epidemiological survey. However, this agent-based model still requires additional information and further tests before validation. TreatMethHarm provides a useful tool to elicit dialogue between researchers from different disciplines, integrate a variety of data and identify missing information.
Jan Drchal, Michal Čertický and Michal Jakob
Journal of Artificial Societies and Social Simulation 19 (3)
5
Kyeywords: Agent-Based Modelling, Activity Based Model, Transport, Validation, Methodology, Simulation
Abstract: Activity-based models are a specific type of agent-based models widely used in transport and urban planning to generate and study travel demand. They deal with agents that structure their behaviour in terms of daily activity schedules: sequences of activity instances (such as work, sleep or shopping) with assigned start times, durations and locations, and interconnected by trips with assigned transport modes and routes. Despite growing importance of activity-based models in transport modelling, there has been no work focusing specifically on statistical validation of such models so far.
In this paper, we propose a six-step Validation Framework for Activity-based Models (VALFRAM) that exploits historical real-world data to quantify the model's validity in terms of a set of numeric metrics. The framework compares the temporal and spatial properties and the structure of modelled activity schedules against real-world origin-destination matrices and travel diaries. We demonstrate the usefulness of the framework on a set of six different activity-based transport models.
Haiming Liang, Yucheng Dong and Congcong Li
Journal of Artificial Societies and Social Simulation 19 (4)
1
Kyeywords: Opinion Formation, Uncertain Opinions, Uncertainty Tolerance, Communication Regime, Agent-Based Simulation
Abstract: Opinion formation describes the dynamics of opinions in a group of interaction agents and is a powerful tool for predicting the evolution and diffusion of the opinions. The existing opinion formation studies assume that the agents express their opinions by using the exact number, i.e., the exact opinions. However, when people express their opinions, sentiments, and support emotions regarding different issues, such as politics, products, and events, they often cannot provide the exact opinions but express uncertain opinions. Furthermore, due to the differences in culture backgrounds and characters of agents, people who encounter uncertain opinions often show different uncertainty tolerances. The goal of this study is to investigate the dynamics of uncertain opinion formation in the framework of bounded confidence. By taking different uncertain opinions and different uncertainty tolerances into account, we use an agent-based simulation to investigate the influences of uncertain opinions in opinion formation from two aspects: the ratios of the agents that express uncertain opinions and the widths of the uncertain opinions, and also provide the explanations of the observations obtained.
Thomas Farrenkopf, Michael Guckert, Neil Urquhart and Simon Wells
Journal of Artificial Societies and Social Simulation 19 (4)
14
Kyeywords: Social Simulation, Ontology, BDI Agent
Abstract: Within business games there is a need to provide realistic feedback for decisions made, if such business games are to continue to remain relevant in increasingly complex business environments. We address this problem by using software agents to simulate individuals and to model their actions in response to business decisions. In our initial studies we have used software agents to simulate consumers who make buying decisions based on their private preferences and those prevalent within their social network. This approach can be applied to search for behavioural patterns in social structures and to verify predicted values based on a priori theoretical considerations. Individual behaviour can be modelled for each agent and its effects within the marketplace can be examined by running simulations. Our simulations are founded upon the BDI software model (belief-desire-intention) combined with ontologies to make world knowledge available to the agents which can then determine their actions in accordance with this knowledge. We demonstrate how ontologies can be integrated into the BDI concept utilising the Jadex agent framework. Our examples are based upon the simulation of market mechanisms within the context of different industries. We use a framework, developed previously, known as AGADE within which each agent evolves its knowledge using an ontology maintained during the simulation. This generic approach allows the simulation of various consumer scenarios which can be modelled by creating appropriate ontologies.
Kei-Leo Brousmiche, Jean-Daniel Kant, Nicolas Sabouret and François Prenot-Guinard
Journal of Artificial Societies and Social Simulation 19 (4)
2
Kyeywords: Social Simulation, Attitude Formation, Cognitive Modeling, Calibration Using Field Data
Abstract: Attitude is a key concept in social psychology. The paper presents a novel agent-based model to simulate attitude formation by combining a rational and an emotional components based on cognitive, psychological and social theories.
Individuals of the artificial population perceive actions taken by actors such as government or brands, they form an attitude toward them and also communicate the events through a social network.
The model outputs are first studied through a functional analysis in which some unique macroscopic behaviors have emerged such as the impact of social groups, the resistance of the population toward disinformation campaigns or the social pressure.
We then applied our model on a real world scenario depicting the effort of French Forces in their stabilization operations in Kapisa (Afghanistan) between 2010 and 2012.
We calibrated the model parameters based on this scenario and the results of opinion polls that were conducted in the area during the same period about the sentiment of the population toward the Forces. Our model was able to reproduce polls results with a global error under 3%. Based on these results, we show the different dynamics tendencies that emerged among the population by applying a non-supervised classification algorithm.
Patryk Siedlecki, Janusz Szwabiński and Tomasz Weron
Journal of Artificial Societies and Social Simulation 19 (4)
9
Kyeywords: Opinion Dynamics, Social Influence, Conformity, Anticonformity, Bi-Polarization, Agent-Based Modelling
Abstract: Simmering debates leading to polarization are observed in many domains. Although empirical findings show a strong correlation between this phenomenon and modularity of a social network, still little is known about the actual mechanisms driving communities to conflicting opinions. In this paper, we used an agent-based model to check if the polarization may be induced by a competition between two types of social response: conformity and anticonformity. The proposed model builds on the q-voter model (Castellano et al, 2009b) and uses a double-clique topology in order to capture segmentation of a community. Our results indicate that the interplay between intra-clique conformity and inter-clique anticonformity may indeed lead to a bi-polarized state of the entire system. We have found a dynamic phase transition controlled by the fraction L of negative cross-links between cliques. In the regime of small values of L the system is able to reach the total positive consensus. If the values of L are large enough, anticonformity takes over and the system always ends up in a polarized stated. Putting it the other way around, the segmentation of the network is not a sufficient condition for the polarization to appear. A suitable level of antagonistic interactions between segments is required to arrive at a polarized steady state within our model.
Julija Vasiljevska, Jochem Douw, Anna Mengolini and Igor Nikolic
Journal of Artificial Societies and Social Simulation 20 (1)
12
Kyeywords: Electricity Consumer, Agent-Based Modelling, Smart Metering, Consumer Values
Abstract: EU Regulation 2009/72/EC concerning common rules for internal market in electricity calls upon 80% of EU electricity consumers to be equipped with smart metering systems by 2020, provided that a positive economic assessment of all long-term costs and benefits to the market and the individual consumer is guaranteed. Understanding the impact that smart metering systems may have on the electricity stakeholders (consumers, distribution system operators, energy suppliers and the society at large) is important for faster and effective deployment of such systems and of the innovative services they offer. For this purpose, in this paper an agent-based model is developed, where the electricity consumer behaviour due to different smart metering policies is simulated. Consumers are modelled as household agents having dynamic preferences on types of electricity contracts offered by the supplier. Development of preferences depends on personal values, memory and attitudes, as well as the degree of interaction in a social network structure. We are interested in exploring possible diffusion rates of smart metering enabled services under different policy interventions and the impact of this technological diffusion on individual and societal performance indicators. In four simulation experiments and three intervention policies we observe the diffusion of energy services and individual and societal performance indicators (electricity savings, CO2 emissions savings, social welfare, consumers' comfort change), as well as consumers' satisfaction. From these results and based on expert validation, we conclude that providing the consumer with more options does not necessarily lead to higher consumer's satisfaction, or better societal performance. A good policy should be centred on effective ways to tackle consumers concerns.
Jonas Hauke, Iris Lorscheid and Matthias Meyer
Journal of Artificial Societies and Social Simulation 20 (1)
5
Kyeywords: Social Simulation, Lines of Research, Multidisciplinary, Citation Analysis, Co-Citation Analysis
Abstract: The research field of social simulation comprises many topics and research directions. A previous study about the early years indicated that the community has evolved into a differentiated discipline. This paper investigates the recent development of social simulation as reflected in Journal of Artificial Societies and Social Simulation (JASSS) publications from 2008 to 2014. By using citation analysis, we identify the most influential publications and study the characteristics of citations. Additionally, we analyze the development of the field with respect to research topics and their structure in a co-citation analysis. The citation characteristics support the continuing highly multidisciplinary character of JASSS. Prominently cited are methodological papers and books, standards, and NetLogo as the main simulation tool. With respect to the focus of this research, we observe continuity in topics such as opinion dynamics and the evolution of cooperation. While some topics disappeared such as learning, new subjects emerged such as marriage formation models and tools and platforms. Overall, one can observe a maturing inter- and multidisciplinary scientific community in which both methodological issues and specific social science topics are discussed and standards have emerged.
Jan Dubbelboer, Igor Nikolic, Katie Jenkins and Jim Hall
Journal of Artificial Societies and Social Simulation 20 (1)
6
Kyeywords: Flooding, London, Flood Insurance, Flood Re, Agent-Based Modelling
Abstract: Flood risk emerges from the dynamic interaction between natural hazards and human vulnerability. Methods for the quantification of flood risk are well established, but tend to deal with human and economic vulnerability as being static or changing with an exogenously defined trend. In this paper we present an Agent-Based Model (ABM) developed to simulate the dynamical evolution of flood risk and vulnerability, and facilitate an investigation of insurance mechanism in London. The ABM has been developed to firstly allow an analysis of the vulnerability of homeowners to surface water flooding, which is one of the greatest short-term climate risks in the UK with estimated annual costs of £1.3bn to £2.2bn. These costs have been estimated to increase by 60-220% over the next 50 years due to climate change and urbanisation. Vulnerability is influenced by homeowner’s decisions to move house and/or install measures to protect their properties from flooding. In particular, the ABM focuses on the role of flood insurance, simulating the current public-private partnership between the government and insurers in the UK, and the forthcoming re-insurance scheme Flood Re, designed as a roadmap to support the future affordability and availability of flood insurance.
The ABM includes interaction between homeowners, sellers and buyers, an insurer, a local government and a developer. Detailed GIS and qualitative data of the London borough of Camden are used to represent an area at high risk of surface water flooding. The ABM highlights how future development can exacerbate current levels of surface water flood risk in Camden. Investment in flood protection measures are shown to be beneficial for reducing surface water flood risk. The Flood Re scheme is shown to achieve its aim of securing affordable flood insurance premiums, however, is placed under increasing pressure in the future as the risk of surface water flooding continues to increase.
Jule Thober, Birgit Müller, Jürgen Groeneveld and Volker Grimm
Journal of Artificial Societies and Social Simulation 20 (2)
8
Kyeywords: Agent-Based Modelling, Social-Ecological Modelling, Model Development, Model Testing, Model Analysis, Human Decision-Making
Abstract: Understanding social-ecological systems (SES) is crucial to supporting the sustainable management of resources. Agent-based modelling is a valuable tool to achieve this because it can represent the behaviour and interactions of organisms, human actors and institutions. Agent-based models (ABMs) have therefore already been widely used to study SES. However, ABMs of SES are by their very nature complex. They are therefore difficult to parameterize and analyse, which can limit their usefulness. It is time to critically reflect upon the current state-of-the-art to evaluate to what degree the potential of agent-based modelling for gaining general insights and supporting specific decision-making has already been utilized. We reviewed achievements and challenges by building upon developments in good modelling practice in the field of ecological modelling with its longer history. As a reference, we used the TRACE framework, which encompasses elements of model development, testing and analysis. We firstly reviewed achievements and challenges with regard to the elements of the TRACE framework addressed in reviews and method papers of social-ecological ABMs. Secondly, in a mini-review, we evaluated whether and to what degree the elements of the TRACE framework were addressed in publications on specific ABMs. We identified substantial gaps with regard to (1) communicating whether the models represented real systems well enough for their intended purpose and (2) analysing the models in a systematic and transparent way so that model output is not only observed but also understood. To fill these gaps, a joint effort of the modelling community is needed to foster the advancement and use of strategies such as participatory approaches, standard protocols for communication, sharing of source code, and tools and strategies for model design and analysis. Throughout our analyses, we provide specific recommendations and references for improving the state-of-the-art. We thereby hope to contribute to the establishment of a new advanced culture of agent-based modelling of SES that will allow us to better develop general theory and practical solutions.
Carole Adam and Benoit Gaudou
Journal of Artificial Societies and Social Simulation 20 (3)
12
Kyeywords: Human Behaviour Modelling, Agent-Based Social Simulation, Crisis Management
Abstract: This paper describes a model for raising the decision-makers' awareness of the real (irrational and subjective) behaviours of the population in crisis situations. We analyse residents' statements and police hearings gathered after Victoria Black Saturday bushfires in 2009 to deduce a model of human behaviour based on the distinction between objective (capabilities, danger) and subjective (confidence, risk aversion) attributes, and on individual motivations. We evaluate it against observed behaviour archetypes and statistics, and show its explicative value.
Ulf Lotzmann and Martin Neumann
Journal of Artificial Societies and Social Simulation 20 (3)
13
Kyeywords: Interpretative Research Process, Agent-Based Modelling, Generative Social Science, Qualitative Data, Thick Description, Cultural Studies
Abstract: Agent-based social simulation is well-known for generative explanations. Following the theory of thick description we extend the generative paradigm to interpretative research in cultural studies. Using the example of qualitative data about criminal culture, the paper describes a research process that facilitates interpretative research by growing virtual cultures. Relying on qualitative data for the development of agent rules, the research process combines several steps: Qualitative data analysis following the Grounded Theory paradigm enables concept identification, resulting in the development of a conceptual model of the concept relations. The software tool CCD is used in conceptual modelling which assists semi-automatic transformation in a simulation model developed in the simulation platform DRAMS. Both tools preserve traceability to the empirical evidence throughout the research process. Traceability enables interpretation of simulations by generating a narrative storyline of the simulation. Thereby simulation enables a qualitative exploration of textual data. The whole process generates a thick description of the subject of study, in our example criminal culture. The simulation is characterized by a socio-cognitive coupling of agents’ reasoning on the state of the mind of other agents. This reveals a thick description of how participants make sense of the phenomenology of a situation from the perspective of their worldview.
Pierpaolo Angelini, Giovanni Cerulli, Federico Cecconi, Maria-Augusta Miceli and Bianca Potì
Journal of Artificial Societies and Social Simulation 20 (4)
4
Kyeywords: R&D Policy, Networks, Complexity, Social Simulation
Abstract: This paper presents an agent-based micro-policy simulation model assessing public R&D policy effect when R&D and non-R&D performing companies are located within a network. We set out by illustrating the behavioural structure and the computational logic of the proposed model; then, we provide a simulation experiment where the pattern of the total level of R&D activated by a fixed amount of public support is analysed as function of companies’ network topology. More specifically, the suggested simulation experiment shows that a larger “hubness” of the network is more likely accompanied with a decreasing median of the aggregated total R&D performance of the system. Since the aggregated firm idiosyncratic R&D (i.e., the part of total R&D independent of spillovers) is slightly increasing, we conclude that positive cross-firm spillover effects - in the presence of a given amount of support - have a sizeable impact within less centralized networks, where fewer hubs emerge. This may question the common wisdom suggesting that larger R&D externality effects should be more likely to arise when few central champions receive a support.
Tamsin E. Lee
Journal of Artificial Societies and Social Simulation 21 (2)
10
Kyeywords: Agent-Based Modelling, Individual-Based Model, Protest Behaviour, Social Simulation, Netlogo
Abstract: More frequently protests are accompanied by an opposing group performing a counter protest. This phenomenon can increase tension such that police must try to keep the two groups separated. However, what is the best strategy for police? This paper uses a simple agent-based model to determine the best strategy for keeping the two groups separated. The 'thin blue line' varies in density (number of police), width and the keenness of police to approach protesters. Three different groups of protesters are modelled to mimic peaceful, average and volatile protests. In most cases, a few police forming a single-file 'thin blue line' separating the groups is very effective. However, when the protests are more volatile, it is more effective to have many police occupying a wide 'thin blue line', and police being keen to approach protesters. To the authors knowledge, this is the first paper to model protests and counter-protests.
Fabian Adelt, Johannes Weyer, Sebastian Hoffmann and Andreas Ihrig
Journal of Artificial Societies and Social Simulation 21 (2)
2
Kyeywords: Governance, Agent-Based Modelling, Complexity, Infrastructure Systems, Transport Network, Transport Mode Choice
Abstract: The current paper is positioned at the intersection of computer simulation, governance research, and research on infrastructure systems, such as transportation or energy. It proposes a simulation framework, “Simulation of the governance of complex systems” (SimCo), to study the governability of complex socio-technical systems experimentally by means of agent-based modelling (ABM). SimCo is rooted in a sociological macro-micro-macro model of a socio-technical system, taking into account the interplay of agents' choices (micro) and situational constraints (macro). The paper presents the conceptualization of SimCo, its elements and subsystems as well as their interactions. SimCo depicts the daily routines of users performing their tasks (e.g. going to work) by choosing among different technologies (e.g. modes of transportation), occasionally deciding to replace a worn-out technology. All components entail different dimensions that can be adjusted, thus allowing operators to purposefully intervene, for instance in the case of risk management (e.g. preventing congestion) or system transformation (e.g. towards sustainable mobility). Experiments with a basic scenario of an urban road transport system demonstrate the effects of different modes of governance (soft control, strong control and a combination of both), revealing that soft control may be the best strategy to govern a complex socio-technical system.
Marc Jaxa-Rozen and Jan H. Kwakkel
Journal of Artificial Societies and Social Simulation 21 (2)
4
Kyeywords: Agent-Based Modelling, NetLogo, Python
Abstract: Methods for testing and analyzing agent-based models have drawn increasing attention in the literature, in the context of efforts to establish standard frameworks for the development and documentation of models. This process can benefit from the use of established software environments for data analysis and visualization. For instance, the popular NetLogo agent-based modelling software can be interfaced with Mathematica and R, letting modellers use the advanced analysis capabilities available in these programming languages. To extend these capabilities to an additional user base, this paper presents the pyNetLogo connector, which allows NetLogo to be controlled from the Python general-purpose programming language. Given Python’s increasing popularity for scientific computing, this provides additional flexibility for modellers and analysts. PyNetLogo’s features are demonstrated by controlling one of NetLogo’s example models from an interactive Python environment, then performing a global sensitivity analysis with parallel processing.
Mathieu Bourgais, Patrick Taillandier, Laurent Vercouter and Carole Adam
Journal of Artificial Societies and Social Simulation 21 (2)
5
Kyeywords: Emotion, Social Simulation, Survey
Abstract: Emotions play a key role in human behavior. Being able to integrate them in models is thus a major issue to improve the believability of agent-based social simulations. However, even though these last years have seen the emergence of many emotional models usable for simulations, many modelers still tend to use simple ad hoc emotional models. To support this view, this article proposes a survey of the different practices of modelers in terms of implementations of emotional models. We then present different emotional architectures that already exist and that can be used by modelers. The main goal is to understand the way emotions are used today in social simulations, in order for the community to unify its uses of emotional agents.
Ahmed Laatabi, Nicolas Marilleau, Tri Nguyen-Huu, Hassan Hbid and Mohamed Ait Babram
Journal of Artificial Societies and Social Simulation 21 (2)
9
Kyeywords: Empirical Agent-Based Models, ODD Protocol, ODD+2D, Mapping, Data Analysis, Social Simulation
Abstract: The quantity of data and processes used in modeling projects has been dramatically increasing in recent years due to the progress in computation capability and to the popularity of new approaches such as open data. Modelers face an increasing difficulty in analyzing and modeling complex systems that consist of many heterogeneous entities. Adapting existing models is relevant to avoid dealing with the complexity of writing and studying a new model from scratch. ODD (Overview, Design concepts, Details) protocol has emerged as a solution to document Agent-Based Models (ABMs). It appears to be a convenient solution to address significant problems such as comprehension, replication, and dissemination. However, it lacks a standard that formalizes the use of data in empirical models. This paper tackles this issue by proposing a set of rules that outline the use of empirical data inside an ABM. We call this new protocol ODD+2D (ODD+Decision + Data). ODD+2D integrates a mapping diagram called DAMap (Data to Agent Mapping). This mapping model formalizes how data are processed and mapped to agent-based models. In this paper, we focus on the architecture of ODD+2D, and we illustrate it with a residential mobility model in Marrakesh.
Segismundo S. Izquierdo and Luis R. Izquierdo
Journal of Artificial Societies and Social Simulation 21 (3)
2
Kyeywords: Social Simulation, Decision Support Systems, Deductive Inference, Fuzzy Logic, Mamdani
Abstract: Fuzzy logic presents many potential applications for modelling and simulation. In particular, this paper analyses one of the most popular fuzzy logic techniques: Mamdani systems. Mamdani systems can look particularly appealing because they are designed to incorporate expert knowledge in the form of IF-THEN rules expressed in natural language. While this is an attractive feature for modelling and simulating social and other complex systems, its actual application presents important caveats. This paper studies the potential use of Mamdani systems to explore the logical consequences of a model based on IF-THEN rules via simulation. We show that in the best-case scenario a Mamdani system provides a function that complies with its generating set of IF-THEN rules, which is a different exercise from that of finding the relation or consequences implied by those rules. In general, the logical consequences of a set of rules cannot be captured by a single function. Furthermore, the consequences of an IF-THEN rule in a Mamdani system can be very different from the consequences of that same rule in a system governed by the most basic principles of logical deductive inference. Thus, care must be taken when applying this tool to study “the consequences” of a set of hypothesis. Previous analyses have typically focused on particular steps of the Mamdani process, while here we present a holistic assessment of this technique for (deductive) simulation purposes.
Marcin Czupryna, Paweł Oleksy, Piotr Przybek and Bogumił Kamiński
Journal of Artificial Societies and Social Simulation 21 (3)
6
Kyeywords: Agent-Based Modelling, Market Development, Behavioural Factors, Viticulture, Wine
Abstract: In this paper, we apply an agent-based approach to explain both the final state and the dynamics of the development process of the wine sector in the Małopolska region in Poland. This sector has been affected by various environmental, institutional, behavioural and social factors and has undergone evolutionary changes in recent years. The econometric analysis of empirical data of vineyards in this region provides insights into the degree of influence of various factors under consideration on the aggregate number of vineyards in sub-regions. However, this does no explain the dynamics of the local formation of new vineyards or the underlying latent attitudes of vineyard owners. To overcome this limitation, we developed an agent-based model with heterogeneous agents (regular farms as well as large and small vineyards), which allowed us to identify a two-stage development scenario: i) community building and ii) vineyard creation. Our findings are of two types. Firstly, we showed a case where the agent-based model has good predictive power, in situations where the econometric model fails. Secondly, estimation of the agent-based model parameters and sensitivity analysis revealed crucial factors that have driven development of viticulture in the Małopolska region. In particular, we find that the crucial element underlying the good predictive power of the model is that it enables us to capture the fact that wine enthusiasts initially concentrate in sub-regions with more benign environmental conditions. Next, when one of them eventually established a vineyard, agents in the community had a lowered barrier to entry via the possibility of practical knowledge exchange, joint marketing efforts or vineyard maintenance resource sharing. This is in line with current evidence, which shows strong clustering effects, namely, a relatively large number of vineyards originate at relatively similar times and locations.
Claudius Graebner
Journal of Artificial Societies and Social Simulation 21 (3)
8
Kyeywords: Agent-Based Modelling, Epistemology, Models, Validation, Verification
Abstract: Agent-based simulations have become increasingly prominent in various disciplines. This trend is positive, but it comes with challenges:
while there are more and more standards for design, verification, validation, and presentation of the models, the various meta-theoretical strategies of how the models should be related to reality often remain implicit. Differences in the epistemological foundations of models make it however, difficult to relate distinct models to each other and to ensure a cumulative expansion of knowledge. Concepts and the analytic language developed by philosophers of science can help to overcome these obstacles. This paper introduces some of these concepts to the modelling community. It also presents an epistemological framework that helps to clarify how one wishes to generate knowledge about reality by the means of one's model and that helps to relate models to each other. Since the interpretation of a model is strongly connected to the activities of model verification and validation, these two activities will be embedded into the framework and their respective epistemological roles will be clarified. The resulting meta-theoretical framework aligns well with recently proposed frameworks for model presentation and evaluation.
Loïs Vanhée and Frank Dignum
Journal of Artificial Societies and Social Simulation 21 (4)
11
Kyeywords: Cultures, Social Simulations, Agent-Based Modelling
Abstract: This paper presents a simulation model and derived from it a theory to explain how known cultural influences on individual decisions lead to collective phenomena. This simulation models the evolution of a business organization, replicating key micro-level cultural influences on individual decisions (such as allocating and accepting tasks) and subsequent macro-level collective cultural phenomena (such as robustness and sensitivity to environmental complexity). As a result, we derived a theory on how to relate the influence of culture from individual decisions to collective outcomes, based on this simulation. We also point out that cultures appear to be related to specific sets of abstract, coherent and recurrent interaction patterns between individuals.
Morgane Dumont, Johan Barthelemy, Nam Huynh and Timoteo Carletti
Journal of Artificial Societies and Social Simulation 21 (4)
3
Kyeywords: Microsimulation, Agent-Based Modelling, Ordering of Models, Population Evolution, Robustness
Abstract: Agent based modelling is nowadays widely used in transport and the social science. Forecasting population evolution and analysing the impact of hypothetical policies are often the main goal of these developments. Such models are based on sub-models defining the interactions of agents either with other agents or with their environment. Sometimes, several models represent phenomena arising at the same time in the real life. Hence, the question of the order in which these sub-models need to be applied is very relevant for simulation outcomes. This paper aims to analyse and quantify the impact of the change in the order of sub-models on an evolving population modelled using TransMob. This software simulates the evolution of the population of a metropolitan area in South East of Sydney (Australia). It includes five principal models: ageing, death, birth, marriage and divorce. Each possible order implies slightly different results mainly driven by how agents' ageing is defined with respect to death. Furthermore, we present a calendar-based approach for the ordering that decreases the variability of final populations. Finally, guidelines are provided proposing general advices and recommendations for researchers designing discrete time agent-based models.
Roberto Calisti, Primo Proietti and Andrea Marchini
Journal of Artificial Societies and Social Simulation 22 (1)
2
Kyeywords: Sustainable Consumption, Agent-Based Modelling, Farmers’ Market, Consumer Behaviour, Consumer Networks, Location-Allocation Problem
Abstract: A useful way of promoting sustainable food consumption is to consider the spread of food retail operations focused on food diversification, food specialization, and fresh and local products. These food shops are generally small, which is a great problem for survival against ruthless competition from supermarkets. Our research objective was to construct a simulation with an agent-based model, reproducing the local food consumption market and to investigate how a new, small food retailing shop interacts with this market. As a case study, the model simulates the opening of a small farmers’ market. The intent of the model is to reproduce the current status of consumption for food products within a certain territorial context and given time period, and to investigate how consumers’ behaviour changes with the opening of the new shop. As a result, we could predict changes in consumers’ habits, the economic positioning of new, small shops and its best location. This information is of considerable interest for farmers’ markets and also for policymakers.
Tuong Manh Vu, Christian Wagner and Peer-Olaf Siebers
Journal of Artificial Societies and Social Simulation 22 (2)
7
Kyeywords: Agent-Based Modelling and Simulation, Continuous-Time Public Goods Game, Software Engineering, Agent-Based Computational Economics, Object-Oriented Analysis and Design
Abstract: Public Goods Games (PGGs) are a standard experimental economic approach to studying cooperative behaviour. There are two types of games: discrete-time and continuous-time PGGs. While discrete-time PGGs (one-shot decisions about contributions to public goods) can be easily done as lab experiments, continuous-time PGGs (where participants can change contributions at any time) are much harder to realise within a lab environment. This is mainly because it is difficult to consider events happening in continuous time in lab experiments. Simulation offers an opportunity to support real-world lab experiments and is well suited to explore continuous-time PGGs. In this paper, we show how to apply our recently developed ABOOMS (Agent-Based Object-Oriented Modelling and Simulation) development framework to create models for simulation-supported continuous-time PGG studies. The ABOOMS framework utilizes Software Engineering techniques to support the development at the macro level (considering the overall study lifecycle) and at the micro level (considering individual steps related to simulation model development). Our case study shows that outputs from the simulation-supported continuous-time PGG generate dynamics that do not exist in discrete-time setting, highlighting the fact that it is important to study both, discrete and continuous-time PGGs.
Marco Civico
Journal of Artificial Societies and Social Simulation 22 (4)
3
Kyeywords: Language, Multilingualism, Minority, Complexity, Agent-Based Modelling, Population Dynamics
Abstract: This article discusses the adoption of a complexity theory approach to study the dynamics of language contact within multilingual communities. It develops an agent-based model that simulates the dynamics of communication within a community where a minority and a majority group coexist. The individual choice of language for communication is based on a number of simple rules derived from a review of the main literature on the topic of language contact. These rules are then combined with different variables, such as the rate of exogamy of the minority group and the presence of relevant education policies, to estimate the trends of assimilation of the minority group into the majority one. The model is validated using actually observed data from the case of Romansh speakers in the canton of Grisons, Switzerland. The data collected from the simulations are then analysed by means of regression techniques. This paper shows that macro-level language contact dynamics can be explained by relatively simple micro-level behavioural patterns and that intergenerational transmission is crucial for the long-term survival of minority-language groups.
Peer-Olaf Siebers, Zhi En Lim, Grazziela P. Figueredo and James Hey
Journal of Artificial Societies and Social Simulation 23 (1)
10
Kyeywords: Integrated Assessment Modelling, Climate Change, Agent-Based Modelling, System Dynamics Modelling, Methodological Advance, Hybridisation, Scalability
Abstract: Modelling and simulation play an increasingly significant role in exploratory studies for informing policy makers on climate change mitigation strategies. There is considerable research being done in creating Integrated Assessment Models (IAMs), which focus on examining the human impacts on climate change. Many popular IAMs are created as steady state optimisation models. They typically employ a nested structure of neoclassical production functions to represent the energy-economy system, holding aggregate views on variables, and hence are unable to capture a finer level of details of the underlying system components. An alternative approach that allows modelling populations as a collection of individual and unevenly distributed entities is Agent-Based Modelling, often used in the field of Social Simulation. But simulating huge numbers of individual entities can quickly become an issue, as it requires large amounts of computational resources. The goal of this paper is to introduce a conceptual framework for developing hybrid IAMs. This novel modelling approach allows us to reuse existing rigid, but well-established IAMs, and adds more flexibility by replacing aggregate stocks with a community of vibrant interacting entities. We provide a proof-of-concept of the application of this conceptual framework in form of an illustrative example. Our test case takes the settings of the US. It is solely created for the purpose of demonstrating our hybrid modelling approach; we do not claim that it has predictive powers.
Diana Suleimenova and Derek Groen
Journal of Artificial Societies and Social Simulation 23 (1)
2
Kyeywords: Refugee Modelling, Agent-Based Modelling, Automation Toolkit, Policy Decisions, Validation, Sensitivity Analysis
Abstract: Forced displacement has a huge impact on society today, as more than 68 million people are forcibly displaced worldwide. Existing methods for forecasting the arrival of migrants, especially refugees, may help us to better allocate humanitarian support and protection. However, few researchers have investigated the effects of policy decisions, such as border closures, on the movement of these refugees. Recently established simulation development approaches have made it possible to conduct such a study.
In this paper, we use such an approach to investigate the effect of policy decisions on refugee arrivals for the South Sudan refugee crisis. To make such a study feasible in terms of human effort, we rely on agent-based modelling, and have automated several phases of simulation development using the FabFlee automation toolkit. We observe a decrease in the average relative difference from 0.615 to 0.499 as we improved the simulation model with additional information. Moreover, we conclude that the border closure and a reduction in camp capacity induce fewer refugee arrivals and more time spend travelling to other camps. While a border opening and an increase in camp capacity result in a limited increase in refugee arrivals at the destination camps. To the best of our knowledge, we are the first to conduct such an investigation for this conflict.
Inyoung Hwang
Journal of Artificial Societies and Social Simulation 23 (1)
9
Kyeywords: Agent-Based Modelling, Prisoner’s Dilemma, Pavlovian Cooperation, Collaborative Innovation, Firm Size Distribution, ICT Industry
Abstract: ICT-based Collaborative innovation has a significant impact on the economy by facilitating technological convergence and promoting innovation in other industries. However, research on innovation suggests that polarization in firm size distribution, which has grown since the early 2000s, can interfere with collaborative innovation among firms. In this paper, I modelled firms’ decision-making processes that led to collaborative innovation as a spatial N-person iterated Prisoner’s dilemma (NIPD) game using collaborative innovation data from Korean ICT firms. Using an agent-based model, I experimented with the effects of firm size heterogeneity on collaborative innovation. The simulation experiment results reveal that collaborative innovation in the industry increases as the size heterogeneity decreases. Findings suggest that policies promoting collaborative innovation should focus on mitigating structural inequalities in the industry.
Victorien Barbet, Juliette Rouchier, Noé Guiraud and Vincent Laperrière
Journal of Artificial Societies and Social Simulation 23 (2)
5
Kyeywords: Agent-Based Model, Communication, Opinion Dynamics, Democracy, Non-Profit Organization, Short Food Chain
Abstract: We present a model showing the evolution of an organization of agents who discuss democratically about good practices. This model feeds on a field study we did for about twelve years in France where we followed NPOs, called AMAP, and observed their construction through time at the regional and national level. Most of the hypothesis we make are here either based on the literature on opinion diffusion or on the results of our field study. By defining dynamics where agents influence each other, make collective decision at the group level, and decide to stay in or leave their respective groups, we analyse the effect of different forms of vertical communication that is meant to spread good practices within the organization. Our main indicators of the good functioning of the democratic dynamics are stability and representativeness. We show that if communication about norms is well designed, it has a positive impact on both stability and representativeness. Interestingly the effect of communication increases with the number of dimensions discussed in the groups. Communication about norms is thus a valuable tool to use in groups that wish to improve their democratic practices without jeopardizing stability.
Tuong Manh Vu, Charlotte Probst, Alexandra Nielsen, Hao Bai, Petra S. Meier, Charlotte Buckley, Mark Strong, Alan Brennan and Robin Purhouse
Journal of Artificial Societies and Social Simulation 23 (3)
1
Kyeywords: Agent-Based Modelling, Social Simulation, Software Architecture, Analytical Sociology, Abductive Reasoning
Abstract: This paper introduces the MBSSM (Mechanism-Based Social Systems Modelling) software architecture that is designed for expressing mechanisms of social theories with individual behaviour components in a unified way and implementing these mechanisms in an agent-based simulation model. The MBSSM architecture is based on a middle-range theory approach most recently expounded by analytical sociology and is designed in the object-oriented programming paradigm with Unified Modelling Language diagrams. This paper presents two worked examples of using the architecture for modelling individual behaviour mechanisms that give rise to the dynamics of population-level alcohol use: a single-theory model of norm theory and a multi-theory model that combines norm theory with role theory. The MBSSM architecture provides a computational environment within which theories based on social mechanisms can be represented, compared, and integrated. The architecture plays a fundamental enabling role within a wider simulation model-based framework of abductive reasoning in which families of theories are tested for their ability to explain concrete social phenomena.
Nicolas Malleson, Kevin Minors, Le-Minh Kieu, Jonathan Ward, Andrew West and Alison Heppenstall
Journal of Artificial Societies and Social Simulation 23 (3)
3
Kyeywords: Agent-Based Modelling, Particle Filter, Data Assimilation, Crowd Simulation, Pedestrian Modelling
Abstract: Agent-based modelling is a valuable approach for modelling systems whose behaviour is driven by the interactions between distinct entities, such as crowds of people. However, it faces a fundamental difficulty: there are no established mechanisms for dynamically incorporating real-time data into models. This limits simulations that are inherently dynamic, such as those of pedestrian movements, to scenario testing on historic patterns rather than real-time simulation of the present. This paper demonstrates how a particle filter could be used to incorporate data into an agent-based model of pedestrian movements at run time. The experiments show that although it is possible to use a particle filter to perform online (real time) model optimisation, the number of individual particles required (and hence the computational complexity) increases exponentially with the number of agents. Furthermore, the paper assumes a one-to-one mapping between observations and individual agents, which would not be the case in reality. Therefore this paper lays some of the fundamental groundwork and highlights the key challenges that need to be addressed for the real-time simulation of crowd movements to become a reality. Such success could have implications for the management of complex environments both nationally and internationally such as transportation hubs, hospitals, shopping centres, etc.
Marcin Czupryna, Christian Franzke, Sascha Hokamp and Jürgen Scheffran
Journal of Artificial Societies and Social Simulation 23 (3)
7
Kyeywords: Climate Change, Climate Protection, Integrated Assessment Model, Agent-Based Modelling
Abstract: There is an ongoing discussion concerning the relationship between social welfare and climate change, and thus the required level and type of measures needed to protect the climate. Integrated assessment models (IAMs) have been extended to incorporate technological progress, heterogeneity and uncertainty, making use of a (stochastic) dynamic equilibrium approach in order to derive a solution. According to the literature, the IAM class of models does not take all the relationships among economic, social and environmental factors into account. Moreover, it does not consider these interdependencies at the micro-level, meaning that all possible consequences are not duly examined. Here, we propose an agent-based approach to analyse the relationship between economic welfare and climate protection. In particular, our aim is to analyse how the decisions of individual agents, allowing for the trade-off between economic welfare and climate protection, influence the aggregated emergent economic behaviour. Using this model, we estimate a damage function, with values in the order 3% - 4%for 2 C temperature increase and having a linear (or slightly concave) shape. We show that the heterogeneity of the agents, technological progress and the damage function may lead to lower GDP growth rates and greater temperature-related damage than what is forecast by models with solely homogeneous (representative) agents.
Mathieu Bourgais, Patrick Taillandier and Laurent Vercouter
Journal of Artificial Societies and Social Simulation 23 (4)
12
Kyeywords: Social Simulation, Agent Architecture, BDI, Emotions, Personality, Emotional Contagion
Abstract: Over the last few years, the use of agent-based simulations to study social systems has spread to many domains (e.g., geography, ecology, sociology, economy). These simulations aim to reproduce real life situations involving human beings and thus need to integrate complex agents to match the behavior of the simulated people. Therefore, notions such as cognition, emotions, personality, social relationships or norms have to be taken into account, but there is currently no agent architecture that could incorporate all these features and be used by the majority of modelers, including those with low levels of skills in programming. In this paper, the BEN (Behavior with Emotions and Norms) architecture is introduced to tackle this issue. It is a modular architecture based on the BDI model of cognition and featuring modules to add emotions, emotional contagion, personality, social relationships and norms to agent behavior. This architecture is integrated into the GAMA simulation platform. An application of BEN to the simulation of the evacuation of a nightclub on fire is presented and shows the complexity of behaviors that may be developed with this architecture to create credible and expressive simulations.
Beatrice Nöldeke, Etti Winter and Ulrike Grote
Journal of Artificial Societies and Social Simulation 23 (4)
9
Kyeywords: Information Diffusion, Social Networks, Agent-Based Modelling, Seeding, Zambia
Abstract: The successful adoption of innovations depends on the provision of adequate information to farmers. In rural areas of developing countries, farmers usually rely on their social networks as an information source. Hence, policy-makers and program-implementers can benefit from social diffusion processes to effectively disseminate information. This study aims to identify the set of farmers who initially obtain information (‘seeds’) that optimises diffusion through the network. It systematically evaluates different criteria for seed selection, number of seeds, and their interaction effects. An empirical Agent-Based Model adjusted to a case study in rural Zambia was applied to predict diffusion outcomes for varying seed sets ex ante. Simulations revealed that informing farmers with the most connections leads to highest diffusion speed and reach. Also targeting village heads and farmers with high betweenness centrality, who function as bridges connecting different parts of the network, enhances diffusion. An increased number of seeds improves reach, but the marginal effects of additional seeds decline. Interdependencies between seed set size and selection criteria highlight the importance of considering both seed selection criteria and seed set size for optimising seeding strategies to enhance information diffusion.
Sven Banisch and Eckehard Olbrich
Journal of Artificial Societies and Social Simulation 24 (1)
1
Kyeywords: Argument Communication Theory, Opinion Dynamics, Polarisation, Ideological Alignment, Belief Systems, Cognitive-Evaluative Maps
Abstract: This multi-level model of opinion formation considers that attitudes on different issues are usually not independent. In the model, agents exchange beliefs regarding a series of facts. A cognitive structure of evaluative associations links different (partially overlapping) sets of facts on different political issues and determines agents’ attitudinal positions in a way borrowed from expectancy value theory. If agents preferentially interact with other agents who hold similar attitudes on one or several issues, this leads to biased argument pools and increasing polarization in the sense that groups of agents selectively believe in distinct subsets of facts. Besides the emergence of a bi-modal distribution of opinions on single issues as most previous opinion polarization models address, our model also accounts for the alignment of attitudes across several issues along ideological dimensions.
Ali Termos, Stefano Picascia and Neil Yorke-Smith
Journal of Artificial Societies and Social Simulation 24 (1)
2
Kyeywords: Rent-Gap Theory, Migration, Agent-Based Modelling, Urban Dynamics, Housing, Lebanon
Abstract: Rapid international migration of significant populations generates profound implications for countries in West Asia, Europe, and other regions. The motivation of this work is to develop an agent-based model (ABM) to capture the existence of such migrant and refugee flows, and to explore the effects of these flows on urban dynamics. Advances in agent-based modelling have led to theoretically-grounded spatial agent models of urban dynamics, capturing the dynamics of population, property prices, and regeneration. In this article we leverage such an extant agent-based model founded on the rent-gap theory, as a lens to study the effect of sizeable refugee migration upon a capital city in West Asia. In order to calibrate and validate the simulation model we construct indices for housing prices and other factors. Results from the model, implemented in NetLogo, show the impact of migration shock on the housing market, and identify the relative efficacy of housing intervention policies. Our work progresses towards a tool for policy makers asking what-if questions about the urban environment in the context of migration.
Jennifer Badham, Pete Barbrook-Johnson, Camila Caiado and Brian Castellani
Journal of Artificial Societies and Social Simulation 24 (1)
8
Kyeywords: Agent-Based Modelling, Epidemic, COVID-19, Descriptive Model, Social Distancing, Justified Stories
Abstract: This paper presents JuSt-Social, an agent-based model of the COVID-19 epidemic with a range of potential social policy interventions. It was developed to support local authorities in North East England who are making decisions in a fast moving crisis with limited access to data. The proximate purpose of JuSt-Social is description, as the model represents knowledge about both COVID-19 transmission and intervention effects. Its ultimate purpose is to generate stories that respond to the questions and concerns of local planners and policy makers and are justified by the quality of the representation. These justified stories organise the knowledge in way that is accessible, timely and useful at the local level, assisting the decision makers to better understand both their current situation and the plausible outcomes of policy alternatives. JuSt-Social and the concept of justified stories apply to the modelling of infectious disease in general and, even more broadly, modelling in public health, particularly for policy interventions in complex systems.
Lucas Sage and Andreas Flache
Journal of Artificial Societies and Social Simulation 24 (2)
2
Kyeywords: Agent-Based Model, Social Simulation, Segregation, School-Segregation, School-Choice, Discrete-Choice-Model
Abstract: Schelling and Sakoda prominently proposed computational models suggesting that strong ethnic residential segregation can be the unintended outcome of a self-reinforcing dynamic driven by choices of individuals with rather tolerant ethnic preferences. There are only few attempts to apply this view to school choice, another important arena in which ethnic segregation occurs. In the current paper, we explore with an agent-based theoretical model similar to those proposed for residential segregation, how ethnic tolerance among parents can affect the level of school segregation. More specifically, we ask whether and under which conditions school segregation could be reduced if more parents hold tolerant ethnic preferences. We move beyond earlier models of school segregation in three ways. First, we model individual school choices using a random utility discrete choice approach. Second, we vary the pattern of ethnic segregation in the residential context of school choices systematically, comparing residential maps in which segregation is unrelated to parents’ level of tolerance to residential maps reflecting their ethnic preferences. Third, we introduce heterogeneity in tolerance levels among parents belonging to the same group. Our simulation experiments suggest that ethnic school segregation can be a very robust phenomenon, occurring even when about half of the population prefers segregated to mixed schools. However, we also identify a “sweet spot” in the parameter space in which a larger proportion of tolerant parents makes the biggest difference. This is the case when parents have moderate preferences for nearby schools and there is only little residential segregation. Further experimentation unraveled the underlying mechanisms.
Jan-Philipp Fränken and Toby Pilditch
Journal of Artificial Societies and Social Simulation 24 (3)
1
Kyeywords: Echo Chambers, Source Credibility, Information Cascades, Agent-Based Modelling, Bayesian Modelling, Single Interaction
Abstract: Investigating how echo chambers emerge in social networks is increasingly crucial, given their role in facilitating the retention of misinformation, inducing intolerance towards opposing views, and misleading public and political discourse. Previously, the emergence of echo chambers has been attributed to psychological biases and inter-individual differences, requiring repeated interactions among network-users and rewiring or pruning of social ties. Using an idealised population of social network users, the present results suggest that when combined with positive credibility perceptions of a communicating source, social media users’ ability to rapidly share information with each other through a single cascade can be sufficient to produce echo chambers. Crucially, we show that this requires neither special psychological explanation (e.g., bias or individual differences), nor repeated interactions—though these may be exacerbating factors. In fact, this effect is made increasingly worse the more generations of peer-to-peer transmissions it takes for information to permeate a network. This raises important questions for social network architects, if truly opposed to the increasing prevalence of deleterious societal trends that stem from echo chamber formation.
J. Gareth Polhill, Matthew Hare, Tom Bauermann, David Anzola, Erika Palmer, Doug Salt and Patrycja Antosz
Journal of Artificial Societies and Social Simulation 24 (3)
2
Kyeywords: Prediction, Complex Systems, Wicked Systems, Agent-Based Modelling, Cellular Automata, Turing Machines
Abstract: This paper uses two thought experiments to argue that the complexity of the systems to which agent-based models (ABMs) are often applied is not the central source of difficulties ABMs have with prediction. We define various levels of predictability, and argue that insofar as path-dependency is a necessary attribute of a complex system, ruling out states of the system means that there is at least the potential to say something useful. ‘Wickedness’ is argued to be a more significant challenge to prediction than complexity. Critically, however, neither complexity nor wickedness makes prediction theoretically impossible in the sense of being formally undecidable computationally-speaking: intractable being the more apt term given the exponential sizes of the spaces being searched. However, endogenous ontological novelty in wicked systems is shown to render prediction futile beyond the immediately short term.
Kasper Lange, Gijsbert Korevaar, Igor Nikolic and Paulien Herder
Journal of Artificial Societies and Social Simulation 24 (3)
8
Kyeywords: Circular Economy, Industrial Symbiosis, Cooperative Networks, Agent-Based Modelling, Theory of Planned Behaviour, Eco-Oriented Behaviour
Abstract: Industrial Symbiosis Networks (ISNs) consist of firms that exchange residual materials and energy locally, in order to gain economic, environmental and/or social advantages. In practice, ISNs regularly fail when partners leave and the recovery of residual streams ends. Regarding the current societal need for a shift towards sustainability, it is undesirable that ISNs should fail. Failures of ISNs may be caused by actor behaviour that leads to unanticipated economic losses. In this paper, we explore the effect of these behaviours on ISN robustness by using an agent-based model (ABM). The constructed model is based on insights from both literature and participatory modelling in three real-world cases. It simulates the implementation of synergies for local waste exchange and compost production. The Theory of Planned Behaviour (TPB) was used to model agent behaviour in time-dependent bilateral negotiations and synergy evaluation processes. We explored model behaviour with and without TPB logic across a range of possible TPB input variables. The simulation results show how the modelled planned behaviour affects the cash flow outcomes of the social agents and the robustness of the network. The study contributes to the theoretical development of industrial symbiosis research by providing a quantitative model of all ISN implementation stages, in which various behavioural patterns of entrepreneurs are included. It also contributes to practice by offering insights on how network dynamics and robustness outcomes are not only related to context and ISN design, but also to actor behaviour.
Matthew Gibson, Raphael Slade, Joana Portugal Pereira and Joeri Rogelj
Journal of Artificial Societies and Social Simulation 24 (3)
9
Kyeywords: Food Choice, Milk Consumption, Consumer Behaviour, Agent-Based Modelling, Calibration Optimisation, Global Temporal Sensitivity Analysis
Abstract: Substitution of food products will be key to realising widespread adoption of sustainable diets. We present an agent-based model of decision-making and influences on food choice, and apply it to historically observed trends of British whole and skimmed (including semi) milk consumption from 1974 to 2005. We aim to give a plausible representation of milk choice substitution, and test different mechanisms of choice consideration. Agents are consumers that perceive information regarding the two milk choices, and hold values that inform their position on the health and environmental impact of those choices. Habit, social influence and post-decision evaluation are modelled. Representative survey data on human values and long-running public concerns empirically inform the model. An experiment was run to compare two model variants by how they perform in reproducing these trends. This was measured by recording mean weekly milk consumption per person. The variants differed in how agents became disposed to consider alternative milk choices. One followed a threshold approach, the other was probability based. All other model aspects remained unchanged. An optimisation exercise via an evolutionary algorithm was used to calibrate the model variants independently to observed data. Following calibration, uncertainty and global variance-based temporal sensitivity analysis were conducted. Both model variants were able to reproduce the general pattern of historical milk consumption, however, the probability-based approach gave a closer fit to the observed data, but over a wider range of uncertainty. This responds to, and further highlights, the need for research that looks at, and compares, different models of human decision-making in agent-based and simulation models. This study is the first to present an agent-based modelling of food choice substitution in the context of British milk consumption. It can serve as a valuable pre-curser to the modelling of dietary shift and sustainable product substitution to plant-based alternatives in Britain.
Samuel Assefa, Aad Kessler and Luuk Fleskens
Journal of Artificial Societies and Social Simulation 24 (4)
8
Kyeywords: Social Simulation, Farmers, Soil and Water Conservation, Scenario Analysis, Ethiopia
Abstract: The sustainability of the ongoing Campaign-Based Watershed Management (CBWM) program in Ethiopia is questionable due to poor planning and implementation of the Soil and Water Conservation (SWC) structures. This study uses an empirically based, agent-based model to explore the effect of six scenarios on both area of land covered by, as well as the quality of SWC structures in three Kebeles (villages) of Boset District. The analysis revealed that integrating multiple interventions enhanced SWC most in all Kebeles. Furthermore, increasing the commitment of local government through capacity building generated most effect and yet required the lowest investment. Motivating farmers, introducing alternative livelihood opportunities and establishing and strengthening micro-watershed associations had limited, but differential influence on the outcomes across the Kebeles. However, all alternative scenarios had some added value compared to doing business as usual. Hence, in order to enhance the outcomes and sustainability of the ongoing CBWM program in the study area and other similar localities, it is crucial to pay much more attention to increasing the commitment of local government actors through capacity building. This empowers local government actors to (1) plan and more efficiently implement the program in consultation with other local actors, and (2) integrate locally sensitive need-based adaptation of the program.
Shaoni Wang, Kees Zoethout, Wander Jager and Yanzhong Dang
Journal of Artificial Societies and Social Simulation 24 (4)
9
Kyeywords: Individual Needs, Motivation, Group Performance, Self-Organisation, Task Allocation, Agent-Based Modelling
Abstract: Team performance can be considered a macro-level outcome that depends on three sets of micro-level factors: individual workers contributing to the task, team composition, and task characteristics. For a number of reasons, the complex dynamics between individuals in the task allocation process are difficult to systematically explore in traditional experimental settings: the motivational dynamics, the complex dynamics of task allocation processes, and the lack of experimental control over team composition imply an ABM-approach being more feasible. For this reason, we propose an updated version of the WORKMATE model that has been developed to explore the dynamics of team performance. In doing so, we added Deci and Ryan’s SDT theory, stating that people are motivated by three psychological needs, competence, autonomy, and belongingness. This paper is aimed at explaining the architecture of the model, and some first simulation runs as proof of concept. The experimental results show that: 1) an appropriate motivation threshold will help the team have the lowest performance time; 2) the time needed for the task allocation process is related to the importance of different motivations; 3) highly satisfied teams are more likely composed of members valuing autonomy.
Amir Hosein Afshar Sedigh, Martin Purvis, Tony Bastin Roy Savarimuthu, Christopher Konstantin Frantz and Maryam Purvis
Journal of Artificial Societies and Social Simulation 25 (1)
1
Kyeywords: Apprenticeship, Agent-Based Modelling, Social Simulations, Comparative Systems, Institutions, Historical Systems
Abstract: In this paper, we investigate the effects of different characteristics of apprenticeship programmes both in historical and contemporary societies. Apprenticeship is one of the major means to transfer skills in a society. We consider five societies: the Old Britain system (AD 1300s−1600s), the British East India Company (AD 1600s − 1800s), Armenian merchants of New-Julfa (AD 1600s − 1700s), contemporary German apprenticeship (1990s), and the “Modern Apprenticeship” in Britain (2001). In comparing these systems, using an agent-based simulation model, we identified six characteristics which impact the success of an apprenticeship programme in a society, which we measured by considering three parameters, namely the number of skilled agents produced
by the apprenticeships, programme completion, and the contribution of programmes to the Gross Domestic Income (GDI) of the society. We investigate different definitions for success of an apprenticeship and some hypothetical societies to test some common beliefs about apprenticeships' performance. The simulations suggest that a) it is better to invest in a public educational system rather than subsidising private contractors to train apprentices, b) having a higher completion ratio for apprenticeship programme does not necessarily result in a higher contribution in the GDI, and c) governors (e.g. mayors or government) that face significant emigration should also consider employing policies that persuade apprentices to complete their programme and stay in the society after completion to improve apprenticeship efficacy.
Josie McCulloch, Jiaqi Ge, Jonathan Ward, Alison Heppenstall, J. Gareth Polhill and Nicolas Malleson
Journal of Artificial Societies and Social Simulation 25 (2)
1
Kyeywords: Calibration, Optimisation, History Matching, Proximate Bayesian Computation, Uncertainty, Agent-Based Modelling
Abstract: Agent-based models (ABMs) can be found across a number of diverse application areas ranging from simulating consumer behaviour to infectious disease modelling. Part of their popularity is due to their ability to simulate individual behaviours and decisions over space and time. However, whilst there are plentiful examples within the academic literature, these models are only beginning to make an impact within policy areas. Whilst frameworks such as NetLogo make the creation of ABMs relatively easy, a number of key methodological issues, including the quantification of uncertainty, remain. In this paper we draw on state-of-the-art approaches from the fields of uncertainty quantification and model optimisation to describe a novel framework for the calibration of ABMs using History Matching and Approximate Bayesian Computation. The utility of the framework is demonstrated on three example models of increasing complexity: (i) Sugarscape to illustrate the approach on a toy example; (ii) a model of the movement of birds to explore the efficacy of our framework and compare it to alternative calibration approaches and; (iii) the RISC model of farmer decision making to demonstrate its value in a real application. The results highlight the efficiency and accuracy with which this approach can be used to calibrate ABMs. This method can readily be applied to local or national-scale ABMs, such as those linked to the creation or tailoring of key policy decisions.
Matthew Gibson, Joana Portugal Pereira, Raphael Slade and Joeri Rogelj
Journal of Artificial Societies and Social Simulation 25 (2)
3
Kyeywords: Plant-Based Milk, Dairy Reduction, Sustainable Diets, Agent-Based Modelling, Calibration, Scenario Analysis
Abstract: A reduction in the production and consumption of meat and dairy across much of the world is critical for climate change mitigation, the alleviation of ecological stress, and improved health. We update an agent-based model (ABM) of historic UK milk consumption and apply it to scenarios of dairy reduction and adoption of plant-based milk (PBM) out to 2050. The updated model is comprised of a cognitive function, where agents perceive the physical, health and environmental characteristics of milk choice, which is modified by habit and social influence. We use European Social Survey 2018 and British Social Attitudes 2008 survey data to empirically inform the model. Taking a backcasting approach, we calibrate parameters against published UK dairy reduction targets (2030 and 2050), and test how different price relationships, and characterisations of environmental concern, may affect simulated milk consumption from 2020 to 2050. Scenarios for core targets (20% less dairy by 2030 and 35% by 2050) largely produced plausible consumption trajectories. However, at current pricing of dairy and PBM, simulated consumption was mostly unable to deliver on desired core targets, but this improved markedly with dairy prices set to organic levels. The influence of changing environmental concern on milk choice resulted in higher levels of dairy milk reduction. When modelled as transient, intense shocks to public concern, consumption patterns did not fundamentally change. However, small, incremental but permanent changes to concern did produce structural changes to consumption patterns, with dairy falling below plant-based alternatives at around 2030. This study is the first to apply an ABM in the context of scenarios for dairy reduction and PBM adoption in service to UK climate-related consumption targets. It can serve as valuable bottom-up, alternative, evidence on the feasibility of dietary shift targets, and poses policy implications for how to address impediments to behavioural change.
Anna Pagani, Francesco Ballestrazzi, Emanuele Massaro and Claudia R. Binder
Journal of Artificial Societies and Social Simulation 25 (2)
4
Kyeywords: Household Mobility, Household Relocation, Housing, Human-Environment Systems, Sustainability, Agent-Based Modelling
Abstract: Sustainable housing is a key priority for Switzerland. To provide both environmentally and socio-culturally sustainable housing, Swiss property owners need to navigate the complex and context-specific system that articulates the match between households’ preferences and the dwellings available to them-i.e. residential mobility. In response to this need, this paper outlines ReMoTe-S, an agent-based model of tenants’ residential mobility in Switzerland. The model design is based on empirical research conducted with the tenants of three multifamily housing providers. It accounts for the life course of dwellings and households, during which the latter attempt to maximise their satisfaction, which is calculated as the correspondence between their desired housing functions (e.g. a status symbol) and the functions of dwellings. To illustrate the model’s potential uses, we explore the sensitivity of its outputs to changes in dwellings’ and buildings’ qualitative and quantitative features by looking at two key indicators of housing sustainability: floor space per capita and vacancy rate. We firstly observe that a supply dominated by medium-to-large dwellings and the application of less strict occupancy rules can result in housing underoccupancy. Secondly, it emerges that certain combinations of housing features engender a lower vacancy rate inasmuch as they more successfully generate housing functions. We conclude that by enabling housing providers to explore the complex human-environment interactions of the housing system, ReMoTe-S can be used to inform a sustainable management of housing stock.
Kevin Chapuis, Patrick Taillandier and Alexis Drogoul
Journal of Artificial Societies and Social Simulation 25 (2)
6
Kyeywords: Synthetic Population, Agent-Based Simulation, Model Initialisation, Data-Driven Social Simulation
Abstract: To build realistic models of social systems, designers of agent-based models tend to incorporate a considerable amount of data, which influence the model outcomes. Data concerning the attributes of social agents, which compose synthetic populations, are particularly important but usually difficult to collect and therefore use in simulations. In this paper, we have reviewed state of the art methodologies and theories for building realistic synthetic populations for agent-based simulation models and practices in social simulations. We also highlight the discrepancies between theory and practice and outline the challenges in bridging this gap through a quantitative and narrative review of work published in JASSS between 2011 and 2021. Finally, we present several recommendations that could help modellers adopt best practices for
synthetic population generation.
Kurt Kreulen, Bart de Bruin, Amineh Ghorbani, René Mellema, Christian Kammler, Lois Vanhée, Virginia Dignum and Frank Dignum
Journal of Artificial Societies and Social Simulation 25 (3)
6
Kyeywords: COVID-19, Agent-Based Modelling, Culture, Values, Epidemiological Models, Pandemic
Abstract: Since its first appearance in Wuhan (China), countries have been employing, to varying degrees of success, a series of non-pharmaceutical interventions aimed at limiting the spread of SARS-CoV-2 within their populations. In this article, we build on scientific work that demonstrates that culture is part of the explanation for the observed variability between countries in their ability to effectively control the transmission of SARS-CoV-2. We present a theoretical framework of how culture influences decision-making at the level of the individual. This conceptualization is formalized in an agent-based model that simulates how cultural factors can combine to produce differences across populations in terms of the behavioral responses of individuals to the COVID-19 crisis. We illustrate that, within our simulated environment, the culturally-dependent willingness of people to comply with public health related measures might constitute an important determinant of differences in infection dynamics across populations. Our model generates the highest rates of non-compliance within cultures marked as individualist, progressive and egalitarian. Our model illustrates the potential role of culture as a population-level predictor of infections associated with COVID-19. In doing so, the model, and theoretical framework on which it is based, may inform future studies aimed at incorporating the effect of culture on individual decision-making processes during a pandemic within social simulation models.
David Anzola, Pete Barbrook-Johnson and Nigel Gilbert
Journal of Artificial Societies and Social Simulation 25 (4)
1
Kyeywords: Agent-Based Modelling, Research Ethics, Ethical Standards, Responsible Science, Scientific Integrity, Code of Ethics
Abstract: The academic study and the applied use of agent-based modelling of social processes has matured considerably over the last thirty years. The time is now right to engage seriously with the ethics and responsible practice of agent-based social simulation. In this paper, we first outline the many reasons why it is appropriate to explore an ethics of agent-based modelling and how ethical issues arise in its practice and organisation. We go on to discuss different approaches to standardisation as a way of supporting responsible practice. Some of the main conclusions are organised as provisions in a draft code of ethics. We intend for this draft to be further developed by the community before being adopted by individuals and groups within the field informally or formally
Marco A. Janssen, Daniel DeCaro and Allen Lee
Journal of Artificial Societies and Social Simulation 25 (4)
3
Kyeywords: Common-Pool Resource, Trust, Communication, Agent-Based Model, Laboratory Experiment
Abstract: An agent-based model is presented that aims to capture the involvement of inequality and trust in collective action in a classic commons dilemma before, during, and after communication. The model assumptions are based on the behavioral theory of collective action of Elinor Ostrom and the ‘humanistic rational choice theory’. The commons dilemma is represented as a spatially explicit renewable resource. Agent’s trust in others has an impact on the harvesting of shared resources, and trust is influenced by observed harvesting behavior and cheap talk. We calibrated the model using data from a prior set of lab experiments on inequality, trust, and communication. The best fit to the data consists of a population with a small share of altruistic and selfish agents and a majority of conditional cooperative agents sensitive to inequality and who would cooperate if others did. Communication increased trust explaining the better group performance when communication was introduced. The modeling results complement prior communication research and clarify the dynamics of reciprocal cooperation commonly observed in robust resource governance systems.
Molood Ale Ebrahim Dehkordi, Jonas Lechner, Amineh Ghorbani, Igor Nikolic, Emile Chappin and Paulien Herder
Journal of Artificial Societies and Social Simulation 26 (1)
9
Kyeywords: Machine Learning, Agent-Based Modelling, Modelling Purpose, Structured Literature Review, Guidelines
Abstract: Agent-based modelling and simulation (ABMS), whether simple toy models or complex data-driven ones, is regularly applied in various domains to study the system-level patterns arising from individual behaviour and interactions. However, ABMS still faces diverse challenges such as modelling more representative agents or improving computational efficiency. Research shows that machine learning (ML) techniques, when used in ABMS can address such challenges. Yet, the ABMS literature is still marginally leveraging the benefits of ML. One reason is the vastness of the ML domain, which makes it difficult to choose the appropriate ML technique to overcome a specific modelling challenge. This paper aims to bring ML more within reach of the ABMS community. We first conduct a structured literature review to investigate how the ABMS process uses ML techniques. We focus specifically on articles where ML is applied for the structural specifications of models such as agent decision-making and behaviour, rather than just for analysing output data. Given that modelling challenges are mainly linked to the purpose a model aims to serve (e.g., behavioural accuracy is required for predictive models), we frame our analysis within different modelling purposes. Our results show that Reinforcement Learning algorithms may increase the accuracy of behavioural modelling. Moreover, Decision Trees, and Bayesian Networks are common techniques for data pre-processing of agent behaviour. Based on the literature review results, we propose guidelines for purposefully integrating ML in ABMS. We conclude that ML techniques are specifically fit for currently underrepresented modelling purposes of social learning and illustration; they can be used in a transparent and interpretable manner.
Tuong Manh Vu, Charlotte Buckley, João A. Duro, Alan Brennan, Joshua M. Epstein and Robin Purhouse
Journal of Artificial Societies and Social Simulation 26 (2)
4
Kyeywords: Agent-Based Modelling, Psychosocial Mechanisms of Alcohol Use, Inverse Generative Social Science
Abstract: Social psychological theory posits entities and mechanisms that attempt to explain observable differences in behavior. For example, dual process theory suggests that an agent's behavior is influenced by intentional (arising from reasoning involving attitudes and perceived norms) and unintentional (i.e., habitual) processes. In order to pass the generative sufficiency test as an explanation of alcohol use, we argue that the theory should be able to explain notable patterns in alcohol use that exist in the population, e.g., the distinct differences in drinking prevalence and average quantities consumed by males and females. In this study, we further develop and apply inverse generative social science (iGSS) methods to an existing agent-based model of dual process theory of alcohol use. Using iGSS, implemented within a multi-objective grammar-based genetic program, we search through the space of model structures to identify whether a single parsimonious model can best explain both male and female drinking, or whether separate and more complex models are needed. Focusing on alcohol use trends in New York State, we identify an interpretable model structure that achieves high goodness-of-fit for both male and female drinking patterns simultaneously, and which also validates successfully against reserved trend data. This structure offers a novel interpretation of the role of norms in formulating drinking intentions, but the structure's theoretical validity is questioned by its suggestion that individuals with low autonomy would act against perceived descriptive norms. Improved evidence on the distribution of autonomy in the population is needed to understand whether this finding is substantive or is a modeling artefact.
Carlo Proietti and Davide Chiarella
Journal of Artificial Societies and Social Simulation 26 (2)
5
Kyeywords: Argumentation, Argument Communication Theory, Polarization, Bi-Polarization, Opinion Dynamics, Epistemic Vigilance
Abstract: This work explores, on a simulative basis, the informational causes of polarization and bi-polarization of opinions in groups. Here, the term 'polarization' refers to a uniform change of the opinion of the whole group towards the same direction, whereas 'bi-polarization' indicates a split of two subgroups towards opposite directions. For the purposes of the present inquiry we expand the model of the Argument Communication Theory of Bi-polarization. The latter is an argument-based multi-agent model of opinion dynamics inspired by Persuasive Argument Theory. The original model can account for polarization as an outcome of pure informational influence, and reproduces bi-polarization effects by postulating an additional mechanism of homophilous selection of communication partners. The expanded model adds two dimensions: argument strength and more sophisticated protocols of informational influence (argument communication and opinion update). Adding the first dimension allows to investigate whether and how the presence of stronger or weaker arguments in the discussion influences polarization and bi-polarization dynamics, as suggested by the original framework of Persuasive Arguments Theory. The second feature allows to test whether other mechanisms related to confirmation bias and epistemic vigilance can act as a driving force of bi-polarization. Regarding the first issue, the simulations we perform show that argument strength has a measurable effect. With regard to the second, our results witness that, in absence of homophily, only very strong types of informational bias can lead to bi-polarization.
Nicolas Mauhe, Luis R. Izquierdo and Segismundo S. Izquierdo
Journal of Artificial Societies and Social Simulation 26 (2)
8
Kyeywords: Social Simulation, Computer Simulation, Refutation, Modelling, Counter-Example, Markov Chain
Abstract: This paper discusses a prominent way in which social simulations can contribute -and have contributed- to the advancement of Science, namely, by refuting some of our (wrong) beliefs about how the real world works. More precisely, social simulations can produce counter-examples that reveal something is wrong in a prevailing scientific assumption. In fact, in this paper we argue that this is a role that many well-known social simulation models in the literature have played and, arguably, it may be one of the main reasons why such well-known models became so popular. To test this hypothesis, in this paper we examine several popular models in the Social Simulation literature and indeed we find that all these models are most naturally interpreted as providers of compelling and reproducible (computer-generated) evidence that refuted some assumption or belief in a prevailing theory. By refuting prevailing theories, these models greatly advanced Science and, in some cases, they even opened up a new research field.
Carlos Andres Devia and Giulia Giordano
Journal of Artificial Societies and Social Simulation 26 (3)
1
Kyeywords: Agent-Based Social Simulation, Agent-Based Model, Opinion Formation, Opinion Dynamics, Real Data Validation
Abstract: We propose an agent-based opinion formation model characterised by a two-fold novelty. First, we realistically assume that each agent cannot measure the opinion of its neighbours about a given statement with infinite resolution and accuracy, and hence it can only perceive the opinion of others as agreeing much more, or more, or comparably, or less, or much less (than itself) with that given statement. This leads to a classification-based rule for opinion update. Second, we consider three complementary agent traits suggested by significant sociological and psychological research: conformism, radicalism and stubbornness. We rely on World Values Survey data to show that the proposed model has the potential to predict the evolution of opinions in real life: the classification-based approach and complementary agent traits produce rich collective behaviours, such as polarisation, consensus, and clustering, which can yield predicted opinions similar to survey results.
Carlo Proietti and Davide Chiarella
Journal of Artificial Societies and Social Simulation 26 (3)
13
Kyeywords: Argumentation, Argument Communication Theory, Polarization, Bi-Polarization, Opinion Dynamics, Epistemic Vigilance
Abstract: This corrigendum refers to 'The Role of Argument Strength and Informational Biases in Polarization and Bi-Polarization Effects', Journal of Artificial Societies and Social Simulation, 26 (2) 5, 2023.
Nanda Wijermans, Geeske Scholz, Martin Neumann, Rocco Paolillo, Anne Templeton, Vhonani Netshandama and Doris Neuberger
Journal of Artificial Societies and Social Simulation 26 (3)
15
Kyeywords: Social Identity, Self-Categorization, Behavioural Realism, Formalising, Social Theory, Agent-Based Modelling
Abstract: This is an editorial to the special section on “Social Identity Modelling”, published in Volume 26, Issues 2 and 3, 2023 of the Journal of Artificial Societies and Social Simulation. It provides information on how the Social Identity Approach (SIA) and research using its theoretical framework explains collective behaviour, tailored specifically for modellers. The discussion centres around describing and reflecting on the state of the art in modelling SIA. It ends with looking ahead towards formalising SIA as a means to enable more collective behavioural realism in agent-based social simulations.
Rainer Hegselmann
Journal of Artificial Societies and Social Simulation 26 (4)
11
Kyeywords: Opinion Dynamics, Bounded Confidence Model, Floating-Point Arithmetic, Agent-Based Modelling
Abstract: In the bounded confidence model (BC-model) (Hegselmann and Krause 2002), period by period, each agents averages over all opinions that are no further away from their actual opinion than a given distance ε, i.e., their ‘bound of confidence’. With the benefit of hindsight, it is clear that we completely overlooked a crucial feature of our model back in 2002. That is for increasing values of ε, our analysis suggested smooth transitions in model behaviour. However, the transitions are in fact wild, chaotic and non-monotonic—as described by Lorenz (2006). The most dramatic example of these effects is a consensus that breaks down for larger values of ε. The core of this article is a fundamentally new approach to the analysis of the BC-model. This new approach makes the non-monotonicities unmissable. To understand this approach, we start with the question: how many different BC processes can we initiate with any given start distribution? The answer to this question is almost certainly for all possible start distributions and certainly in all cases analysed here, it is always a finite number of ε-values that make a difference for the processes we start. Moreover, there is an algorithm that finds, for any start distribution, the complete list of ε-values that make a difference. Using this list, we can then go directly through all the possible BC-processes given the start distribution. We can therefore check them for non-monotonicity of any kind, and will be able to find them all. This good news comes however with bad news. That is the algorithm that inevitably and without exception finds all the ϵ-values that matter requires exact arithmetics, without any rounding and without even the slightest rounding error. As a consequence, we have to abandon the usual floating-point arithmetic used in today’s computers and programming languages. What we need to use instead is absolutely exact fractional arithmetic with integers of arbitrary length. This numerical approach is feasible on all modern computers. The new analytical approach and results are likely to have implications for many applications of the BC-model.
Patrick Grim, Daniel J. Singer, Aaron Bramson, Bennett Holman, Jiin Jung and William J. Berger
Journal of Artificial Societies and Social Simulation 27 (1)
12
Kyeywords: Juries, Law, Aggregate Decision, Diversity, Unanimity, Limited Communication
Abstract: Many factors contribute to whether juries reach right verdicts. Here we focus on the role of diversity. Direct empirical studies of the effect of altering factors in jury deliberation are severely limited for conceptual, practical, and ethical reasons. Using an agent-based model to avoid these difficulties, we argue that diversity can play at least four importantly different roles in affecting jury verdicts. We show that where different subgroups have access to different information, equal representation can strengthen epistemic jury success, and if one subgroup has access to particularly strong evidence, epistemic success may demand participation by that group. Diversity can also reduce the redundancy of the information on which a jury focuses, which can have a positive impact. Finally, and most surprisingly, we show that limiting communication between diverse groups in juries can favor epistemic success as well.
Sven Banisch and Hawal Shamon
Journal of Artificial Societies and Social Simulation 27 (1)
17
Kyeywords: Opinion Dynamics, Empirical Validation, Parameter Estimation, Argument Communication Theory, Computational Social Science, Survey Experiments
Abstract: The empirical validation of models remains one of the most important challenges in opinion dynamics. In this contribution, we report on recent developments on combining data from a survey experiment with an argument-based computational model of opinion formation in which biased processing is the principle mechanism.
We first review the development of argument-based models, and extend a model with confirmation bias by noise mimicking an external source of balanced information. We then study the behavior of this extended model to characterize the macroscopic opinion distributions that emerge from the process. A new method for the automated classification of model outcomes is presented.
In the final part of the paper, we describe and apply a multi-level validation approach using the micro and the macro data gathered in the survey experiment. We revisit previous results on the micro-level calibration using data on argument-induced opinion change, and show that the extended model matches surveyed opinion distributions in a specific region in the parameter space. The estimated strength of biased processing given the macro data is highly compatible with those values that achieve high likelihood at the micro level.
The model provides a solid bridge from the micro processes of individual attitude change to macro level opinion distributions.
Marcin Czupryna, Katarzyna Growiec, Bogumił Kamiński and Paweł Oleksy
Journal of Artificial Societies and Social Simulation 27 (1)
2
Kyeywords: Schwartz Values, Economic Performance, Agent Based Modelling, Social Simulation
Abstract: In the literature, human values are defined as desirable, trans-situational goals serving as guiding principles in people's lives. Schwartz introduced the concept of ten different values that are grouped into four higher order values: openness to change, conservation, self-transcendence, and self-enhancement. Some of the Schwartz values will underlie acting for one's own good, the others for the good of the community. The collective output of the community will depend on these two types of actions and the relations between them. Acting for the benefit of others may, yet does not have to, increase the total benefit for the community, even when it leads to less benefit to the self. In this paper we provide an analogy for the mechanisms underlying the relation between Schwartz values and economic output. The observed economic output is a result of the behaviour of many heterogeneous agents interacting with each other. The main problem is to verify whether and how the differences in the distributions of Schwartz values in a given community may influence its collective economic output. We classify Schwartz values into two different groups, based on the different effects these values may have on the observed collective output. A higher importance of self-enhancement (power, achievement, and hedonism) and conservation (security, tradition, and conformity) increases working time in the public sector and the public goods return, while simultaneously lowering working time in the private sector and the private goods return. The values of openness to change (stimulation and self-direction) and self-transcendence (universalism and benevolence) have the opposite effect.
Anna Melnyk, Bruce Edmonds, Amineh Ghorbani and Ibo van de Poel
Journal of Artificial Societies and Social Simulation 27 (1)
20
Kyeywords: Values, Value Change, Socio-Technical Systems, Socio-Ecological Systems, Agent-Based Modelling
Abstract: This editorial paper for the special section on “Modelling Values in Socio/Technical/Ecological Systems” introduces interdisciplinary perspectives on values and reflects on growing appeals for modelling values. In public and academic discourses, values typically relate to the matter of importance (e.g., beliefs, priorities) and principles about what is considered to be good (e.g., moral values) and are often seen as shaping individual and collective behaviour. As shown by eight contributions to this special section, it is relevant for social simulation modelling to dive deeper into embedding values in models in order to explore behavioural change on different levels and across contexts. Our goal with this special section is to stimulate interest in developing various approaches that study and operationalise values in agent-based models to investigate the complex problems raised in social, socio-technical and socio-ecological systems. We conclude with a call for future research to be explicit in their modelling assumptions, thus fostering a vigorous foundation for scientific discourse.
Tristan de Wildt and Ibo van de Poel
Journal of Artificial Societies and Social Simulation 27 (1)
3
Kyeywords: Value Change, Moral Change, Agent-Based Modelling, Exploratory Modelling
Abstract: Value and moral change have increasingly become topics of interest in the philosophical literature. Several theoretical accounts have been proposed. These are usually based on certain theoretical and conceptual assumptions. Their strengths and weaknesses are often difficult to determine and compare because they are based on limited empirical evidence. We propose agent-based modeling to build simulation models that can theoretically help us explore accounts of value change. We can investigate whether a simulation model based on a specific account of value change can reproduce relevant phenomena. To illustrate this approach, we build a model based on the pragmatist account of value change proposed by Van De Poel and Kudina (2022). We show that this model can reproduce four relevant phenomena, namely 1) the inevitability and stability of values, 2) societies differ in openness and resistance to change, 3) moral revolutions, and 4) lock-in. This makes this account promising, although more research is needed to see how well it can explain other relevant phenomena and compare its strengths and weaknesses to other accounts. On a more methodological level, our contribution suggests that simulation models might be useful to theoretically explore accounts of value change and make further progress in this area.
Kathyrn Fair and Omar Guerrero
Journal of Artificial Societies and Social Simulation 27 (1)
8
Kyeywords: Age Distributions, Agent-Based Modelling, Modelling Sub-Populations
Abstract: For many applications of agent-based models (ABMs), an agent's age influences important decisions (e.g. their contribution to/withdrawal from pension funds, their level of risk aversion in decision-making, etc.) and outcomes in their life cycle (e.g. their susceptibility to disease). These considerations make it crucial to accurately capture the age distribution of the population being considered. Often, empirical survival probabilities cannot be used in ABMs to generate the observed age structure. This may be due to discrepancies between samples (e.g. when empirical survival probabilities are calculated across the whole population, but only a sub-population is being modelled) or models (between the survival model underpinning the ABM and the statistical model used to produce empirical survival probabilities). In these cases, imputing empirical survival probabilities will not generate the observed age structure of the population, and assumptions such as exogenous agent inflows are necessary (but not necessarily empirically valid). In this paper, we propose a method that allows for the preservation of agent age-structure without the exogenous influx of agents, even when only a subset of the population is being modelled. We demonstrate the flexibility and accuracy of our methodology by performing simulations of several real-world age distributions. This method is a useful tool for those developing ABMs across a broad range of applications.
Hubert Fonteijn, Pepijn van Oort and Geerten Hengeveld
Journal of Artificial Societies and Social Simulation 27 (2)
1
Kyeywords: Food Security, Resilience, Agent-Based Modelling, Food Trade
Abstract: This paper presents a new agent-based modelling (ABM) framework to investigate the resilience of food systems against a variety of shocks. We modelled food security as an emergent property from a network of agents that produce, trade and consume food. The network consists of different regions (mimicking the different hemispheres, an equatorial region and a city state with corresponding growing seasons). Each region in turn consists of a rural and urban area. Rural consumers have access to only regionally produced goods, whereas urban consumers can access both intra- and inter-region trade. We studied food security in a hierarchy of 4 archetypical food systems (or ‘Worlds’) evolving from a simple food system in which regions are not urbanised and there is no trade between regions to a globalised World, with a fully connected food system, which is highly urbanised (including a city state with little national food production) and highly interconnected. We investigated the baseline performance of these food systems (no shocks) and the effect of an export ban of one region on food security. We showed first and second-order effects of such a shock in the short- and medium-term, and how these effects differ across food systems. We found that international trade increases food security in the baseline and shock scenario, but also that it can introduce the potential for poor populations to suffer from food system shocks of distant origins. Future work will extend the set of investigated shocks to provide a broader understanding of food systems resilience, possibly in more realistic scenarios.
Yannick Oswald, Nicolas Malleson and Keiran Suchak
Journal of Artificial Societies and Social Simulation 27 (2)
3
Kyeywords: Agent-Based Modelling, Policy Diffusion, Peer Mimicry, Data Assimilation, Particle Filter, COVID-19
Abstract: Global problems, such as pandemics and climate change, require rapid international coordination and diffusion of policy. These phenomena are rare however, with one notable example being the international policy response to the COVID-19 pandemic in early 2020. Here we build an agent-based model of this rapid policy diffusion, where countries constitute the agents and with the principal mechanism for diffusion being peer mimicry. Since it is challenging to predict
accurately the policy diffusion curve, we utilize data assimilation, that is an “on-line” feed of data to constrain the model against observations. The specific data assimilation algorithm we apply is a particle filter because of its convenient implementation, its ability to handle categorical variables and because the model is not overly computationally expensive, hence a more
efficient algorithm is not required. We find that the model alone is able to predict the policy diffusion relatively well with an ensemble of at least 100 simulation runs. The particle filter however improves the fit to the data, reliably so from 500 runs upwards, and increasing filtering frequency results in improved prediction.
Benjamin Karic, Jan Stenkamp, Michael Brüggemann, Simon Schröder, Christian Kray and Judith Verstegen
Journal of Artificial Societies and Social Simulation 27 (2)
5
Kyeywords: Agent-Based Modelling, Data Collection, Immersive Video Environment, COVID-19, Calibration, Policy Interventions
Abstract: Setting up any agent-based model (ABM) requires not only theory to define the agents' behavior, but also suitable methods for calibration, validation, and scenario analysis, which are highly dependent on the available data. When modelling aspects related to the COVID-19 pandemic during the pandemic itself, finding existing data and behavioral rules was rarely possible as conditions were fundamentally different from before and collecting data put people at risk. Here, we present a method to set up and calibrate an ABM using an immersive video environment (IVE). First, we collect data in this reproducible and safe setting. Based on derived behavior, we set up an ABM of pedestrians responding to one-way street signs, installed to stimulate physical distancing. Using bootstrapped regression, we integrate the IVE data into the ABM. Model experiments show that the street signs help to reduce pedestrian densities below critical distance-keeping thresholds, though only when the number of pedestrians is not too high. Our work contributes to the understanding of pedestrian movement dynamics during pandemics. In addition, the proposed data collection and calibration method using the IVE may be applied to other simulation models in which effects of interventions in the physical environment are modelled.
Cheick Amed Diloma Gabriel Traoré, Etienne Delay, Djibril Diop and Alassane Bah
Journal of Artificial Societies and Social Simulation 27 (3)
5
Kyeywords: Agent-Based Modelling (ABM), Algorithm, Complex Adaptive System, Multi Criteria Decision-Making, Optimization, Rationality
Abstract: Sahelian transhumance is a type of socio-economic and environmental pastoral mobility. It involves the movement of herds from their terroir of origin (i.e., their original pastures) to one or more host terroir, followed by a return to the terroir of origin. According to certain pastoralists, the mobility of herds is planned to prevent environmental degradation, given the continuous dependence of these herds on their environment. However, these herds emit Greenhouse Gases (GHGs) in the areas they cross. Given that GHGs contribute to global warming, our long-term objective is to quantify the GHGs emitted by Sahelian herds. The determination of these herds' GHG emissions requires: (1) the artificial replication of the transhumance, and (2) precise knowledge of the space used during their transhumance. This article presents the design of an artificial replication of this transhumance through an agent-based model called MSTRANS. MSTRANS determines the space used by transhumant herds, based on the decision-making process of Sahelian transhumants. MSTRANS integrates a constrained multi-objective optimization problem and algorithms into an agent-based model. The constrained multi-objective optimization problem encapsulates the rationality and adaptability of pastoral strategies. Interactions between transhumants and their socio-economic network are modelled using algorithms and diffusion processes within the multi-objective optimization problem. The dynamics of pastoral resources are formalized at various spatio-temporal scales using equations that are integrated into the algorithms. The results of MSTRANS have been validated using GPS data collected from transhumant herds in Senegal. The MSTRANS results highlight the relevance of integrated models and constrained multi-objective optimization for modelling and monitoring the movement of transhumant herds in the Sahel. We can state that specialists in calculating greenhouse gas emissions now have a reproducible and reusable tool for determining the space occupied by transhumant herds in a Sahelian country. In addition, decision-makers, pastoralists, veterinarians and traders have a reproducible and reusable tool to help them make environmental and socio-economic decisions.
Leonna Szangolies, Marie-Sophie Rohwäder, Hazem Ahmed, Fatima Jahanmiri, Alexander Wagner, Rodrigo Souto-Veiga, Volker Grimm and Cara Gallagher
Journal of Artificial Societies and Social Simulation 27 (4)
1
Kyeywords: Individual-Based Model, ODD Protocol, Good Modelling Practice, Conceptual Model Diagram, Graphical Abstract, Science Communication
Abstract: Agent-based models (ABMs) are commonly used tools across diverse disciplines, from ecology to social sciences and technology. Despite the effectiveness of the widely adopted Overview, Design concepts, and Details (ODD) protocol in ensuring transparency in ABM design and assumptions, the accompanying model descriptions are often lengthy, making quick overviews challenging. To facilitate comprehension, manuscripts, presentations, and posters often include visualisations of the model. Yet, the diversity of visualisation approaches complicates model comparisons and requires additional time for viewers to grasp the figure layouts. Additionally, these visualisations are usually poorly linked to corresponding sections of the written ODD model description. To address these challenges, we propose the standardised visual ODD (vODD) aimed to provide a quick overview of models and simplify the link to the written model description for readers who are more interested in specific elements. The standardised visualisation assigns defined positions for ODD elements for easy reference and comparison. We provide examples and guidance on constructing vODDs, along with templates for modellers to create their own visuals. While advocating for simplicity, we also illustrate how more complex models can still be effectively depicted in such visualisations. By establishing a generalised visualisation applicable to agent-based and other simulation models, we aim to improve the rapid comprehension of models and streamline graphical model representations in manuscripts, presentations, and posters.
Michael Belfrage, Emil Johansson, Fabian Lorig and Paul Davidsson
Journal of Artificial Societies and Social Simulation 27 (4)
4
Kyeywords: Policy-Modelling, Model Credibility, Accreditation, VV&A, Agent-Based Modelling & Simulation, ABM4Policy
Abstract: This paper explores the issue of model credibility of agent-based models and how it should be evaluated prior to application in policy-making. Specifically, the paper analyses related literature from different fields: (1) to establish a definition of model credibility – a measure of confidence in the model’s inferential capability – and (2) to assess how model credibility can be strengthened through Verification, Validation, and Accreditation (VV&A) prior to application and through post-application evaluation. Several studies have
highlighted seriousshortcomings in how V&V of agent-based models is performed and documented, and few public administrations have an established model accreditation process. To address the first issue, we examine the literature on model V&V and, based on this review, introduce and outline the use of a V&V plan. To address the second issue, we draw inspiration from a practical use case of model accreditation applied by a government institution to propose a framework for the accreditation of agent-based models for policy-making. The paper concludes with a discussion of the risks associated with inappropriate assessments of model credibility.
Kärt Padur, Hervé Borrion and Stephen Hailes
Journal of Artificial Societies and Social Simulation 28 (1)
1
Kyeywords: Hybrid Threats, Agent-Based Modelling, Reinforcement Learning, Cyberattack, Misinformation
Abstract: Hybrid attacks coordinate the exploitation of vulnerabilities across domains to undermine trust in authorities and cause social unrest. Whilst such attacks have primarily been seen in active conflict zones, there is growing concern about the potential harm that can be caused by hybrid attacks more generally and a desire to discover how better to identify and react to them. In addressing such threats, it is important to be able to identify and understand an adversary's behaviour. Game theory is the approach predominantly used in security and defence literature for this purpose. However, the underlying rationality assumption, the equilibrium concept of game theory, as well as the need to make simplifying assumptions can limit its use in the study of emerging threats. To study hybrid threats, we present a novel agent-based model in which, for the first time, agents use reinforcement learning to inform their decisions. This model allows us to investigate the behavioural strategies of threat agents with hybrid attack capabilities as well as their broader impact on the behaviours and opinions of other agents. In this paper, we demonstrate the face validity of this approach and argue that its generality and adaptability render it an important tool in formulating holistic responses to hybrid threats, including proactive vulnerability identification, which does not necessarily emerge by considering the multiple threat vectors independently.
Zenith Arnejo, Benoit Gaudou, Mehdi Saqalli and Nathaniel Bantayan
Journal of Artificial Societies and Social Simulation 28 (2)
2
Kyeywords: Agent-Based Model (ABM), Communication Approach, Model Communication, Scoping Review, Stakeholder Participation
Abstract: Agent-based models (ABMs) are widely used in fields such as ecology, natural resource management, and policy planning to simulate complex systems. However, their adoption by stakeholders remains limited, primarily due to challenges in effectively communicating these models. Communicating ABMs to stakeholders involves the methods and tools used to convey a model’s structure, function, and results to facilitate understanding, trust, and application. This scoping review examines 65 articles from major databases, identifying key barriers and gaps in ABM communication. Three major issues emerge: (1) limited efforts to support the use of existing ABMs; (2) insufficient emphasis on explaining the emergence in ABMs; and (3) the absence of standardized methods to evaluate the effectiveness of communication strategies. By mapping current communication strategies and categorizing them based on levels of stakeholder participation—ranging from nominal to transformative—this review highlights the need for clearer, more transparent methods of conveying ABM complexity and emergent properties. It also emphasizes the importance of systematic evaluations of communication approaches to ensure that stakeholders fully understand and can apply these models. This paper contributes to the field by offering actionable recommendations to improve transparency, stakeholder engagement, and the reuse of ABMs, with the aim of fostering broader adoption and more effective application of these models across various domains.
Juan Francisco Robles, Enrique Bermejo, Manuel Chica and Óscar Cordón
Journal of Artificial Societies and Social Simulation ()
Kyeywords: Agent-Based Modelling, Model Validation, Automatic Calibration, Multimodal Optimisation, Multimodal Evolutionary Algorithms
Abstract: Agent-based modelling usually involves a calibration stage where a set of parameters needs to be estimated. The calibration process can be automatically performed by using calibration algorithms which search for an optimal parameter configuration to obtain quality model fittings. This issue makes the use of multimodal optimisation methods interesting for calibration as they can provide diverse solution sets with similar and optimal fitness. In this contribution, we compare nine competitive multimodal evolutionary algorithms, both classical and recent, to calibrate agent-based models. We analyse the performance of each multimodal evolutionary algorithm on 12 problem instances of an agent-based model for marketing (i.e. 12 different virtual markets) where we calibrate 24 to 129 parameters to generate two main outputs: historical brand awareness and word-of-mouth volume. Our study shows a clear dominance of SHADE, L-SHADE, and NichePSO over the rest of the multimodal evolutionary algorithms. We also highlight the benefits of these methods for helping modellers to choose from among the best calibrated solutions.